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On the Performance of MUSIC with Toeplitz
Rectification in the Context of Large Arrays

Pascal Vallet, Member, IEEE, and Philippe Loubaton, Fellow, IEEE

Abstract—When using subspace methods for DoA estimation
such as MUSIC, it is well known that a performance loss occurs
when the number of available samples N is not large compared
to the number of sensors M . This degradation is mainly due
to the use of the Sample Correlation Matrix (SCM), which is a
poor estimator of the true correlation matrix of the observations
in this situation. When the latter exhibits a Toeplitz structure, a
standard trick consists in correcting the structure of the SCM
by averaging its entries along the subdiagonals. This procedure,
known as Toeplitz rectification, is widely known to improve the
estimation of the true correlation matrix, hence the performance
of the corresponding subspace methods. In this paper, we propose
a statistical analysis of the MUSIC method using Toeplitz rectified
SCM (refered to as R-MUSIC), in the context where M,N are
of the same order of magnitude. More precisely, considering the
asymptotic regime in which M,N converge to infinity at the same
rate, we prove the consistency and asymptotic normality of the R-
MUSIC DoA estimates. Numerical simulations show the accurate
prediction provided by the proposed theoretical analysis.

Index Terms—Subspace DoA estimation, Large sensors array,
Toeplitz rectification

I. INTRODUCTION

CONSIDER K narrowband and far-field source signals
impinging on an array of M sensors with Direction

of Arrival (DoA) θ1, . . . , θK . The received signal is usually
modeled as the multivariate time series (yn)n∈Z with

yn =

K∑
k=1

a(θk)sk,n + vn, (1)

where a(θ1), . . . ,a(θK) are the M -dimensional steering vec-
tors associated with the DoA and the array geometry, sk,n
represents the k-th transmit source signal and vn is an
additive complex circular Gaussian noise, assumed spatially
and temporally white.

DoA estimation, that is the estimation of θ1, . . . , θK from N
samples y1, . . . ,yN , is a classical problem in array processing,
and several algorithms such as maximum likelihood, subspace
methods or spatial filtering based estimators have been pro-
posed and extensively studied during the last four decades (see
e.g. [2] for a review). One of the most prominent criterion for
assessing the performance of such algorithms is the capacity
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to resolve closely spaced DoA, which is in general improved
when the number M of sensors in the array increases. The
recent technological advances in the development of large
dimensional arrays, e.g. in massive multi-antenna systems for
wireless communications [3], have renewed the interest in
studying high resolution methods.

In general, DoA estimation methods involve intricate statis-
tics of the received signal, and in particular most of them
can be written as functions of the Sample Correlation Matrix
(SCM) of the received signal R̂, defined as

R̂ =
1

N

N∑
n=1

yny∗n.

Due to the inherent complexity of the underlying estimators,
the statistical analysis of these methods, in terms of consis-
tency, Mean Square Error (MSE), resolution probability etc.,
is usually performed in asymptotic regimes, the most standard
one being the large sample size regime where the number N of
available samples for estimation goes to infinity, while all the
other parameters (M , K, θ1, . . . , θK , etc.) remain fixed. In this
regime, standard statistical results on the asymptotic behaviour
of the SCM can be exploited to predict the performance
of DoA estimators (see e.g. [4] in the context of subspace
methods). In practice, the predictions are quite reliable for a
finite N , as long as M � N and the DoA are sufficiently
spaced.

Nevertheless, in situations where M ≈ N , the large sample
size predictions are in general quite poor, and one needs
to adapt the asymptotic regime to model this non standard
context, which occurs when the number of sensors is large,
or when the sample size is small comparatively (e.g. for
short time stationary signals). In the seminal paper [5], a non
standard asymptotic regime was proposed, in which M,N
goes to infinity at the same rate, that is M

N → c > 0. Using
tools from Random Matrix Theory predicting the asymptotic
behaviour of the largest eigenvalues and associated eigenvec-
tors of the SCM, asymptotics of various subspace methods
cost functions (MUSIC, SS-MUSIC) were derived, in the
unconditional model (i.e. (sn) modeled as zero mean Gaussian
and temporally i.i.d.), and an improved MUSIC estimator
(termed as G-MUSIC) was proposed. Using similar tools,
the conditional model (i.e. (sn) modeled as deterministic and
unknown) was explored in [6]–[9], and a G-MUSIC estimator
was also derived in this context, and its consistency, MSE and
asymptotic normality was studied in the double asymptotic
regime mentioned above. The special case of closely spaced
DoA (i.e. with a spacing of the order O( 1

M ) was also studied;
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in this case, G-MUSIC is still able to separate asymptotically
the sources while it is no longer the case for MUSIC (cf
[9] for the precise meaning of this result). Other works in
the large M,N regime include the study of MUSIC with
time-correlated noise [10], Beamspace-MUSIC [11], Robust
MUSIC/G-MUSIC [12] or MUSIC with Spatial Smoothing
[13].

When dealing with such high dimensional observations, the
usual key point is to develop estimators of certain functionals
of the true correlation matrix of the received signal (defined as
R = E[R̂] for both the conditional and unconditional model),
which are consistent in the doubly asymptotic regime M,N →
∞ at the same rate. In particular, the consistent estimation of
the correlation matrix itself in the spectral norm sense is a
challenging problem in the statistics community (see e.g. [14]–
[17]) and requires restrictive assumptions such as the vanishing
of the off-diagonal entries of R at a sufficiently fast rate, as
M →∞.

In the special case of a Toeplitz correlation matrix R =
(ri−j), i, j ∈ {1, . . . ,M}, which occurs in our context
e.g. for the unconditional model with spatially uncorrelated
sources and a Uniform Linear Array (ULA), it is usual to
force the SCM R̂ to have a Toeplitz structure by averaging
its coefficients along the diagonals, which leads to a new
correlation matrix estimator. This procedure, known as Toeplitz
rectification, was first proposed in the signal processing com-
munity by [18] and later more specifically studied by [19]
in the context of array processing for a large class of array
geometries.

For any M,N , [16] obtained precise upper bounds on the
quadratic risk (in the spectral norm sense) of the Toeplitz
rectification scheme associated with a tapering/banding, for
estimating correlation matrices belonging to certain classes of
Toeplitz matrices. In particular, consistency of these estimates
holds when M or N →∞, as long as the entries of R outside
the main diagonal satisfy a certain rate of decay. Later, it
was shown in [17] that the consistency of the rectified SCM
holds without banding nor tapering, under the specific regime
M
N → c > 0 as M,N → ∞. Nevertheless, in the context
of model (1), it turns out that the off-diagonal entries of R
all have the same order of magnitude and do not satisfy the
rate of decay required in [16], [17], hence these results cannot
be used in the array processing specific context, for which a
different analysis is needed.

In this paper, we develop a statistical analysis of the
Toeplitz rectification scheme in the high dimensional asymp-
totic regime M,N → ∞ such that M

N → c > 0, assuming
a ULA geometry for the array (for which the works of
[16], [17] cannot be used). The analysis is provided under
both the conditional and unconditional models, which are
summarized in Section II along with the assumptions used
throughout the paper. Surprisingly, we prove in Section III that
the Rectified SCM, without any resort to tapering nor banding,
provides a consistent estimator of the true correlation matrix
R. This result is then exploited in Section IV to study the
statistical performance, in terms of consistency and asymptotic
normality, of the MUSIC method for DoA estimation, when
using the Rectified SCM (the method will be referred to as

R-MUSIC). In particular, an accurate approximation of the
MSE is derived, and a stagnation phenomenon is shown to
occur for high Signal to Noise Ratio (SNR). Moreover, it is
also proved that R-MUSIC has the ability to separate closely
spaced DoA, as for the G-MUSIC method. Finally, Section V
presents some numerical simulations illustrating the previous
results, and Section VI concludes the paper.

Notations: For a complex matrix A, we denote by AT ,A∗

its transpose and its conjugate transpose, and by Tr (A),
‖A‖2 and ‖A‖F its trace, spectral norm and Frobenius norm
respectively. The Hadamard product (entrywise product of
matrices) is denoted �. The identity matrix will be I and
en will refer to a vector having all its components equal to
0 except the n-th equals to 1. The real normal distribution
with mean m and variance σ2 is denoted NR(α, σ2). A
random variable Z follows the complex Gaussian distribution
NC(α, σ2) if Z = X + iY with X,Y independent such
that X ∼ NR

(
Re(α), σ

2

2

)
and Y ∼ NR

(
Im(α), σ

2

2

)
. The

expectation and variance of a complex random variable Z
will be denoted E[Z] and V[Z]. A random vector X follows
the distribution NCk (α,R) if b∗X ∼ NC

(
b∗α, ‖R1/2b‖22

)
for all deterministic (column) vector b,α ∈ Ck and k × k
positive definite matrix R. For a sequence of random variables
(Xn)n∈N and a random variable X , we write

Xn
a.s.−−−−→
n→∞

X and Xn
D−−−−→

n→∞
X

when Xn converges respectively almost surely (a.s.) and in
distribution to X . Finally, Xn = oP(1) will stand for the
convergence of Xn to 0 in probability, and Xn = OP(1) will
stand for tightness (boundedness in probability).

II. MODELS AND ASSUMPTIONS

From now on, we consider a ULA of M sensors receiving K
narrowband and far-field source signals with DoA θ1, . . . , θK ,
and collecting N samples in the M × N matrix Y modeled
as

Y = AS + V,

where
• A = [a(θ1), . . . ,a(θK)] is the M × K steering vectors

matrix, with 1

θ 7→ a(θ) =
1√
M

[
1, eiθ, . . . , ei(M−1)θ

]T
,

and θ1, . . . , θK ∈ (−π, π). 2

• S is the K ×N matrix of source signals,
• V is an additive noise matrix with i.i.d. entriesNC(0, σ2).

1 In this paper, we assume unit-norm steering vectors by introducing the
normalization factor 1√

M
, in order to keep the matrix A (hence the SNR)

bounded as M →∞.
2 In this paper, θk refers to the Direction of Arrival in the Fourier domain,

and is related to the ”physical” elevation angle φk ∈ (0, π) of the source
wave by the parametrization

θk =
2πd cos(φk)

λ
,

where d, λ are respectively the sensors interspacing and wavelength.
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For our analysis, we work with both the conditional and
unconditional models, as well as uncorrelated sources, which
is summarized by the following two assumptions on the signal
matrix S.

Assumption 1 (Conditional model). Signal matrix S is deter-
ministic and

1

N
SS∗ = Γ + o

(
1

N1/4

)
as N →∞, where Γ is a positive diagonal matrix.

We underline the fact that the rate of convergence of the
SCM SS∗

N to the true correlation matrix Γ imposed in Assump-
tion 1 is merely technical and not restrictive in practice, since
it is satisfied for a wide range of stationary linear processes
(see e.g. [20]).

Assumption 2 (Unconditional model). Signal matrix S is
modeled as S = Γ1/2X, with X a K × N random matrix
having i.i.d NC(0, 1) entries, and where Γ is a positive
diagonal matrix.

Note that under Assumption 1, Y is a non cen-
tered Gaussian matrix, while under Assumption 2, Y

D
=(

AΓA∗ + σ2I
)1/2

W, with W having NC(0, 1) entries.
Moreover, for both assumptions, we denote by R the

covariance matrix of the received signal defined as

R = E[R̂] =

{
ASS∗

N A∗ + σ2I under Assumption 1,
AΓA∗ + σ2I under Assumption 2

For our asymptotic analysis, we consider that N = N(M)
is a function of M such that M

N → c > 0, while K is
independent of M . The DoA θ1, . . . , θK may depend on M for
the results in Section III, while we distinguish two situations
for the results in Section IV (see remark below). For the sake
of readibility, we may add a subscript M to avoid ambiguity
for quantities depending on M .

Remark 1. The assumption that θ1, . . . , θK are fixed with
respect to M is relevant for scenarios where the source DoA
are widely spaced compared to the array beamwidth 2π

M (see
[9]); this assumption is used to obtain the results of Section
IV-A, IV-B and IV-C. The scenario of closely spaced DoA,
having an angular spacing of the order of a beamwidth
requires to consider DoA depending on M . This assumption
and its impact on the results of this paper is discussed in
Section IV-D.

Under the asymptotic framework described previously, we
notice that for both Assumptions 1 and 2∥∥R− (AΓA∗ + σ2I

)∥∥
2
−−−−→
M→∞

0,

where matrix AΓA∗ + σ2I has a Toeplitz structure, a fact
which will be fully exploited in the next section to study the
rectification scheme.

Remark 2. The signal model used in this paper differs
substantially from the one in [17], which involves a se-
quence of correlation coefficients (rn)n∈Z ∈ `1(Z) and the
sequence (RM )M≥1 of Toeplitz correlations matrices with

RM = (ri−j)i,j∈{1,...,M}. In our model, we are considering
a triangular array of correlation coefficients since we deal
with a sequence (RM )M≥1 of correlation matrices with M -
dependent entries. Moreover, the absolute summability as-
sumption is not satisfied here.

III. THE RECTIFIED SCM
Let us denote by R̂ the SCM of the received signal defined

as the matrix

R̂ =
YY∗

N
.

Since R̂ fails to preserve a Toeplitz structure, it was originally
proposed in [18] to replace it by its closest neighbor in the
subspace of Toeplitz matrices T . This subspace being endowed
with the usual Hilbert-Schmidt inner product, let us consider
the orthonormal basis E−M+1, . . . ,EM−1 where

Em =

√
1

M − |m|J
m,

with J the upper M ×M shift matrix 3 and denote by πT
the linear map representing the orthogonal projection onto T ,
given by

πT (X) =

M−1∑
m=−M+1

Tr (E∗mX)Em. (2)

The Toeplitz rectification (or simply Toeplitzification) of R̂ is
then defined as the projected matrix

R̃ = πT (R̂).

Rewriting the individual elements of R̃ leads to[
R̃
]
i,j

=
1

M − |i− j|
∑

k−l=i−j

[
R̂
]
k,l
,

which means that the Toeplitzification can be also interpreted
as an averaging along the diagonals of R̂ .

It turns out that the rectified SCM is a consistent estimate of
R, as stated by the following result, whose proof is deferred
to Appendix B.

Theorem 1. Under Assumptions 1 or 2, we have∥∥∥R̃−R
∥∥∥
2

a.s.−−−−→
M→∞

0.

Theorem 1 implies in particular

sup
‖b1‖2,‖b2‖2=1

∣∣∣b∗1 (R̃−R
)

b2

∣∣∣ a.s.−−−−→
M→∞

0, (3)

where the supremum is taken over all unit norm vectors b1,b2.
Another consequence of Theorem 1, which immediately fol-
lows from Weyl’s inequality, is given by the convergence

max
k=1,...,M

∣∣∣λ̃k − λk∣∣∣ a.s.−−−−→
M→∞

0, (4)

where λ̃1 ≥ . . . ≥ λ̃M denote the eigenvalues of the rectified
S.C.M R̃ and λ1 ≥ . . . ≥ λK > λK+1 = . . . = λM = σ2

denote the eigenvalues of R.

3 By convention, J0 = I and for m ≥ 0, J−m = (JT )m.
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Note that the result of Theorem 1 is in stark contrast with
the behaviour of the non-rectified SCM R̂, which is not a
consistent estimator. Indeed, although the weaker convergence

b∗1

(
R̂−R

)
b2

a.s.−−−−→
M→∞

0

is still valid, the convergence in spectral norm does not hold.
Indeed, even in the pure noise case, that is Y = V (R = σ2I),
it is well-known, (see e.g [21]) that

∥∥∥R̂∥∥∥
2
→ σ2(1 +

√
c)2 >

σ2 a.s as M →∞.
We conclude this section by the following corollary which

will be used to study the behaviour of the rectified MUSIC
cost function and whose proof is deferred to Appendix A.

Corollary 1. Let Π̃,Π be the orthogonal projection matrices
onto the eigenspace associated with the M − K smallest
eigenvalues of R̃ and R respectively. Then under Assumption
1 or 2, ∥∥∥Π̃−Π

∥∥∥
2

a.s.−−−−→
M→∞

0. (5)

IV. A STATISTICAL ANALYSIS OF R-MUSIC
Having characterized the first order behaviour of the rec-

tified S.C.M R̃ in terms of spectral norm, we are now able
to study the statistical performance of the MUSIC algorithm
based on R̃, in terms of consistency and asymptotic normality.

A. Consistency of R-MUSIC

We recall that the MUSIC method relies on the property that
the DoA θ1, . . . , θK are the unique zeros of the cost function

η(θ) = ‖Πa(θ)‖22 , (6)

where Π is the orthogonal projection matrix onto the kernel
of R−σ2I. The standard estimate of the MUSIC cost function
consists in replacing Π by its corresponding estimate Π̂ from
the S.C.M R̂, leading to

η̂(θ) =
∥∥∥Π̂a(θ)

∥∥∥2
2
.

The DoA are then estimated as the K deepest local minima of
θ 7→ η̂(θ). In the same way, the Rectified-MUSIC (R-MUSIC)
method is based on the rectified S.C.M, and the DoA estimate
are taken as the K deepest local minima of

η̃(θ) =
∥∥∥Π̃a(θ)

∥∥∥2
2
, (7)

where Π̃ is the orthogonal projection matrix associated with
the M − K smallest eigenvalues of R̃. The cost function
estimate (7) of (6) is consistent; indeed, from Corollary 1,
we immediately obtain

sup
θ∈(−π,π]

|η̃(θ)− η(θ)| a.s.−−−−→
M→∞

0. (8)

In order to study the behaviour of the R-MUSIC DoA
estimates, we need to define the latter properly. Consider K
compact intervals I1, . . . , IK ⊂ (−π, π] such that θk ∈ Ik for
all k. The R-MUSIC DoA estimate of θk is then defined as

θ̃k = argmin
θ∈Ik

η̃(θ).

It turns out that the property (8) automatically implies the
following consistency result (see [7, Prop. 4.1.] for a proof).

Theorem 2. Under both Assumptions 1 and 2, and assuming
θ1, . . . , θK are fixed with respect to M , the R-MUSIC DoA
estimators satisfy for all k = 1, . . . ,K,

M
(
θ̃k − θk

)
a.s.−−−−→

M→∞
0.

The R-MUSIC method thus provides consistent DoA esti-
mates, with an error decreasing faster than 1

M ; this property
is usually refered to as M -consistency.

The result of Theorem 2 is similar to the M -consistency
result obtained for the methods MUSIC/G-MUSIC in [9].
Nevertheless, the latter also require the additional condition

γK
σ2

>
√
c,

where γK is the smallest positive eigenvalue of Γ. This
condition, refered to as subspace separation, is needed to
ensure clear signal/noise subspace separation in the spectrum
of R̂, and can be interpreted as a minimal SNR constraint
for the source with the lowest energy. Since the R-MUSIC
method does not require such an assumption, a performance
gain over MUSIC/G-MUSIC is expected, especially in the low
SNR regions, as it will be shown on numerical examples in
Section V.

B. Asymptotic normality of R-MUSIC: the conditional model

We now study the 2nd order behaviour of the R-MUSIC
DoA estimates, in terms of asymptotic normality, and consider
first the settings of Assumption 1 (conditional model). For that
purpose, we define

ρ2k =

σ2c

(
σ2‖Tk‖2F + 2

∥∥∥TkA
S√
N

∥∥∥2
F

)
∥∥∥Πa′(θk)

M

∥∥∥4
2

, (9)

where Tk is the Hermitian Toeplitz matrix defined by

Tk =
1

2
πT

(
(AΓA∗)]a(θk)

a′(θk)∗

M
Π

)
+

1

2
πT

(
Π

a′(θk)

M
a(θk)∗(AΓA∗)]

)
, (10)

where (.)] stands for the pseudo-inverse. Note that the term
ρ2k will serve as an asymptotic variance for the k-th R-MUSIC
DoA estimate. We also define the following quantity, which
will describe an asymptotic bias:

∆k =
1

M

Tr
(
A
(

SS∗

N − Γ
)

A∗Tk

)
∥∥∥Πa′(θk)

M

∥∥∥2
2

. (11)

Theorem 3. Under Assumption 1, and assuming θ1, . . . , θK
are fixed with respect to M , the R-MUSIC DoA estimators
satisfy, for all k = 1, . . . ,K,

M3/2
(
θ̃k − θk −∆k

)
ρk

D−−−−→
M→∞

N (0, 1). (12)
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The proof of Theorem 3 is deferred to Appendix C.
Similarly to Theorem 2, the result of Theorem 3 holds

whatever the noise power σ2 and or the source power matrix
Γ are, which is again in contrast to the asymptotic normality
results for G-MUSIC/MUSIC obtained in [9].

Looking at the statement of Theorem 3, we notice the
presence of an asymptotic bias term ∆k, which is independent
of σ2, as well as a variance term ρ2k vanishing as σ2 → 0. This
sheds light on a major drawback of R-MUSIC. Indeed, from
the proof of Theorem 3, one can deduce that

E
∣∣∣θ̃k − θk∣∣∣2 −−−−→

σ2→0
|∆k|2 , (13)

showing that the MSE of R-MUSIC saturates in high SNR
regions at the bias term |∆k|2. Nevertheless, this bias is
mitigated for large dimensions (and fixed SNR) since we also
have

∆k = o

(
1

M3/2

)
,

as M →∞. Modifying the proof of Theorem 3 with a uniform
integrability argument, we can also deduce that

E
∣∣∣θ̃k − θk∣∣∣2 =

ρ2k
M3

+ o

(
1

M3

)
, (14)

We conclude from this discussion that in practice, the bias
contribution in the MSE is negligible at low SNR and large
M,N , while it becomes preponderant for reasonable dimen-
sions M,N and high SNR.

Finally, we mention that ρ2k can be approximated by a more
explicit expression, using Lemma 3 in Appendix C-A:

E
∣∣∣θ̃k − θk∣∣∣2 =

1

M3

6σ2c(γk + σ2)

γ2k
+ o

(
1

M3

)
. (15)

Note also that the asymptotic MSE (15) coincides with the
one of G-MUSIC [9] when γk

σ2 � 1 (large SNR), as well as
the CRB [4].

C. Asymptotic normality of R-MUSIC: the unconditional
model

In this section, we present the asymptotic normality result
for the unconditional model (Assumption 2). For ease of
reading, we keep the same notation for the variance term (9),
which is now expressed as

ρ2k =
c
∥∥R1/2TkR

1/2
∥∥2
F∥∥∥Πa′(θk)

M

∥∥∥4
2

, (16)

where Tk is defined in (10) (recall that R = AΓA∗+σ2I in
the unconditional model).

The equivalent of Theorem 3 is given by the following
result, whose proof is also sketched in Appendix C.

Theorem 4. Under Assumption 2, and assuming θ1, . . . , θK
are fixed with respect to M , the R-MUSIC DoA estimators
satisfy, for all k = 1, . . . ,K,

M3/2
(
θ̃k − θk

)
ρk

D−−−−→
M→∞

N (0, 1). (17)

A noticeable fact about Theorem 4 is the absence of an
asymptotic bias term, compared to Theorem 3, which is due to
the specific unconditional model, where the source signal are
assumed random. In this unconditional case, we still observed
a stagnation of the MSE for high SNR, which is this time
directly contained in the variance term (16) since

ρ2k −−−−→
σ2→0

c
∥∥∥(AΓA∗)

1/2
Tk (AΓA∗)

1/2
∥∥∥2
F∥∥∥Πa′(θk)

M

∥∥∥4
2

.

Nevertheless, this phenomenon is negligible for large M,N
since we also have (see Lemma 3)

ρ2k −−−−→
M→∞

6σ2c(γk + σ2)

γ2k
. (18)

D. Some comments on the closely spaced DoA scenario

When dealing with large array of sensors and widely spaced
source DoA (with a spacing much larger than a beamwidth
2π
M ), it is well-known that most of the DoA estimation methods
perform similarly in terms of MSE (from the asymptotic
regime M → ∞ point of view). In particular, it is the case
for MUSIC and its improved version G-MUSIC (see e.g. [9]),
and also for R-MUSIC from the comments formulated at the
end of Section IV-B.

In that case, a more relevant scenario consists in considering
closely spaced DoA, with a spacing of magnitude O

(
1
M

)
[22],

[9], which is summarized in the following assumption.

Assumption 3. We consider K = 2, Γ = I and DoA
depending on M in such a way that

θ2,M = θ1,M +
α

M
,

where α > 0 is independent of M .

In that case, the R-MUSIC DoA estimates are now defined
as

θ̃k,M = argmin
θ∈Ik,M

η̃(θ) (19)

where Ik,M is the interval

Ik,M =

[
θk,M −

α− ε
2M

, θk,M +
α+ ε

2M

]
.

Under Assumption 3, the classical MUSIC method (when
defined similarly to (19)) looses the M -consistency property
(see Section IV-A), while the improved G-MUSIC method suc-
ceeds in separating the DoA provided the separation condition

1−
∣∣∣∣ sinα/2α/2

∣∣∣∣ > σ2
√
c

holds. Since (7) is a uniformly consistent estimate of the
cost function (6), the M -consistency for the R-MUSIC DoA
estimates is in fact automatically verified, by using the proof
of [9, Th.6]. Therefore, under Assumption 1 or 2, and under
the additional Assumption 3, the R-MUSIC DoA estimates
defined by (19) satisfy, for k ∈ {1, 2},

M
(
θ̃k,M − θk,M

)
a.s.−−−−→

M→∞
0.
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Concerning the asymptotic normality results, one can see
that the proof of Theorems 3 and 4 remains unchanged in the
context of Assumption 3, and the convergence (12) and (17)
are still valid as long as

0 < lim inf
M→∞

ρk ≤ lim sup
M→∞

ρk <∞,

for k ∈ {1, 2}, where ρk is defined by (9) or (16). This is
ensured by Lemma 4 in Appendix C-A, and thus we also
obtain under Assumption 3

M3/2
(
θ̃k − θk

)
ρk

D−−−−→
M→∞

N (0, 1),

where ρk is given by (9) or (16).

V. NUMERICAL RESULTS

In this section, we provide numerical results on the R-
MUSIC DoA estimates, illustrating the theoretical predictions
of the previous sections.

Simulations settings. For all the simulations, we consider
K = 2 sources, with M = 40 sensors and N = 80 samples,
and a total of 500 Monte-Carlo runs to evaluate the DoA
estimates (except for Figures 5 and 4 where N = 30). The
signal matrix S is of the form

S = Γ1/2XΓ̃
1/2
, (20)

where
• X is a matrix with standard i.i.d. complex circular

Gaussian entries. In the conditional case, only one
realization of X is generated and kept fixed for all runs
while in the unconditional case, a new X is generated
at each run;

• Γ represents the spatial correlation between sources
which will be fixed to I;

• Γ̃ represents the temporal correlation of the source
signals; it will be either fixed to Γ̃ = I or

Γ̃ =
(
ξ|i−j|

)
i,j∈{1,...,N}

,

with ξ = 0.7, depending whether we consider
temporally white signals or AR(1) signals.

For all the simulations in the conditional model provided
below, we have generated a unique X matrix which is reused
for the different Figures (except again for Figures 5 and 4).
The SNR is defined as −10 log(σ2) and the estimated DoA
are taken as the K largest local maxima of the cost function
under study.

Widely spaced DoA. We first deal with the widely spaced
DoA scenario, by considering DoA θ1 = 0 and θ2 = 5× 2π

M .
In Figures 1, 2 and 3, we plot, as a function of the SNR, the
empirical MSE of θ̂1 as well as the theoretical MSE
predicted in Theorems 3 and 4, that is

MSE(θ̂1) =

{
ρ21
M3 + ∆2

1 for the conditional case,
ρ21
M3 for the unconditional case

where ∆1 is defined in (11) and ρ1 in (9) or (16). In Figures
1 and 2, the conditional case is considered for temporally
white and AR(1) signals respectively (recall that we reuse
the same matrix X in (20) for both plots), together with the
associated Cramer-Rao bounds. In both cases, a good match
is observed between the empirical and predicted MSE. In
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Conditional model, Widely spaced DoA, White signals
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R-MUSIC (Theor. Cond.)
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Fig. 1. Empirical and Theoretical MSE vs SNR (conditional model, tempo-
rally white signals, widely spaced DoA)
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Conditional model, Widely spaced DoA, Correlated signals

R-MUSIC (Emp.)
R-MUSIC (Theor. Cond.)
CRB

Fig. 2. Empirical and Theoretical MSE vs SNR (conditional model, tempo-
rally correlated signals, widely spaced DoA)

Figure 3, the unconditional case is considered for both
temporally white and AR(1) signals. In this case, we observe
a less accurate prediction when temporal correlation is
present, a situation which is not covered by the assumptions
of the unconditional scenario (cf. Assumption 2).

Closely spaced DoA. Figures 4 and 5 provide simulations for
the closely spaced DoA scenario for the conditional and
unconditional models respectively, where θ1 = 0 and
θ2 = 0.25× 2π

M , and where the source signals are temporally
white Gaussian. The number of samples is fixed to N = 30
to illustrate an undersampled situation, for which the
analysis we provide is still valid. In that case, the
performance of R-MUSIC severely degrades, and the
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Fig. 3. Empirical and Theoretical MSE vs SNR (unconditional model,
temporally white and AR(1) signals, widely spaced DoA)

predicted MSE obtained in Theorem 3 may present some
discrepancy with the empirical one, see the discussion on the
limitations of the asymptotic analysis below.

15 20 25 30 35 40
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M
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Conditional model, Closely spaced DoA, White signals

R-MUSIC (Emp.)
R-MUSIC (Theor. Cond.)
CRB

Fig. 4. Empirical and Theoretical MSE vs SNR (conditional model, tempo-
rally white signals, closely spaced DoA, undersampled)

Comparisons with other methods. Finally, we also provide in
Figures 7 a comparison with the G-MUSIC method
mentioned in Section IV-A, for closely spaced DoA (θ1 = 0
and θ2 = 0.25× 2π

M ) and temporally white source signals, in
the context of the unconditional model. Although the
theoretical performance of these methods in the large
dimensional regime is still an open problem, the ESPRIT
and Root-MUSIC methods, which are known to outperform
MUSIC for moderate sample size [23], are also simulated.
To compare similar algorithms, the ”Root” version of
R-MUSIC is implemented. We notice, as expected, a gain of
performance for R-MUSIC in the low SNR region in terms
of threshold points, that is the SNR under which the MSE
significantly deteriorates and departs from the one predicted
by the asymptotic analysis (these points can be seen around
16 dB and 24 dB for the R-MUSIC and G-MUSIC
respectively). This difference between the two methods can
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SNR

10−7

10−6

10−5

10−4

10−3

M
SE

Unconditional model, Closely spaced DoA, White signals

R-MUSIC (Emp.)
R-MUSIC (Theor. Uncond.)
CRB

Fig. 5. Empirical and Theoretical MSE vs SNR (unconditional model,
temporally white signals, closely spaced DoA, undersampled)
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G-MUSIC (Emp.)
ESPRIT (Emp.)
Root-RMUSIC (Emp.)
Root-MUSIC (Emp.)
CRB

Fig. 6. Empirical and Theoretical MSE vs SNR of Root R-MUSIC, Root
MUSIC, ESPRIT and G-MUSIC (unconditional model, temporally white
signals, widely spaced DoA)

be explained by the fact that G-MUSIC requires a sufficiently
large SNR to work properly (cf. discussion in Section IV-A).
However, G-MUSIC, which is efficient when the SNR goes
to infinity, clearly outperforms R-MUSIC for the high SNR
region, which suffers from the SNR stagnation.

Potential limitations of the asymptotic analysis. As we have
seen previously in Figure 3, the unconditional model is not
robust to temporal correlation of signals, and the theoretical
analysis is no more accurate in that situation. Comparatively,
the conditional model is able to handle temporal correlations
in its very assumption, and the theoretical analysis we have
provided is valid in that case, as we have noticed e.g. in
Figure 2. Nevertheless, as stated in Assumption 1, the spatial
sample correlation matrix SS∗

N of the source signals must be
”close” in practice to a diagonal matrix; this situation may
not be fully verified for small sample size N and in that
case, we may observe some discrepancy between the
empirical and asymptotic MSE.
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Fig. 7. Empirical and Theoretical MSE vs SNR of Root R-MUSIC, Root
MUSIC, ESPRIT and G-MUSIC (unconditional model, temporally white
signals, closely spaced DoA)

VI. CONCLUSION

In this paper, we have provided a statistical analysis of the
R-MUSIC method, in terms of consistency and asymptotic
normality, in the regime where both the number of sensors
and the number of snapshots go to infinity at the same rate.
The study has been conducted under both the conditional
and the unconditional signal model, which are commonly
used in array processing, as well as for two scenarios
involving widely and closely spaced DoA, where in the latter
case the source DoA have a spacing of the order of a
beamwidth (i.e. inversely proportional to the number of
sensors). In particular, it has been established that R-MUSIC
is able to asymptotically separate closely spaced DoA.
Compared to G-MUSIC, another method sharing this latter
property, R-MUSIC does not require a minimal SNR to be
valid. The asymptotic analysis of the MSE has also enlighted
the well-known threshold effect in the large SNR region,
which demonstrates that the use of R-MUSIC method is
essentially interesting for the low SNR region. Finally,
numerical results have demonstrated the accuracy of the
asymptotic results, and we have underlined the potential
limitations of the theoretical analysis, especially in situations
involving small sample size or temporal correlations.

APPENDIX A
PROOF OF COROLLARY 1

Let C be a circle, counterclockwise oriented, enclosing σ2

and leaving outside γ1 + σ2, . . . , γK + σ2, where γ1, . . . , γK
are the diagonal entries of Γ. Since the K largest eigenvalues
of R have γ1 + σ2, . . . , γK + σ2 as limits when M →∞
whereas the M −K smallest ones coincide with σ2,
Theorem 1 through convergence of the eigenvalues (4) thus
implies that the K largest eigenvalues of R̃ converge outside
C and the M −K smallest eigenvalues converge inside C.
Using residue theorem, we consequently obtain the following

contour integral representation, a.s. for all large M ,

Π̃−Π =
1

2πi

∮
C

((
R̃− zI

)−1
− (R− zI)

−1
)

dz

=
1

2πi

∮
C

(
R̃− zI

)−1 (
R− R̃

)
(R− zI)

−1
dz.

Finally, since a.s.

lim sup
M→∞

sup
z∈C

∥∥∥∥(R̃− zI
)−1∥∥∥∥

2

<∞, (21)

as well as

lim sup
M→∞

sup
z∈C

∥∥∥(R− zI)
−1
∥∥∥
2
<∞, (22)

we easily deduce (5).

APPENDIX B
PROOF OF THEOREM 1

A. Preliminary results

The following lemma gives upper bounds on the spectral
norm of any Toeplitz rectified matrix. Note that the second
bound, although far from being optimal, is sufficient for the
technicalities of this paper.

Lemma 1. There exists a constant C > 0 such that for any
M ∈ N∗ and M ×M complex matrix C, we have

‖πT (C)‖2 ≤ sup
ν∈(−π,π]

|Tr (CL(ν))| (23)

where

L(ν) =

M−1∑
m=−M+1

exp(imν)

M − |m| J
m.

Moreover, ‖L(ν)‖F = O
(√

log(M)
)

.

Proof. Denote by Ω = (ωi−j)i,j=1,...,M the Toeplitz matrix
πT (C), where by definition

ωm =
1

M − |m|Tr (CJm) .

Using the standard bound on spectral norm of Toeplitz
matrices based on Parseval’s Theorem, we have

‖πT (C)‖2 ≤ sup
(−π,π]

∣∣∣∣∣
M−1∑

m=−M+1

ωmexp(imν)

∣∣∣∣∣
≤ sup

(−π,π]
|Tr (CL(ν))| ,

which proves (23). Finally, using classical results on
harmonic series, we have

‖L(ν)‖2F = ‖L(0)‖2F

≤ 1

M
+ 2

M−1∑
m=1

1

M − |m|
≤ C log(M).
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The next property is a concentration bound which follows
directly from mixing two Chernoff bounds for sub-Gaussian
and sub-exponential distributions (see e.g. [24]).

Lemma 2. Let B = [b1, . . . ,bN ] be a deterministic M ×N
matrix, x1, . . . ,xN be independent random vectors such that
xn ∼ NCM (bn, I), Ξ a M ×M Hermitian matrix and define

Z =
1

N

N∑
n=1

x∗nΞxn.

Then there exists constant κ1, κ2 > 0 and independent of
M,N,B,Ξ such that for all ε ≥ 0,

P (|Z − E[Z]| ≥ ε) ≤

κ1exp

(
−κ2 min

{
Nε2

‖Ξ‖2F
,

Nε2

Tr
(
Ξ2BB∗

N

) , Nε

‖Ξ‖2

})
.

B. The proof

Conditional model. We start the proof by considering
Assumption 1. Using triangular inequality, we obtain∥∥∥R̃−R

∥∥∥
2
≤ χ1,M + χ2,M + χ3,M ,

where

χ1,M =
∥∥∥R̃− E[R̃]

∥∥∥
2
,

χ2,M =
∥∥∥E[R̃]− (AΓA∗ + σ2I)

∥∥∥
2
,

χ3,M =

∥∥∥∥A(SS∗

N
− Γ

)
A∗
∥∥∥∥
2

.

By hypothesis, we obviously have χ3,M → 0 as M →∞.
Using (23) in Lemma 1 below (see Appendix B-A), we have

χ2,M ≤ sup
ν∈(−π,π]

|gM (ν)| , (24)

where

gM (ν) = Tr

(
A

(
SS∗

N
− Γ

)
A∗L(ν)

)
, (25)

with

L(ν) =

M−1∑
m=−M+1

exp(imν)

M − |m| J
m. (26)

A straightforward bound gives

|gM (ν)| ≤
∥∥∥∥SS∗

N
− Γ

∥∥∥∥
2

K∑
k,`=1

|a(θk)∗L(ν)a(θ`)| .

Since for any θ, θ′, |a(θ)∗Jma(θ′)| ≤ M−|m|
M , we deduce

using (26) that

|a(θ)∗L(ν)a(θ′)| ≤ 2,

for all ν ∈ (−π, π], and since K is independent of M , we
easily deduce that χ2,M → 0 as M →∞.
It now remains to prove that χ1,M → 0 a.s. as M →∞. As
above, using Lemma 1, we get

χ1,M ≤ sup
ν∈(−π,π]

|hM (ν)| , (27)

where

hM (ν) = Tr
((

R̂− E[R̂]
)

L(ν)
)
. (28)

This can be rewritten as

hM (ν) =

M−1∑
k,`=0

[
R̂− E[R̂]

]
k,`

exp (i(k − `)ν)

M − |k − `|

= M a(ν)∗
((

R̂− E[R̂]
)
� L(0)

)T
a(ν)

Obviously, for all ν1, ν2 ∈ (−π, π], we have
‖a(ν1)− a(ν2)‖2 ≤ CM |ν1 − ν2|, where C > 0 is
independent of M,ν1, ν2. To simplify the notations in what
follows, the quantity C will be reused as a generic constant
which may change from one line to another, but remains
independent of M,ν1, ν2.
Using the fact that the spectral norm is submultiplicative with
respect to the Hadamard product (see e.g. [25]), we obtain

|hM (ν1)− hM (ν2)| ≤
CM2|ν1 − ν2|

∥∥∥R̂− E[R̂]
∥∥∥
2
‖L(0)‖2 .

Using the bound ‖L(0)‖2 ≤ ‖L(0)‖F = O
(√

log(M)
)

(Lemma 1) and the fact that (see [26], [27]) a.s.,∥∥∥R̂− E[R̂]
∥∥∥
2

= O(1),

as M →∞, we deduce that

|hM (ν1)− hM (ν2)| ≤ CM2
√

log(M)|ν1 − ν2|. (29)

Consider now the set of points

VM =

{
2πm

M3
− π : m = 0, . . . ,M3 − 1

}
.

For each ν ∈ (−π, π], let νM be the closest point to ν in
VM ; thus |ν − νM | = O(M−3). As a consequence, using
(29), we obtain

sup
ν∈(−π,π]

|hM (ν)| ≤

sup
ν∈(−π,π]

|hM (ν)− hM (νM )|+ sup
ν∈(−π,π]

|hM (νM )|,

which implies that a.s.,

sup
ν∈(−π,π]

|hM (ν)| ≤ max
ν∈VM

|hM (ν)|+O
(√

log(M)

M

)
.

(30)

Now, replacing R̂ = 1
N

∑N
n=1 yny∗n in (28), we notice that

hM (ν) can be rewritten more explicitely as

hM (ν) =
1

N

N∑
n=1

(
y∗nL(ν)yn − E[y∗nL(ν)yn]

)
,

where we recall that y1, . . . ,yN denote the N statistically
independent columns of Y. Using Markov’s inequality and
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Lemma 2 below (with B = AS
σ , Ξ = σ2L(ν)), we obtain for

all ε > 0

P

(
max
ν∈VM

|hM (ν)| ≥ ε
)
≤
∑
ν∈VM

P (|hM (ν)| ≥ ε)

= O
(

1

M `

)
,

for all integer `, and therefore χ1,M → 0 a.s.

Unconditional model. In the unconditional model, we
directly need to control the term

χ1,M =
∥∥∥R̃− E[R̃]

∥∥∥
2

=
∥∥∥πT (R̂− E[R̂]

)∥∥∥
2
,

since R = E[R̂] = E[R̃]. As in the conditional case, we have
χ1,M ≤ sup(−π,π] |hM (ν)| where hM is defined by (28) and
the discretization trick (30) is still verified. Finally, invoking
again Lemma 2 with Ξ = R1/2L(ν)R1/2, B = 0, we also
end up with P (maxν∈VM |hM (ν)| ≥ ε) = O

(
M−`

)
for all

` ∈ N∗, and thus χ1,M → 0 a.s. as M →∞.

APPENDIX C
PROOF OF THEOREM 3

A. Preliminary results

The proof of the following lemma, which is straightforward
and relies on discrete approximations of the Beta function, is
omitted.

Lemma 3. Let Tk be the matrix defined in (10) and assume
θ1, . . . , θK are fixed with respect to M . Then, for all
p, q, k ∈ {1, . . . ,K}, as M →∞

1) ‖Tk‖2F = 1
24γ2

k
+O

(
1√
M

)
,

2) a(θp)
∗T2

ka(θq) =
δk−pδk−q

48γk
+O

(
1√
M

)
,

3) a(θp)
∗Tka(θq) = O

(
1√
M

)
.

Moreover, ∥∥∥∥Πa′(θk)

M

∥∥∥∥2
2

=
1

12
+O

(
1

M

)
.

The next Lemma allows to study ‖Tk‖2F and
∥∥∥Πa′(θk)

M

∥∥∥2
2

in
the context of closely spaced DoA.

Lemma 4. Let Tk be the matrix defined in (10). Then,
under Assumption 3, for k ∈ {1, 2},

0 < lim inf
M→∞

‖Tk‖2F ≤ lim sup
M→∞

‖Tk‖2F <∞. (31)

Moreover,

0 < lim inf
M→∞

∥∥∥∥Πa′(θk)

M

∥∥∥∥2
2

≤ lim sup
M→∞

∥∥∥∥Πa′(θk)

M

∥∥∥∥2
2

<∞. (32)

Proof. The proof of (32) is given in [9, App. D]. We prove
(31) for k = 1, the case k = 2 being similar. Let

d1 = A(A∗A)−2A∗a(θ1) and d2 = Π
a′(θ1)

M
.

Then

‖T1‖2F =

1

4

M−1∑
m=−M+1

1

M − |m|

∣∣∣∣∣ ∑
n−n′=m

(
d1,nd2,n′ + d2,nd1,n′

)∣∣∣∣∣
2

.

Denote λ =
∫ 1

0
eiαtdt and γ =

∫ 1

0
teiαtdt for short. Using

discrete approximations of integrals, we obtain after some
computations that

‖T1‖2F −−−−→M→∞

1

2 (1− |λ|2)
4

∫ 1

0

|h(t)|2
1− t dt.

where

h(t) =

∫ 1−t

0

(
g (s+ t, s)− g (s, s+ t)

)
ds,

and

g(u, v) =
(
1− λeiαu

)((
1− |λ|2

)
v

+

(
λ

2
+ γ

)
e−iαv −

(
1

2
− λγ

))
.

From this, it is straightforward to see that

lim sup
M→∞

‖T1‖2F <∞.

To handle the limit inferior, we notice that h(t) is a linear
combination of the functions x0(t) = 1,

x1(t) = t, x2(t) = t2,

x3(t) = eiαt, x4(t) = teiαt,

as well as x3 and x4, which are linearly independent in the
space L2

C([0, 1]). One can check that the coefficients in this
linear combination are all zeros only if α = 0. Since by
Assumption 3, α > 0, we deduce that the continuous
function h is not identically zero, and thus

lim inf
M→∞

‖T1‖2F > 0.

B. The proof

In this proof, the notation C is used to denote a generic
positive constant, independent of M , which may change
from one line to another.
Following the standard approach for performance analysis of
M-estimators, we start with the Taylor expansion of the
R-MUSIC cost function around θk. From Theorem 2, η̃
admits on Ik a local minima at θ̃k a.s. for all large M , and
therefore we have

0 = η̃′(θ̃k)

= η̃′(θk) +
(
θ̃k − θk

)
η̃(2)(θk) +

(
θ̃k − θk

)2 η̃(3)(θk)

2
,
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where θk ∈
(

min(θk, θ̃k),max(θk, θ̃k)
)

. By noticing that the
n-th derivative of θ 7→ a(θ) satisfies

sup
θ∈(−π,π]

∥∥∥a(n)(θ)
∥∥∥
2
∼Mn

as M →∞, we readily have

η̃(3)(θk)

M3
≤

C

∥∥a(2)(θk)
∥∥
2

∥∥a′(θk)
∥∥
2

+
∥∥a(3)(θk)

∥∥
2

∥∥a(θk)
∥∥
2

M3

∥∥∥Π̃∥∥∥
2
,

for some constant C > 0, and thus M−3η̃(3)(θk) = O(1) a.s.
as M →∞. Moreover, from (3), we have a.s. as M →∞,

η̃(2)(θk)

M2
= 2

a′(θk)∗Πa′(θk)

M2
+ o(1).

This implies that

M3/2
(
θ̃k − θk

)
= −
√
M

Re
(

a′(θk)
∗

M Π̃a(θk)
)

a′(θk)∗

M Πa′(θk)
M

+ oP(1).

(33)

The problem thus reduces to compute the asymptotic
distribution of

√
MRe

(
a′(θk)

∗

M Π̃a(θk)
)

. For that purpose,

we express, as in the proof of Corollary 1, the projector Π̃
in terms of the rectified S.C.M. R̃ by means of a contour
integral which is easier to study. At this point, we separate
the conditional and unconditional models.

Conditional model. If C is a circle counterclockwise oriented,
enclosing σ2 and leaving outside γ1 + σ2, . . . , γK + σ2

(recall that γ1, . . . , γK are the diagonal entries of Γ), then
we have a.s. for sufficient large M

Π̃−Π =
1

2π

∮
C

((
R̃− zI

)−1
−
(
R− zI

)−1)
dz,

=
1

2πi

∮
C

(
R̃− zI

)−1
∆̃
(
R− zI

)−1
dz,

where we have denoted ∆̃ = R̃−R, with

R = AΓA∗ + σ2I

being the Toeplitz matrix obtained by replacing SS∗

N with Γ

in the true covariance matrix R = ASS∗

N A∗ + σ2I.
Similarly, developing further to the second order, we get

Π̃−Π = Ψ1 + Ψ2, (34)

where

Ψ1 =
1

2πi

∮
C

(
R− zI

)−1
∆̃
(
R− zI

)−1
dz

and

Ψ2 =

− 1

2πi

∮
C

(
R̃− zI

)−1
∆̃
(
R− zI

)−1
∆̃
(
R− zI

)−1
dz.

Rewriting the first term of (34) thanks to residue theorem
leads to

Ψ1 = −Π∆̃(AΓA∗)] − (AΓA∗)]∆̃Π.

Concerning the second term, we have the upper bound

‖Ψ2‖2 ≤

C
∥∥∥∆̃∥∥∥2

2
sup
z∈C

∥∥∥∥(R̃− zI)−1∥∥∥∥
2

sup
z∈C

∥∥∥(R− zI)
−1
∥∥∥2
2
,

which indicates that Ψ2 will be negligible compared to Ψ1

in the remainder of the analysis. Indeed, from the proof of
Theorem 1, using (24), (25) and (27), (28), we obtain∥∥∥∆̃∥∥∥2

2
≤ C

(
sup

(−π,π]
|hM (ν)|2 + sup

(−π,π]
|gM (ν)|2

)
.

From the rate of convergence specified in Assumption 1, it is
obvious that

sup
(−π,π]

|gM (ν)|2 = o

(
1√
M

)
.

Recalling (30), we have a.s.

sup
ν∈(−π,π]

|hM (ν)|2 ≤ C max
ν∈VM

|hM (ν)|2 + o

(
1√
M

)
.

Using Lemma 2, we obtain that

P

(√
N max

ν∈VM
|hM (ν)|2 ≥ ε

)
= O

(
1

M `

)
for all ` ∈ N∗, and consequently we deduce that a.s.

sup
ν∈(−π,π]

|hM (ν)|2 = o

(
1√
M

)
.

In view of (21) and (22), we have proved that a.s.,

‖Ψ2‖2 = o

(
1√
M

)
,

and therefore
√
MRe

(
a′(θk)∗

M
Π̃a(θk)

)
=
√
MRe

(
d∗1∆̃d2

)
+ oP(1)

=
√
MRe

(
d∗1

(
R̃− E[R̃]

)
d2

)
+
√
MRe

(
d∗1

(
E[R̃]−R

)
d2

)
+ oP(1) (35)

where d1 = Πa′(θk)
M and d2 = (AΓA∗)]a(θk). Some

straightforward algebra leads to

Re
(
d∗1

(
E[R̃]−R

)
d2

)
= Tr

(
A

(
SS∗

N
− Γ

)
A∗Tk

)
and

Re
(
d∗1

(
R̃− E[R̃]

)
d2

)
= Tr

((
R̂−R

)
Tk

)
=

1

N

N∑
n=1

(y∗nTkyn − E [y∗nTkyn]) ,

where Tk is defined in (10). We remark that this last
expression coincides with the mean of independent random
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variables, whose asymptotic distribution is standard to study.
Let Zn,M = y∗nTkyn − E [y∗nTkyn] and define

s2M =

N∑
n=1

V[Zn,M ]

= N

(
σ4‖Tk‖2F + 2σ2

∥∥∥∥TkA
S√
N

∥∥∥∥2
F

)
.

In view of Lemma 3 in Appendix C-A below, s2M ∼ CM as
M →∞. Moreover, E |Zn,M |4 ≤ CM4 and using Lemma 2,
we easily obtain, for all ε > 0,

1

s2M

N∑
n=1

E
[
Z2
n,M1|Zn,M |≥sM ε

]
≤ C

M

N∑
n=1

(
E |Zn,M |4

)1/2
P (|Zn,M | ≥ sM ε)1/2

≤ CM
N∑
n=1

P (|Zn,M | ≥ sM ε)1/2

−−−−→
M→∞

0.

Consequently, the Lindeberg condition to apply the Central
Limit Theorem for triangular arrays [28] is satisfied and it
follows that

√
MRe

(
d∗1

(
R̃− E[R̃]

)
d2

)
√
σ2c

(
σ2‖Tk‖2F + 2

∥∥∥TkA
S√
N

∥∥∥2
F

) D−−−−→
M→∞

NR(0, 1).

(36)

Going back to (35) and (33), and taking into account the fact
that the variance (9) has a positive limit as M →∞ (Lemma
3), we eventually obtain (12).

Unconditional model. Under Assumption 2, the proof of
Theorem 4 follows very closely the steps for the conditional
case. Indeed, similar to (34), we can show that

Π̃−Π = −Π∆̃ (AΓA∗)
] − (AΓA∗)

]
∆̃Π + Ψ2,

where ∆̃ = R̃−R and ‖Ψ2‖2 = o
(
M−1/2

)
a.s. as

M →∞. Consequently,

√
MRe

(
a′(θk)∗

M
Π̃a(θk)

)
= −
√
M

N

N∑
n=1

Zn,N

where Zn,N = y∗nTkyn − E[y∗nTkyn] with Tk defined in
(10) (recall that in this case, y1, . . . ,yN are the i.i.d.
NCM (0,R) columns of Y). We immediately have
V[Zn,M ] =

∥∥R1/2TkR
1/2
∥∥2
F

, and the Lindeberg condition
to apply the CLT is verified as previously, using Lemma 2,
and the result of Theorem 4 follows.
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