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 

Abstract— Self-Mixing (SM) or optical feedback 

interferometry has been widely used for displacement and 

velocity measurement applications. For metric information 

retrieval with < λ/2 precision, various phase unwrapping methods 

have been proposed. However, these are computationally heavy 

and require large number of hardware resources, thereby 

hindering the development of real-time, embedded solutions for 

large bandwidth applications. In this regard, a simple and 

efficient feedback phase retrieval algorithm, called Consecutive 

Samples based Unwrapping (CSU) is presented. Detailed analysis 

of its error performance has been conducted as a function of key 

optical feedback parameters. A theoretical study has also been 

conducted to explain as to why such good error performance is 

obtained for such a simple algorithm by establishing a linear 

relation between the modulated laser power signal and the laser 

phase in the absence of optical feedback for specific ranges of key 

optical feedback parameters. We applied CSU on various 

simulated and experimentally acquired signals using SMI for the 

retrieval of harmonic and arbitrary displacements and found out 

that CSU retrieves target displacement with a precision of about 

λ/10 while consuming much less time and hardware resources. 

The paper also presents FPGA based hardware design results of 

CSU and compares its performance with a traditional analytical 

phase unwrapping method in terms of maximum clock 

frequency, latency, and on-chip hardware resources. This 

hardware comparison strongly establishes the advantages of such 

a fast and computationally light algorithm, readily suitable for 

large bandwidth, embedded, real-time sensing applications. 

 
Index Terms— Displacement Measurement; Self-Mixing; 

Optical Feedback Interferometry; Phase Unwrapping  

I. INTRODUCTION 

LASER Diode (LD) Self-Mixing (SM) or optical feedback 

interferometry (OFI) [1, 2] technique has been an active area 

of research during the last two decades for distance [3], flow 

[4], displacement [5], velocity [6], and vibration [7-9] sensing. 

As opposed to conventional interferometry, major advantage 

of SM interferometry is the simplicity and compactness of its 

setup (Fig. 1 shows a typical SM sensor setup) resulting in a 

self-aligned and cost-effective technique for sensing 

applications. However, recovery of displacement from the SM 

interferometric signal is not straight-forward due to its 

complex nature involving hysteresis [1] and non-linear fringes 

(with respect to target motion) (see Fig. 2). Thus, advanced 
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algorithms are required to accurately measure the motion of 

remote target by using an SM sensor, as detailed below.  

For displacement sensing, the SM signal can be processed 

using two major steps: fringe detection [10-12] and phase 

unwrapping [13-16]. In the absence of strong feedback [2, 17, 

18], each fringe corresponds to a target displacement of λ0/2 in 

the first order approximation, where λ0 is laser wavelength 

without feedback in both the external and internal laser 

cavities [19]. To improve this basic resolution, various phase 

unwrapping techniques exist [11, 13-15, 18, 20-23] to unwrap 

the laser feedback phase leading to accuracies from λ0/8 to 

λ0/60. Let us look into some of the major such techniques. 

Based on the seminal model of optical feedback by Lang 

and Kobayashi [24], displacement retrieval from a weak 

feedback regime SM signal was achieved [13] by unwrapping 

the laser feedback phase. It used pre-calibrated values of two 

fundamental SM parameters: line-width enhancement factor α 

and optical feedback coupling factor C [25], defined later in 

the paper. The method is claimed to have measurement error 

of < 50nm in displacement reconstruction for laser wavelength 

of 673nm, resulting in an accuracy of about λ0/13. 

Further improvement was achieved by an auto-adaptive SM 

retrieval algorithm, called as the phase unwrapping method 

(PUM), for moderate feedback regime [14]. It consists of two 

major steps: 1) rough estimation of laser phase under feedback 

ΦF(t) and 2) joint estimation of C, θ  = arctan(α) + ΦF(0), and 

displacement D(t), where ΦF(0) represents the initial laser 

phase under feedback. The proposed method increases the 

accuracy of the SM sensor to λ0/16.  

The results of PUM were then further improved in [15] by 

identifying an error in previous methods i.e. local feedback 

phase inversions. Similar identification and improvement of 

PUM was proposed in [16] by carrying out a detailed 

theoretical analysis of PUM, resulting in the so called 

Improved Phase Unwrapping Method (IPUM), leading to even 

better accuracy of about λ0/40. The approach uses detection of 

peaks and valleys of an SM signal, followed by application of 

a specifically designed arcos function on different SM signal 

segments, as identified by the peaks and the valleys, resulting 

in correct retrieval of ΦF(t). Moreover, this paper also 

highlights that the normalization of an SM signal needs much 

more care as it directly affects the displacement retrieval [16]. 

Although the PUM and the IPUM give considerably good 

accuracy for the LD based SM sensors, yet these algorithms 

are computationally very heavy and require large number of 
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hardware resources. Moreover, these algorithms use long 

iterative routines [26] for the estimation of C and α parameters 

which makes them inefficient for real-time, high bandwidth, 

embedded sensing applications.  

Another SM approach with slightly poorer accuracy in 

displacement measurement but with much faster signal 

processing capability involves direct unwrapping of the SM 

signal fringes to reconstruct D(t).  Such an approach [22], 

valid only for the moderate feedback regime (1 < C < 4.6), 

comprised of all analog circuits and made use of an apparent 

linearity of the SM signal fringes for C > 1. A similar 

approach [27] used a Digital Signal Processor (DSP) for SM 

signal processing, again under moderate feedback regime. 

This method [27], however, depends upon various 

assumptions, as detailed below. Firstly, the method assumes 

that for C > 1, the function cos(𝛷𝐹(𝑡)) is linearly dependent 

on the target motion, resulting in a claimed measurement 

accuracy of 50 nm for C > 1 for λ0=780 nm i.e. λ0/15. 

However, the present work shows that such an assumption is 

only valid for a restricted C range within moderate feedback 

regime, beyond which measurement accuracy becomes far 

poorer than λ0/15. Secondly, in order to compensate the phase 

discontinuity associated with each SM fringe, this approach 

uses a scaling factor which is dynamically adjusted by using 

previous fringe discontinuity amplitude. Such a configuration, 

however, results in high error just after each direction reversal. 

This increased error occurs because of the marked hysteresis 

associated with all SM signals belonging to C > 1.5. On the 

other hand, the present work does not suffer from such an 

error. Thirdly, although it [27] processes both weak and 

moderate feedback regime signals, yet the employed signal 

processing is vastly different for weak feedback regime which 

is just made up of fringe counting and does not use SM direct 

unwrapping. This is in opposition to the present work which 

employs direct unwrapping for all major optical feedback 

regimes. Lastly, both methods [22, 27] make use of standard 

low pass filtering (LPF) in order to reduce the previously 

mentioned errors by filtering out the high frequency 

discontinuities present within unwrapped or retrieved 

displacement at the cost of reduced sensing bandwidth. The 

studies conducted in the present paper, however, do not use 

such LPF so as to explicitly detail the high frequency natured 

errors that appear during this direct SM unwrapping approach.  

In this context, a simple and real-time natured algorithm 

namely, Consecutive Samples based Unwrapping (CSU) has 

been proposed in [20]. The fast real-time nature of this 

algorithm arises from the fact that by introducing a delay of 

one sample, it requires only two consecutive samples of SM 

signal to detect any SM fringe while continuously updating the 

corresponding displacement output as compared to the 

complex iterative optimization routines of the PUM for the 

joint estimation of C and α. 

Although the accuracy of CSU is about λ0/10 [20] which is 

slightly less as compared to the λ0/16 accuracy of PUM, but, 

the real-time nature and simplicity of this method makes it 

very attractive for its application on real-time, large bandwidth 

signals such as autonomous, embedded sensing of ultrasonic 

vibrations [28]. Moreover, CSU provides correct unwrapping 

of SM signal belonging to major feedback regimes, covering a 

wide range of C,  with satisfactory error results, as opposed to 

the direct unwrapping approaches of [22, 27]. 

In this paper, a detailed analysis of the CSU algorithm is 

presented for C ∈ [0.5, 7], thus spanning weak, moderate, and 

strong feedback regimes while α ∈ [1, 10], thereby covering 

typical LDs employed in SM sensors. A theoretical study has 

been conducted to explain as to why such a simple SM 

algorithm provides such good error performance for a specific 

range of optical feedback coupling.  CSU algorithm has been 

tested on various simulated and experimental SM signals 

belonging to major feedback regimes. Lastly, FPGA based 

implementation results of CSU and PUM demonstrate that 

CSU consumes much less time and hardware resources as 

compared to analytical phase unwrapping methods [14-16]. 

 The rest of the paper is organized as follows: Section II gives 

a brief review of the basic theory of self-mixing followed by 

Section III which elaborates the basic methodology of the 

CSU algorithm. A mathematical base to support the CSU 

approach has been established in Section IV whereas detailed 

simulation and experimental results of CSU have been 

presented in Section V and Section VI respectively. Section 

VII provides a detailed comparison of FPGA based hardware 

implementation of CSU and PUM, demonstrating the 

usefulness of CSU for real-time processing of high band-

width, embedded sensing applications. The paper ends with 

Discussion and Conclusion. 

II. THEORY OF SELF-MIXING 

The theory of SM interferometry has been elaborated in 

different references [1, 2, 24] and is summarized below. 

 Let D(t) represent the instantaneous distance between the 

LD driven by a constant injection current with highly 

stabilized temperature and a remote surface that back-scatters 

a small amount of optical power back into the LD cavity. 

Under this optical feedback phenomenon, the free running 

laser wavelength λ0 is slightly modified into λF(t)  and varies 

with D(t). The wavelength fluctuations can be found by 

solving the so-called excess phase equation [24]: 

𝛷0(𝑡) =  𝛷𝐹(𝑡) + 𝐶𝑠𝑖𝑛[𝛷𝐹(𝑡) + arctan(𝛼)]       (1) 

where ΦF and Φ0 represent two phase signals (with and 

without feedback, respectively) which can be written as a 

function of the wavelengths λF (t) and λ0, respectively: 

𝛷𝐹(𝑡) = 2𝜋
𝐷(𝑡)

𝜆𝐹(𝑡) 2⁄
= 2𝜋𝑣𝐹(𝑡)𝜏(𝑡)             (2) 

 𝛷0(𝑡) = 2𝜋
𝐷(𝑡)

𝜆0(𝑡) 2⁄
= 2𝜋𝑣0(𝑡)𝜏(𝑡)     (3) 

where τ (t) = 2D(t)/c is the round-trip time, c is the speed of 

light in vacuum and νF(t) and ν0(t) represent the optical 

frequencies with and without optical feedback, respectively.  

 
Fig. 1: Schematic diagram of self-mixing laser sensor for displacement 

measurement requiring only a laser package and a lens. A piezoelectric 

transducer (PZT) has been used as remote target. Variations in the optical 
output power P(t) are processed by a computing unit e.g. a computer or an 

FPGA device in order  to retrieve the target displacement D(t). 
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The value of ΦF (t) can be extracted from the optical output 

power (OOP) of the laser diode P(t) using 

𝑃(𝑡) = 𝑃0[1 + 𝑚𝑐𝑜𝑠[𝛷𝐹(𝑡)]]                  (4) 

where P0 is laser power without feedback and m a modulation 

index. If PN(t) represents the normalized OOP, then [29]: 

𝑃𝑁(𝑡) = cos (𝛷𝐹(𝑡))                           (5) 

The Coupling factor C depends on LD parameters but also 

on both D(t) and surface reflection coefficient Rt [13]: 

𝐶 =  
𝜏𝐷

𝜏𝐿
ᵞ√1 +  𝛼2қ𝑒𝑥𝑡       (6) 

where τL and τD are the round trip times in the internal and 

external cavities respectively, γ the coupling efficiency and κext 

depends on the surface reflectivity of the target. 

C is a fundamental parameter in SM interferometry as it 

significantly determines the shape of the OOP signal (see Fig. 

2). Based on the value of C, the OOP signal can be classified 

into the following three major feedback regimes: 

1. Weak feedback regime: the value of C such that 0.1 < C 

< 1 represents the weak optical feedback regime with the 

OOP signal characterized by sinusoidal or asymmetric 

SMI fringes without any sharp discontinuities [26]. 

2. Moderate feedback regime: the value of C such that 1 < 

C < 4.6 represents the moderate optical feedback regime 

[14] with the OOP signal characterized by saw-tooth like 

SM fringes which also exhibit hysteresis [30]. 

3. Strong feedback regime: the value of C > 4.6 represents 

strong feedback regime [31], characterized by a chaotic 

SM signal [2, 17] including fringe-loss [18, 29].  

 

As the value of C increases, hysteresis in SM signal 

increases while the height of SM fringes decreases and fringes 

begin to disappear for C > 4.6 (See Fig. 2) leading to a 

completely fringe-less SM signal for very strong feedback 

coupling [18, 29].  

III. CONSECUTIVE SAMPLES BASED UNWRAPPING 

CSU algorithm is based on the assumption that, for specific 

[C, α] ranges, the shape of SM signal represents the actual 

target movement except at the discontinuities occurring in SM 

signal for every λ/2 displacement [20, 22, 27]. Therefore, by 

correctly detecting and unwrapping these discontinuities, a 

signal that represents the actual target movement can be 

obtained. A schematic block diagram of the CSU approach is 

shown in Fig. 3.  

The CSU algorithm processes the input signal in a manner 

very similar to that of first step of PUM. As previously 

mentioned, in the first step of PUM, roughly estimated 

feedback phase 𝛷̂𝐹(𝑡) is obtained. This is achieved by taking 

arcos of PN(t) as per (5). This results in a feedback phase 

which is wrapped between [0 π] due to use of arcos function. 

This wrapped feedback phase is then unwrapped by adding or 

subtracting 2π at each fringe discontinuity (depending upon 

whether the fringe has a rising or falling discontinuity). Then, 

in second step, Φ (𝐹
^ 𝑡) is used to estimate Φ0(t) by solving (1) 

after conjoint estimation of C and α [26]. The linear relation 

between Φ0(t) and D(t), as per (3), then provides target 

motion.  

 
Fig. 2: (a): Target displacement; and normalized SM signals simulated 

by [29] for α = 5 and (b) C = 0.2, (c) C = 1, (d) C = 2.4 and (e)  C = 5.5. 

 

 
Fig.3: Schematic block diagram of the steps involved in CSU. 

  

 
Fig. 4 (a): CSU based displacement (red) versus reference target 

displacement 𝐷(𝑡) = 𝛷0(𝑡) ∗ 𝜆/4𝜋 (blue); (b): ΦF(t) based displacement 

(red) versus reference target displacement (blue) for C = 1.8 and α = 5. 
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Similarly, the CSU algorithm unwraps the normalized SM 

power signal PN(t) (so that PN(t) ∈ [-1 1]) by unwrapping its 

discontinuities. These fringe discontinuities are detected by a 

fringe detector (see Fig. 3) by comparing the derivative of P(t) 

to a threshold. Each fringe is then assigned 1 or -1 depending 

upon the rising and falling discontinuity of the fringe. An 

accumulation of all detected fringes results in a stair-case 

signal due to addition or subtraction of 2 at each fringe 

discontinuity. A direct addition of stair-case signal to PN(t) 

then leads to the unwrapped PN(t) which is directly 

proportional to D(t) under the assumption that each fringe is a 

linear approximation of the actual target displacement. This 

assumption eliminates the requirement of C and α estimations, 

thereby rendering CSU much simpler, yet precise for specific 

[C, α] values (as detailed below), and easier to implement for 

real-time, high bandwidth applications. 

Next section mathematically establishes the important 

linearity between normalized unwrapped PN(t) and D(t), 

thereby validating this assumption for specific ranges of [C, 

α]. This assumption is also supported by Fig. 4 (a) showing 

that the unwrapped P(t) signal based displacement (CSU 

output) better resembles the reference target displacement 

D(t) = Φ0(t) ∗ λ/4π whereas ΦF(t) based displacement 

(output of first step of PUM) poorly resembles the reference 

target displacement, (see Fig. 4 (b)).  

Displacement retrieval performance of CSU is presented in 

Fig. 5 as a function of fundamental SM parameters of C and 𝛼 

such that C ∈ [0.5, 7], thus spanning weak, moderate, and 

strong feedback regimes while α ∈ [1, 10], thereby covering 

typical LDs employed in SM sensors. Fig. 5 thus represents 

the values of RMS errors calculated by comparing the CSU 

retrieved displacement with the simulated sinusoidal reference 

target displacement of 2.5μm for λ0 = 785nm without addition 

of any noise in the SM signal. Note that for restricted range of 

C ∈ [1.5, 2.5] and α > 3, the accuracy of CSU is about 20nm 

which is better than that of PUM for λ0 = 785nm [14]. 

Furthermore, for C ∈ [1, 3] and α > 2, CSU provides an 

accuracy of about 40nm, which is very similar to that of PUM 

for λ0 = 785nm. It thus shows that high measurement accuracy 

is provided by CSU approach for restricted C and α ranges 

while using a much simpler algorithm than PUM.  

IV. THEORETICAL ANALYSIS OF CSU APPROACH 

CSU based target displacement is reconstructed by adding 

the unwrapped discontinuities (each corresponding to a λ/2 

displacement) to the instantaneous normalized SM signal. 

Nevertheless, due to the inherent simplicity of the CSU, the 

reconstruction is subject to errors directly related to both the 

size and shape of SM fringes (as graphically presented in the 

next section). It is also evident from Fig. 5 that minimum CSU 

displacement reconstruction RMS error ϵRMS can be reached 

for C ∈ [1.5, 2.5]. 

Here, the following analysis aims to explain the origins of 

such inherent accuracy while using a simplistic algorithm. 

First, in order to add the unwrapped discontinuities with the 

instantaneous SM signal, the SM signal should be normalized 

to get PN(t) in order to reduce error as much as possible. As a 

result, such an SM signal should be preferably a class I, II or 

III as described in [30] since the normalization process does 

not introduce any inherent error for these classes.  

Further, in the case of a complete SM fringe, the fringe 

fold-back before the phase discontinuity should be reduced as 

much as possible as it would be wrongly interpreted by the 

CSU as a change of direction before the discontinuity. (Fringe 

fold-back, delimited by the local maximum and minimum SM 

fringe amplitudes usually denoted as peak and valley locations 

respectively [15-16], is illustrated in Fig. 6 (b) in which local 

amplitude reversal [15-16] is seen before each fringe 

discontinuity.) In addition, at first CSU was dedicated for the 

moderate feedback regime signals as SM signal fringes can be 

determined by detecting discontinuities. These discontinuities 

arise from the loss of bijectivity of eq. (1) and it was shown in 

[29] that they occur whenever ΦF presents infinite slopes [29]: 

𝛷𝐹,𝑅 = 𝑘𝜋 − arctan(𝛼) +  𝛽      (7) 

𝛷𝐹,𝐹 = (𝑘 + 2)𝜋 − arctan(𝛼) −  𝛽     (8) 

where 𝛷𝐹,𝑅 and 𝛷𝐹,𝐹  represents the feedback phase at rising 

and falling discontinuities respectively, k is an even integer 

and 𝛽 = 𝑎𝑟𝑐𝑜𝑠
−1

𝐶
. As a result, ΦF,R and ΦF,F should be as 

close as possible to 0 and π respectively.  

 
Fig. 5: RMS error ϵRMS results (nm) of CSU for noise-less simulated SM 

signals for varying values of C and α corresponding to 2.5µm sinusoidal 

target displacement with λ = 785nm. 

 

 
Fig. 6: Fringe fold-back phenomenon (local amplitude reversal) in an SM 
signal with α = 5 and C = 1.5. (b) Zoomed portion indicating fringe fold-

back delimited between local fringe peak and valley locations. 
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Fig. 7 (a) and Fig. 7 (b) clearly show that the higher the C 

and α values, the closer ΦF,R and ΦF,F are from 0 and π 

respectively as it will reduce the error induced by the fringe 

fold-back (if any) before the discontinuity (a small fringe fall 

back can be observed for the rising fringe only in Fig.4 (a) for 

C = 1.8).  However, the higher the C, the smaller the fringe is 

(see Fig. 2) which induces discontinuities in the reconstructed 

displacement (as graphically presented in the next section). 

Therefore, C ∈ [1.5, 2.5] provides a good tradeoff. 

Even though the CSU error is maximum around the phase 

discontinuities, still its reconstruction performance is 

relatively good compared to the required amount of 

computational power. To explain this aspect, it is interesting to 

note that the higher the α value, the better the CSU 

performance is. Actually, for high α value, 𝑎𝑟𝑐𝑡𝑎𝑛 (𝛼) ≈  𝜋/2. 
As a result, for high α value, (1) can be expressed as: 

𝛷0(𝑡) =  𝛷𝐹(𝑡) + 𝐶 cos(𝛷𝐹(𝑡))     (9) 

At this point, it is interesting to note that the optical output 

power is modulated by 𝑐𝑜𝑠 (𝛷F(𝑡)), as seen in (3). Hence, (9) 

can thus be rewritten as: 

cos(𝛷𝐹(𝑡)) =  
𝛷0(𝑡)− 𝛷𝐹(𝑡) 

𝐶
      (10) 

Consequently, it is interesting to note from (10) that under 

the assumption ΦF is approximately proportional to Φ0 (𝛷𝐹  =
 ɤ𝛷0), the modulated output power becomes directly 

proportional to the target displacement: 

cos(𝛷𝐹(𝑡)) =  
1−ɤ

𝐶
 𝛷0(𝑡)      (11) 

Therefore, using (5) and (11), it can be stated as: 

𝑃𝑁(𝑡)  =  𝜌𝛷0(𝑡)         (12) 

 

where 𝜌 =
1−ɤ

𝐶
. It can now be stated that: 

𝑃𝑁(𝑡) =
4𝜋𝜌

 𝜆
𝐷(𝑡)        (13) 

This is a fundamental relationship indicating that if ΦF is 

proportional to a certain extent to Φ0 then for high α values, 

proportionality exists between the normalized SM signal and 

the actual target motion. This assumption serves as the basis 

for the CSU algorithm, for specific C and α range. In addition, 

this proportionality of (11) can be observed by the tangent T at 

the point where 𝛷0 =  𝛷𝐹  =  𝑘𝜋 −  arctan (𝛼) which 

equation is expressed as:  
𝑇(𝛷𝐹) =  (−1)𝑘+1𝐶(𝑘𝜋 − arctan(𝛼)) + (1 + (−1)𝑘𝐶)𝛷𝐹(𝑡) 

(14) 

Fig. 8 clearly shows that such linearity exists between 𝛷0 

and 𝛷𝐹  along the tangent at the curve 𝛷0(𝛷𝐹) at 𝛷0 =  𝛷𝐹  =
 𝑘𝜋 −  arctan (𝛼). Specifically, such a linear approximation 

assumption is correct around the mid-point of each  

SM fringe (as seen in Fig. 9 in which maximum correlation 

between 𝛷0 (𝛷𝐹)and 𝑇(𝛷𝐹) is seen in the zone delimited by 

rising and falling fringe discontinuity locations, indicated by 

dotted green and dotted blue horizontal lines respectively) but 

not so at the SM fringe extrema, as also evidenced by the 

introduction of error in CSU output around each fringe 

discontinuity (as seen in the next section).  

V. SIMULATED RESULTS 

A detailed error analysis of CSU has already been presented 

in Fig. 5 for C ∈ [0.5, 7], and α ∈ [1, 10]. Some of these 

results are presented below for illustrative purposes. 

A. Displacement Retrieval for SM Weak Feedback Regime 

Fig. 9 presents CSU performance for a weak feedback 

regime SM signal with C = 0.8 and α = 5. The RMS error of 

this case is 49.23 nm whereas the peak error is 240.3nm 

occurring around the discontinuity as expected. 

B. Displacement Retrieval for Moderate Feedback Regime 

Fig. 10 shows a moderate feedback regime SM signal with 

C = 1.8 and α = 5. The RMS error of this case, presented in 

Fig. 10 (c) is 19.25 nm whereas peak error is 209.4 nm. 

 

 

 
Fig. 7: (a): Graphical representation of the phase value ΦF before the 

rising discontinuity ΦF,R versus (C;α) for (C;α ) ∈ ([1,10];[1,10]); (b): 

Graphical representation of the phase value ΦF before the falling 

discontinuity ΦF,F versus (C;α) for (C;α ) ∈ ([1,10];[1,10]). 

 

 
Fig. 8: Graphical representation of the phase value Φ0 before the rising 

discontinuity versus ΦF for (C;α) = [2,10] in black line with its tangent 
(dotted red line) at the intersection between the black curve and the light 

grey line corresponding to Φ0= ΦF (dotted green line shows the rising 
discontinuity while dotted blue line shows the falling discontinuity) 

 
Fig. 9: Displacement reconstruction using CSU for C = 0.8, α = 5 and λ 

= 785nm; (a): Normalized SM signal; (b) Reconstructed displacement 
using CSU (green) with reference displacement (blue); (c) Error between 

reference and reconstructed displacement. 
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Fig. 11: Displacement reconstruction using CSU for C = 5.0, α = 5 and λ = 

785nm; (a) SM signal ; (b) Reconstructed D(t) using CSU (green) and 

Reference Displacement (blue); (c) Error in reconstructed displacement. 

C. Displacement Retrieval for SM Strong Feedback Regime 

Fig. 11 shows a strong feedback regime SM signal with C = 

5.0 and α = 5 processed by CSU, resulting in an RMS error of 

115.08 nm and a peak error of about 315.4 nm. 

It may be highlighted that all the results presented here have 

not undergone any filtering in order to ensure that actual 

performance of CSU algorithm for major SM regimes can be 

ascertained. However, CSU error can be significantly reduced 

[20, 22], as shown in Fig. 10 (d), at the cost of reduced 

bandwidth, by incorporating a low pass filter which removes 

the sharp discontinuities that exist in CSU output, caused due 

to phase change at each SM fringe transition. 

D. Displacement with Fractional Half-wavelength Amplitude 

An interesting property of CSU is that in addition to 

recovering the target vibrations with peak-to-peak (p-p) 

amplitude > λ0/2, it can also recover the target vibrations with 

p-p amplitude of < λ0/2 if such vibration is superimposed on a 

vibration > λ0/2. This property makes CSU better than the 

approaches used in [11, 19, 32] as these approaches cannot 

recover the target vibration with p-p amplitude < λ0/2. Fig. 12 

depicts such a case with the simulated displacement of D(t) = 

(8λ)sin(2π10t) + (λ/4)sin(2π40t) for C = 1.8, α = 5 and λ0 = 

785nm.  Corresponding SMI signal is also plotted along with 

the reconstructed displacement using CSU. The RMS error for 

this case is 33.17 nm and peak error is 207.2 nm. 

VI. EXPERIMENTAL RESULTS 

The CSU algorithm is tested on several experimentally 

acquired SM signals using a PZT (Piezo-electric Transducer) 

from Physik Instrumente® as the target displacement (see Fig. 

1). The PZT is equipped with a built-in capacitive sensor of 2 

nm measurement precision, used as a reference to measure 

error performance of CSU. The SM sensor is based on LD 

package from Sanyo® (DL7140) with λ0 = 785 nm, output 

power of 60 mW, and threshold current of 50 mA.  

The results obtained after application of CSU algorithm on 

several experimentally acquired SM signals are presented in 

Table I. Performance of PUM, also using a LPF, is also 

presented for the sake of comparison. Note that the 13th and 

14th acquisitions of Table I are of high feedback regime SM 

signals with one lost fringe in both cases [18]. Fig. 13 and Fig. 

14 graphically present experimental results of 10th and 15th 

acquisition respectively, where the latter is of an experimental 

SM signal corresponding to arbitrary target motion. 

 
Table I  

COMPARISON OF MAXIMUM & RMS ERRORS FOR CSU & PUM 

USING EXPERIMENTALLY ACQUIRED SM SIGNALS 

No Estim

ated C 
value 

by 

PUM 

Amplitud

e of 
vibrating 

target 

(µm) 

Targe

t 
Frequ

ency   

(Hz) 

RMS 

Error 
of  

CSU 

(nm) 

Max. 

Error 
of  

CSU 

(nm) 

RMS 

Error 
of  

PUM 

(nm) 

Max. 

Error of  
PUM 

[14] 

(nm) 

1 0.91 1.20 40 59.3 211.3 30.6 114.5 

2 1.27 1.65 50 49.2 212.5 55.5 169.7 

3 1.49 2.50 90 80.2 236.5 53.3 124.8 

4 1.82 2.50 90 51.7 251.1 81.9 185.8 

5 1.95 2.50 90 67.6 282.8 57.7 108.5 

6 2.00 2.50 90 87.3 283.2 70.9 168.1 

7 2.10 2.50 90 89.1 264.3 315.6 1147.2 

8 2.56 2.50 70 45.5 272.1 43.5 100.9 

9 2.74 2.50 70 63.5 250.7 55.6 116.4 

10 2.84 2.50 90 86.3 278.7 77.0 251.7 

11 3.80 2.50 90 89.0 260.1 25.5 61.6 

12 4.60 2.50 90 97.0 281.7 27.8 64.3 

13 6.18 2.50 90 121.4 293.7 44.7 87.4 

14 6.81 2.50 90 126.5 302.4 26.5 67.8 

15 2.23 Arbitrary - 93.3 384.2 91.3 231.1 

 

 

 
Fig. 10: CSU based D(t) retrieval for C = 1.8, α = 5 and λ = 785nm; (a): 

Normalized SM signal; (b) Reconstructed D(t) using CSU (green) with 

reference D(t) (blue); (c) Error between reference and reconstructed D(t). 
(d) Error between reference and low pass filtered (cut-off frequency = 

160 Hz for sampling frequency = 10 KHz) reconstructed D(t). 

 

 
Figure 12: Recovery of target motion including segments with peak-to-

peak amplitude of < λ0/2 (a): Reference Displacement; (b): SM signal; 

(c): Reconstructed D(t); (d): Error in nm. 
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Fig. 13: Harmonic PZT motion using CSU for row 10 of Table I (a): SM 
signal of estimated C = 2.84; (b) recovered D(t) using CSU (red) with 

reference D(t) (blue); (c) error between CSU D(t) and reference PZT D(t). 

 
Figure 14: Arbitrary PZT motion using CSU for row 15 of Table I; (a): SM 
signal of estimated C = 2.23 (b): Recovered D(t) using CSU (red) with 

reference D(t) (blue); (c): Error between CSU D(t) and reference PZT D(t). 

VII. FPGA BASED HARDWARE DESIGN 

FPGA based hardware design of the CSU algorithm has 

been performed for a target Virtex6 XC6VLX75T device by 

using VHDL (VHSIC Hardware Description Language). One 

thousand samples of simulated normalized SM signal were 

used in 16 bit fixed point format for verification of our design.  

For the target device, it has been found out that CSU 

algorithm can operate at a sampling frequency of about 265 

MHz with latency of only 3 clock cycles. For same target 

device, hardware design of PUM has also been executed and 

tested using the same input SM signal. It has then been found 

out that PUM can operate at 124.2 MHz of clock frequency 

with latency of 101316 clock cycles. Timing comparison of 

CSU and PUM algorithms shows that CSU can execute 1000 

samples of SM signal in 3.8 µs to retrieve target displacement, 

whereas iterative PUM takes 0.85 ms. So, CSU is more than 

200 times faster than PUM for the said case. Power 

consumption of CSU and PUM has also been computed. The 

quiescent power consumption is 0.7mW with a dynamic 

supply power of 8mW for CSU compared to 77mW for PUM.   

Comparison of FPGA based design of CSU with PUM (see 

last columns of Table II and Table III) indicates the vast 

superiority of CSU (a direct phase unwrapping algorithm) in 

terms of operating clock frequency, latency, and on-chip 

resources as compared to classical algorithms [13-16] which 

are based on analytical solution of excess phase equation [24] 

using iterative estimation of feedback parameters [26]. 

 

TABLE II 
FPGA BASED TIMING SUMMARY OF CSU & PUM  

 PUM CSU Improvement 

Factor 
Maximum  clock frequency (MHz) 124.2 265.4 2.14 
Latency (clock cycles) 101316  3  33772 

 

 
Table III 

ON-CHIP RESOURCE UTILIZATION OF CSU & PUM 

 PUM CSU Improvement 

Factor 

Number of slice registers 3736 74 50.48 

Number of slice LUTs 5154 149 34.59 

Number of used  DSP48E1s 3 1 3 

Number of LUT flip-flop pairs 1398 20 69.6 

As the latency of FPGA based implementation of CSU is 

only 3 clock cycles while the system clock frequency can be 

configured up to 265MHz, therefore for an analog-to-digital 

converter operating at a sampling frequency of 250M samples 

per second, the system has an analog bandwidth of 125MHz. 

As 20 samples are usually required to correctly describe one 

SM fringe, then for λ0 = 785 nm, the SM sensor is able to 

measure maximum speed of 4.9 m/s. This then means that 

ultrasonic vibrations can be easily processed. For example, if 

target vibrations occur at 50 kHz, then FPGA based CSU can 

retrieve such vibrations with p-p amplitude of up to 98.125μm. 

Thus, the designed FPGA based CSU algorithm has the 

potential to process high bandwidth sensing applications such 

as ultrasonic vibration characterization of MEMS (micro-

electro-mechanical system) devices.  

VIII. DISCUSSION 

Theoretical study and various SM signal results presented in 

previous sections indicate that CSU provides the minimum 

displacement reconstruction RMS error for moderate feedback 

regime SM signals whereas it gives comparatively higher 

values of RMS error for weak and strong feedback regime SM 

signals. It can be observed that the reason for higher CSU 

error in weak feedback regime is the non-linearity of the 

fringe shape for C < 1 (see Fig. 2). Likewise, hysteresis, 

reduced fringe height, and fringe-loss are the reasons for 

higher CSU error for strong feedback regime. Furthermore, 

sharp discontinuity at fringe transition location causes an error 

spike, thus greatly increasing the maximum error at the 

location of each unwrapped fringe. Analysis and correction of 

these errors would be pursued in future. 

IX. CONCLUSION 

In this paper, a detailed analysis of CSU algorithm has been 

carried out by theoretically explaining as to how such a simple 

algorithm provides very good accuracy of about λ0/10. 

Moreover, it recovers displacements with p-p amplitude of < 

λ0/2 making it better than linearization based phase 

unwrapping algorithms. We also implemented the CSU on 

FPGA showing that CSU is an efficient real-time approach for 

SM displacement retrieval utilizing much less time and 

hardware resources as compared to classical phase 

unwrapping methods, rendering it attractive for the real-time, 

embedded, large bandwidth sensing applications. 
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Importantly, CSU is able to process all three major 

feedback regime signals, albeit with varying error 

performances. However, as demonstrated in [21], it is 

experimentally possible to robustly stabilize the optical 

feedback regime (e.g. by using adaptive optics) so that the SM 

sensor operates within a C range [1.5, 2.5] corresponding to 

the best error performance range of CSU. Such a scheme, 

then, combines the very fast and low foot print nature of CSU 

algorithm with very good measurement accuracy. 
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