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Abstract

In this paper we consider an Hamilton-Jacobi equation on a moving in time domain. The
boundary is described by a C

1 function. We show how we derive this equation from the work
of [25]. We only prove a comparison principle since the proof of other theoritical results can
be found in [19]. At the end of the paper, we consider a short homogenization result in order
to reinforce the traffic flow interpretation of the equation.

1 Introduction

In this paper, we consider an Hamilton-Jacobi equation posed on a moving in time domain. More
precisely, the equation is posed in several interval of the real axis whose boundary (called "junction
points") move in time. The junction points are denoted by bi (t) ∈ R at time t and we set for
i ∈ {1, ..., N + 1},

Bi = {(t, x) ∈ (0, T ) × R, s.t. bi−1(t) < x < bi(t)} .

We will show in Section 2 that the considered equation can be obtained by a first order bus-
vehicles interaction model, introduced in [25], where authors assumed that buses represent a
moving capacity restriction, i.e. the density of vehicles is reduced near the buses zones. In
order to simplify the notations, let us first introduce the flux limiting function, (see [19]). For
i ∈ {1, ..., N}, t ∈ R

+ and p = (p1, p2) ∈ R
2

FAi
(t, p1, p2) = max

(

Ai (t) , H+
i,i (t, p1) , H−

i+1,i (t, p2)
)

where Ai is a locally lipschitz function and H+
i,i (resp. H−

i+1,i) is the nondecreasing (resp. nonin-
creasing) part of the Hamiltonian Hi,i (resp. Hi+1,i) whose definition is given later. The equation
is given by











ut +Hi(ux) = 0 if (t, x) ∈ Bi, i = 1, .., N + 1
d

dt
(u(t, bi(t))) + FAi

(

t, ui,−
x (t, x) , ui,+

x (t, x)
)

= 0 if x = bi(t), i = 1, ..., N

u(0, x) = u0(x) for x ∈ R,

(1.1)

where ut =
∂u

∂t
and ux =

∂u

∂x
denotes respectively the time and the space derivative. Moreover,

we denote by

ui,+
x (t, bi (t)) = lim

(t,x)→(t,bi(t))
x>bi(t)

ux(t, x)

ui,−
x (t, bi (t)) = lim

(t,x)→(t,bi(t))
x<bi(t)

ux(t, x).
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Equation (1.1) is quite similar to the one introduced by the Imbert and Monneau in [19]. The
difference here is that we consider a junction which moves in time. Stability, existence of solution
and even the reduction of the class of test functions for (1.1) can be easily obtained adapting the
proofs of these results in [19]. In this paper, we prove a comparison principle for equation (1.1).
We borrow the idea introduced in [3] and we use a localization procedure in order to insert the
"good" test function in the next step of the proof. Let us now clarify the notations used in (1.1).

Assumptions and Notations (A).

• (A1) The functions b1, ..., bN are time dependent derivable functions such that bi+1 > bi. We
denote also by b0 = −∞ and bN+1 = +∞. Moreover, we assume that for all j ∈ {1, ..., N},
b′

j is a locally lipschitz function.

• (A2) The Hamiltonians H1, ..., HN+1 : R → R satisfy the following assumptions: for all
i ∈ {1, ..., N + 1},







Hi is continuous,

Hi is superlinear i.e. lim
|p|→+∞

Hi (p)

|p|
= +∞.

• (A3) For i ∈ {1, ..., N + 1} and for k = i, i + 1 , Hk,i(t, p) = Hk (p) − b′
i(t)p. Morover, we

assume that for all i ∈ {1, ..., N}, k = i, i+ 1 and for all t ∈ R
+, the Hamiltonian Hk,i (t, ·)

is quasi-convex. We denote by H+
k,i (t, ·) and H−

k,i (t, ·) respectively the non-decreasing and
the non-increasing part of Hk,i (t, ·).

• (A4) For all i ∈ {1, ..., N} ,the flux limiter Ai : [0, T ] → R is a locally lipschitz function.

Main results. Our main result is the proof of a comparison principle for equation (1.1). In
[19, 3, 20], a proof of comparison principle for (1.1) in the case where bi=constant is done. In fact,
they prove this result in a more general domain (such a network, junction or two half spaces in R

N )
and more general Hamiltonians (depending on x and t). In [19], they prove a comparaison principle

by replacing the classical penalization term
(x− y)2

2ε
by the new term εG

(x

ε
,
y

ε

)

where G is a

vertex test function which allows to compare the Hamiltonians in different branches of the domain.
As we mentioned above, our proof uses the idea introduced in [3] which keep the classical term

(x− y)
2

2ε
and uses the fact that H+ and H− are respectively increasing and decreasing functions.

Let us mention also the work [26] where the authors consider a Kirchoff-type Neumann condition
at the junction and proved that its solution satisfy a comparison principle and then they proved
that the flux-limited solutions reduce to Kirchoff-type viscosity solutions. Finally, concerning
comparison principle for Hamilton-Jacobi equations with boundary conditions of Neumann type,
let us cite [4, 18, 1, 12, 22]. Combaining the comparison principle for (1.1) with Perron method,
we obtain the following main result

Theorem 1.1. Assume (A) and that the initial datum u0 is lipschitz continuous function. Then
there exists a unique continuous viscosity solution u of (1.1) such that for all T > 0, there exists
a constant CT > 0 such that for all (t, x) ∈ [0, T ] × R,

|u (t, x) − u0 (x)| ≤ CT .

The second main result of this paper is an homogenization result. We consider a macroscopic
model describing the presence of a bus (or a large truck) and prove that the solution of the
Hamilton-Jacobi formulation of this model converges towards the unique solution of equation
(1.1) with one Hamiltonian and one boundary function. As previous works [14, 13, 15], the proof
of convergence relies on the construction of suitable correctors. The difference here is that we
don’t consider a microscopic model since to our knowledge, no microscopic model considering the
bus as a moving capacity constraint exist.
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2 Traffic flow motivation and derivation of a Hamilton-

Jacobi equation

2.1 A first order bus-vehicles interaction model

In this section, we show how we can obtain equation (1.1). To simplify the work and since the
idea remains the same, we consider the case of one Hamiltonian H and one function b describing
the bus trajectory. Before starting, we mention that our model was introduced in [25] in order
to study the interaction between buses and the surrounding traffic flow. Several papers about
modeling the effect of buses on the traffic flow exists, see [23, 10, 11, 8, 16].

The idea is to consider the traffic flow on a single road where a bus is moving. In this model, we
assume that the fundamental physical parameters of the model, i.e. the maximum density and the
maximum mean velocity, don’t depend on the position x if x 6= b (t), i.e. the characteristics of the
infrastructure don’t change with the position far from the bus. The traffic flow is assumed to be
described by a first order macroscopic model of the LWR type if the space variable x 6= b (t). Bus
should be considered as a moving capacity restriction from other drivers point of view. Authors
in [25] extended the notion of demand and supply introduced in [24] to the moving frame using
the change of variables ζ = x− b (t). The model is given by

{

ρt + (f (ρ))x = 0 if x 6= b(t)

f̃ (t, ρ (t, x−)) = min
(

B (t) , f̃D (t, ρ (t, x−)) , f̃S (t, ρ (t, x+))
)

if x = b (t)
(2.1)

where ρ is the density of vehicles at time t and position x, f is a stricly concave function (as
Greenshield model [17]), reaching its unique maximum at a critical density ρc, describing the flow
and f̃ (t, p) = f (p) − b′ (t) · p. The function B is the limiter of the passing flux through the bus at
time t. The definition of f̃ yields that for all t, the function f̃ (t, ·) reaches a unique maximum at a
point denoted ρ̃c(t). The functions f̃D and f̃S are respectively the Demand and Supply functions
defined as follows

f̃D (t, p) =

{

f̃ (t, ρ̃c (t)) if p ≥ ρ̃c (t)

f̃ (t, p) if p < ρ̃c (t)

and

f̃S (t, p) =

{

f̃ (t, p) if p ≥ ρ̃c (t)

f̃ (t, ρ̃c (t)) if p < ρ̃c (t).

Before passing to the Hamilton-Jacobi formulation, let us present the two point below in order to
clarify the model.

• The trajectory of the bus can be approximated by assuming that b′ = 0 (bus-stops) or that
b′ is equal to the desired bus-speed Vb (if the bus enjoys special lanes) or is the minimum
between the desired bus speed Vb and the local traffic speed, i.e.

b′ (t) = min
(

Vb, V
(

ρ
(

t, b (t)
+
)))

.

In this paper, we will only consider the second case i.e. when the velocity of b is Vb (see
section 4). The case where b′ = 0 reduces to the work [19]. In the case where the velocity
of the bus depends on the density of vehicles, we will obtain a strongly coupled PDE-ODE
system and we will have to introduce a good notion of solution for the system. In this case,
we were not able to get a uniqueness result. Note that several paper like [23, 6, 5, 7, 11]
considered the case where b depends on the density of vehicles but considered a different
macroscopic model as this paper.

3



• The second equation in (2.1) means that the passing flux through x = b (t) is equal to the
minimum between the upstream Demand, the downstream Supply and the flux limiter B (t).
Note that the flux at time t is limited only if B (t) < f̃ (t, ρ̃c) = max f̃ (t, ·). The Demand
function at the point x = b (t)

−
is the greatest possible outflow at that point and the Supply

function at the point x = b (t)
+

is the greatest possible inflow at that point. Note that the
passing flux through the bus is f̃ and not f . In fact, f describes the flux at a fix point x
while the "real" passing flux throught the bus is equal to the flux assuming that the bus is
fix minus the non-passing flux due to the variation of the position of b.

2.2 The Hamilton-Jacobi formulation

In order to derive the Hamilton-Jacobi equation, we proceed as in [21] considering the continous
analogue of the discrete vehicles label defined by



















U1(t, x) = g(t) −
b(t)
∫

x

ρ(t, y)dy if x < b(t)

U2(t, x) = g(t) +
x
∫

b(t)

ρ(t, y)dy if x > b(t)

with

g(t) = −

t
∫

0

f
(

ρ
(

s, b(s)−
))

− b′(s)ρ
(

s, b(s)−
)

ds.

Formally, we have the following equalities

U1
t = g′(t) −

b(t)
∫

x

ρt(t, y)dy − b′(t)ρ
(

t, b(t)−
)

= g′(t) +

b(t)
∫

x

(f (ρ (t, y)))y dy − b′(t)ρ
(

t, b(t)−
)

= g′(t) − f (ρ (t, x)) + f
(

ρ
(

t, b(t)−
))

− b′(t)ρ
(

t, b(t)−
)

.

Recalling the definition of g, we deduce that U1
t + f

(

U1
x

)

= 0 if x < b (t). Similary, we have

U2
t + f

(

U2
x

)

= 0 if x > b(t). In fact, the last equality is true because −g′(t) represents the passing
flux at b(t) which is equal to the outgoing flux at b(t), i.e.

g′(t) = −f
(

ρ
(

t, b(t)+
))

+ b′(t)ρ
(

t, b(t)+
)

.

We now set

u(t, x) =

{

−U1 (t, x) if x < b (t)

−U2 (t, x) if x > b (t)

and we define the Hamiltonian H(p) = −f(−p). Then we deduce that we have

ut +H (ux) = 0 if x 6= b(t).

The junction condition. Recalling the definition of U1 and U2, we have that

d

dt
(u(t, b(t))) = −g′(t) = min

(

B (t) , f̃D

(

t, ρ
(

t, b (t)
−
))

, f̃S

(

t, ρ
(

t, b (t)
+
)))

.
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Let H̃ (t, p) = H (p) − b′ (t) p and A (t) = −B (t). Denoting H̃+ (t, ·) and H̃− (t, ·) respectively
the non-deacreasing part and the non-increasing part of H̃ (t, ·), we deduce the following junction
condition

d

dt
u (t, b(t)) + max

(

A (t) , H̃+
(

t, u−
x (t, b (t))

)

, H̃−
(

t, u+
x (t, b (t))

))

= 0.

3 Comparison principle for (1.1)

In this section we present the main result of this paper which is the comparison principle for (1.1).
We give first the definition of viscosity solutions. As usual, we begin by introducing the class of
test functions. For T > 0, set B = (0, T ) × R.

Test functions. We denote by C1 (B) the class of test functions. If ϕ ∈ C1 (B), then

• ϕ is continuous.

• The restriction of ϕ on each Bi is C1.

• For all i = 1, ..., N , the time dependent function ϕ(t, bi(t)) is C1 in time. Moreover,

d

dt
ϕ (t, bi (t)) = ϕ+

t (t, bi (t)) + b′
i (t)ϕ+

x (t, bi (t))

= ϕ−
t (t, bi (t)) + b′

i (t)ϕ−
x (t, bi (t)) .

We recall the definition of the upper and lower semi-continuous envelopes u∗ and u∗ of a locally
bounded function u on JT ,

u∗ (t, x) = lim sup
(s,y)→(t,x)

u (s, y) and u∗ (t, x) = lim inf
(s,y)→(t,x)

u (s, y) .

Definition 3.1. Assume (A) and let u : [0, T ] × R → R.

i) We say that u is a sub-solution (resp. super-solution) of (1.1) in [0, T ]×R if u∗ (0, x) ≤ u0 (x)
(resp. u∗ (0, x) ≥ u0 (x)) and if for all test function ϕ ∈ C1 (B) touching u∗ from above (resp.
touching u∗ from below) at (t0, x0) ∈ B, we have

ϕt +Hi (ux) ≤ 0 (resp. ≥ 0) at (t0, x0) if (t0, x0) ∈ Bi

d

dt
ϕ (t0, bi(t0)) + FAi

(

t0, u
i,−
x (t0, x0) , ui,+

x (t0, x0)
)

≤ 0 (resp. ≥ 0) if x0 = bi (t0).

i) We say that u is a viscosity solution of (1.1) if u is a sub-solution and a super-solution of
(1.1).

Theorem 3.2 (Reduction of test functions). Assume (A). We fix i ∈ {1, ..., N} and assume that

Ai (t) ≥ A0
i (t) = max

(

min
R

Hi,i (t, ·) ,min
R

Hi+1,i (t, ·)
)

.

Let t0 ∈ (0, T ) and let p
Ai(t0)
i,i and q

Ai(t0)
i+1,i two constant satisfying







Hi,i

(

t0, p
Ai(t0)
i,i

)

= H−
i,i

(

t0, p
Ai(t0)
i,i

)

= Ai (t0)

Hi+1,i

(

t0, q
Ai(t0)
i+1,i

)

= H+
i+1,i

(

t0, q
Ai(t0)
i+1,i

)

= Ai (t0) .

We consider the following Hamilton-Jacobi equation

ut +Hk (ux) = 0 for (t, x) ∈ Bk, k = i, i+ 1. (3.1)
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• Let u : (0, T ) × R → R an upper semi-continuous sub-solution of (3.1) and satisfying

u (t, bi (t)) = lim sup
(s,y)→(t,bi(t)),y>bi(s)

u (s, y) = lim sup
(s,y)→(t,bi(t)),y<bi(s)

u (s, y) . (3.2)

If any test function ϕ touching u from above at (t0, bi (t0)) with

ϕ (t, x) = g (t) + q
Ai(t0)
i+1,i (x− bi (t)) 1{x−bi(t)>0} + p

Ai(t0)
i,i (x− bi (t)) 1{x−bi(t)<0} (3.3)

for some g ∈ C1 (0,+∞), we have

d

dt
ϕ (t0, bi (t0)) + FAi

(

t0, ϕ
i,−
x (t0, bi (t0)) , ϕi,+

x (t0, bi (t0))
)

≤ 0

then u is a sub-solution of

d

dt
u (t, bi (t)) + FAi

(

t, ui,−
x (t, bi (t)) , ui,+

x (t, bi (t))
)

= 0 at t0.

• Let u : (0, T ) × R → R a lower semi-continuous super-solution of (3.1). If any test function
ϕ touching u from below at (t0, bi (t0)) with ϕ is defined as in (3.3), we have

d

dt
ϕ (t0, bi (t0)) + FAi

(

t0, ϕ
i,−
x (t0, bi (t0)) , ϕi,+

x (t0, bi (t0))
)

≥ 0

then u is a super-solution of

d

dt
u (t, bi (t)) + FAi

(

t, ui,−
x (t, bi (t)) , ui,+

x (t, bi (t))
)

= 0 at t0.

The proof of this theorem is similar to the proof of Theorem 2.7 in [19].

The next proposition is concerned with the supremum of sub-solutions. Such a result is used
in the Perron process to construct solutions.

Proposition 3.3. Assume (A). Let A be a nonempty set and let (ua)a∈A
be a familly of sub-

solutions of (1.1) on (0, T ) × R and satisfying (3.2) for all i ∈ {1, ..., N}. Let us assume that

u = sup
a∈A

ua

is locally bounded on (0, T ) × R. Then u is a sub-solution of (1.1) on (0, T ) × R.

The proof is standard. The only new idea is to prove that u∗ satisfies (3.2) in order to use the
result of the preceding theorem. By Perron method, and the last proposition, we easily obtain the
following result.

Theorem 3.4. Assume (A) and that the initial datum u0 is lipschitz continuous. Then there
exists a viscosity solution u of (1.1) in [0, T ) × R and a constant CT > 0 such that

|u (t, x) − u0 (x)| ≤ CT .

Theorem 3.5 (Comparison principle). Let T > 0. Assume that u0 is a lipschitz continuous
function. Let u be an upper semi-continuous sub solution and v be a lower semi-continuous super
solution of (1.1), s.t. there exists a constant K > 0, s.t. for all t ∈ [0, T ], we have u(t, x) ≤
u0(x) +Kt and v(t, x) ≥ u0(x) −Kt, then we have

u(t, x) ≤ v(t, x) for all (t, x) ∈ [0, T ] × R .
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As we mentioned before, we will adapt the idea introduced in [3]. The main difference here is
the localization procedure in order to choose the good test function. Before starting the proof, we
state the following useful remarks.

Remark 3.6. We recall that for all t > 0, and for all i ∈ {1, ..., N + 1}, j ∈ {1, ..., N}, the
Hamiltonian Hi,j (t, ·) is superlinear (see (A2)). Therefore, there exists a constant Ct > 0 , such
that for all p ∈ R, we have |p| ≤ max (Ct, Hi,j(t, p)). We will denote by CT the upper bound of Ct

for t ∈ [0, T ].

Remark 3.7. There exists a constant BT > 0 and a modulus of continuity wT such that for all
t ∈ [0, T ], p ∈ R and for all i ∈ {1, ..., N + 1} and for k = i, i+ 1, we have











|Hk,i (t, p) −Hk,i (s, p)| ≤ BT |t− s| · |p|

|H+
k,i (t, p) −H+

k,i (s, p) | ≤ BT max (|t− s| · |p| , wT (|t− s|))

|H−
k,i (t, p) −H−

k,i (s, p) | ≤ BT max (|t− s| · |p| , wT (|t− s|)) .

Proof. The proof of these inequalities is very simple. We get the first line by the definition of the
Hamiltonian Hk,i. To prove the second and the third lines, we simply use the continuity of the
functions for k = i, i+ 1











t → minRHk,i (t, ·)

t → pk,i
0 (t) = max {p s.t. Hk,i (t, p) = minRHk,i (t, ·)}

t → qk,i
0 (t) = min {p s.t. Hk,i (t, p) = minRHk,i (t, ·)} .

Proof of Theorem 3.5. We introduce

M = sup
(t,x)∈[0,T )×R

{u(t, x) − v(t, x)} .

We want to prove that M ≤ 0. We argue by contradiction and assume that M > 0. Let L and R
two constant such that L < min

t∈[0,T ]
b1 (t) and R > max

t∈[0,T ]
bN (t). Let η > 0, we introduce

Mη = sup
t∈[0,T ]
L≤x≤R

{

u(t, x) − v(t, x) −
η

T − t

}

. (3.4)

Since we consider the maximum of an upper-semi continuous function on a compact set, we deduce
that the maximum is reached at a point that we denote (tη, xη).

Case 1: Mη ≤ 0. Then we consider the following supremum

Mε,α = sup
t,s∈[0,T ]

x,y∈R

{

u(t, x) − v(s, y) −
η

T − t
−

(x− y)
2

2ε
−

(t− s)
2

2ε
− αx2 − αy2

}

Classicly, Mε,α ≥ M/2 > 0 for η and α small enough. Moreover, the maximum is reached at
(t, s, x, y) and αx → 0, αy → 0 as α → 0. We denote by x̄ the common limit of x and y as ε
goes to zero and by t̄ the common limit of t and s as ε goes to zero. It’s clear that t̄ 6= 0 since
u0 is lipshitz. Moreover, taking ε to zero and using the upper-semi continuity property, we obtain

that u
(

t̄, x̄
)

− v
(

t̄, x̄
)

−
η

T − t
≥ M/2, which implies that x̄ /∈ [L,R] because Mη ≤ 0. We deduce

that whether x < b1 (t) and y < b1 (s) or x > bN (t) and y > bN (s). Using the fact that u is a
sub-solution and v is a super-solution, we obtain for j = 1 or j = N + 1















η

(T − t)
2 +

t− s

ε
+Hj

(

x− y

ε
+ 2αx

)

≤ 0

t− s

ε
+Hj

(

x− y

ε
− 2αy

)

≥ 0.

Subtracting the two inequalities and taking α to zero, we obtain a contradiction.
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Case 2: Mη > 0 and xη 6= bi (tη) for all i ∈ {1, ..., N}. In this case, we consider

Mε,α = sup
t,s∈[0,T ]

x,y∈R











u(t, x) − v(s, y) −
η

T − t
−

(x− y)2

2ε
−

(t− s)2

2ε
−α

(

(x− xη)
2

+ (t− tη)
2
)











Classicly, Mε,α ≥ Mη > 0. Moreover, the maximum is reached at (t, s, x, y) and we denote by
x̄ and t̄ respectively the common limit of x and y and the common limit of t and s as ε goes to
zero. Moreover, taking ε to zero, and using the upper-semi continuity, we obtain that

u
(

t̄, x̄
)

− v
(

t̄, x̄
)

−
η

T − t̄
− α

(

(x̄− xη)
2

+
(

t̄− tη
)2
)

≥ Mη. (3.5)

If x̄ /∈ [L,R], we proceed as the case where Mη ≤ 0. If not, then (3.5) and the definition of Mη

implies that

Mη − α
(

(x̄− xη)2 +
(

t̄− tη
)2
)

≥ Mη

which yields that t̄ = tη and x̄ = xη. Writting the viscosity inequalities, we obtain that















η

(T − t)
2 +

t− s

ε
+ 2α (t− tη) +Hj

(

x− y

ε
+ 2α (x− xη)

)

≤ 0

t− s

ε
+Hj

(

x− y

ε
+ 2α (y − xη)

)

≥ 0

where j is the index such that bj−1 (tη) < xη < bj (tη). Sending α to zero, we obtain a contradic-
tion.

Case 3: Mη > 0 and there exists i0 ∈ {1, ..., N} s.t. xη = bi0
(tη). We first introduce

Mν,α = sup
t,s∈[0,T ]
L≤x≤R







u(t, x) − v(s, x+ bi0
(s) − bi0

(t)) −
η

T − t
−

(t− s)
2

2ν
−α (x− bi0

(t))
2

− (t− tη)
2







Classicly, we have that















Mν,α ≥ Mη and the maximum is reached at a point that we denote by (tν , sν , xν),

(tν , sν , xν) −→
ν→0

(tη, tη, xη),

α (x− bi0
(t)) −→

α→0
0.

The second point implies that for ν small enough, xν 6= bi (tν) for all i 6= i0.
We need the following lemma.

Lemma 3.8. Let
(

t̂, ŝ, x̂
)

be the limit of (tν , sν , xν) as α goes to zero. We have that

lim sup
ν→0

(

(

t̂− ŝ
)2

2ν

)

= 0. (3.6)

Proof. The proof is very simple and relies only on the upper-semi continuity property of the
function. Since Mν,α ≥ Mη, taking α to zero, we obtain

u(t̂, x̂) − v(ŝ, x̂+ bi0
(ŝ) − bi0

(t̂)) −
η

T − t̂
−

(

t̂− ŝ
)2

2ν
−
(

t̂− tη
)2

≥ Mη > 0.
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Then, taking ν to zero and recalling that lim
ν→0

∣

∣t̂− ŝ
∣

∣ = 0 implies that

Mη ≥ lim sup
ν→0

(

u(t̂, x̂) − v(ŝ, x̂+ bi0
(ŝ) − bi0

(t̂)) −
η

T − t̂

)

≥ lim sup
ν→0

(

u(t̂, x̂) − v(ŝ, x̂+ bi0
(ŝ) − bi0

(t̂)) −
η

T − t̂
−

(

t̂− ŝ
)2

2ν
−
(

t̂− tη
)2

)

≥ Mη.

The last inequality implies that

lim sup
ν→0

(

(

t̂− ŝ
)2

2ν
+
(

t̂− tη
)2

)

= 0

and in particular (3.6) is true.

We now continue the proof. We have to distinguish two different cases:

Subcase xν 6= bi0
(tν). We define the new supremum,

Mν,α,ε = sup
t,s∈[0,T ]

L≤x,y≤R







u(t, x) − v(s, y) −
η

T − t
−

(t− s)
2

2ν
− α (x− bi0

(t))2 − (t− tη)2

−G (t, s, x, y) − ψ (t, s, x)







with






G(t, s, x, y) =
(x+ bi0

(s) − bi0
(t) − y)

2

2ε
ψ(t, s, x) = (t− tν)

2
+ (s− sν)

2
+ (x− bi0

(t) − xν + bi0
(tν))

2
.

(3.7)

The maximum is reached at (t, s, x, y) and the fact that u0 is lipschitz continuous, that bi0
is a

continuous function and the definition of G, yields that

(t, s, x, y) −→
ε→0

(tν , sν , xν , xν + bi0
(sν) − bi0

(tν)) . (3.8)

Equation (3.8) implies that for ε small enough, x 6= bi0
(t) and y 6= bi0

(s). We now write the
viscosity inequalities assuming that xν < bi0

(tν). The case where xν > bi0
(tν) is similar only

replacing Hi0
by Hi0+1. In order to simplify the notations, we will use the following notations:











pε,ν,α = 2α (x− bi0
(t)) + 2 (x− bi0

(t) + bi0
(tν) − xν) +

x+ bi0
(s) − bi0

(t) − y

ε

pε,ν =
x+ bi0

(s) − bi0
(t) − y

ε

(3.9)

Using the fact that u is a sub solution of (1.1), and the definition of Hi0,i0
, we deduce that

η

(T − t)
2 +

t− s

ν
+ 2 (t− tη) + 2 (t− tν) +Hi0,i0

(t, pε,ν,α) ≤ 0. (3.10)

Using the fact that v is a supersolution of (1.1), we obtain

t− s

ν
+ 2 (sν − s) +Hi0,i0

(s, pε,ν) ≥ 0. (3.11)

Combaining (3.10) and (3.11), we obtain

η

(T − t)
2 + 2 (t− tη) + 2 (t− tν) + 2 (s− sν) ≤ Hi0,i0

(s, pε,ν) −Hi0,i0
(t, pε,ν,α) . (3.12)
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The goal is to take first ε, then α and finally ν to zero. Using (3.10) and Remark 3.6, we deduce
that there exists a constant CT > 0 such that

|pε,ν,α| ≤ max

(

CT ,
s− t

ν
+ 2 (tη − t) + 2 (tν − t)

)

= Cν,T (3.13)

which implies that

|pε,ν | ≤ Cν,T + o (α) + o (ε) . (3.14)

Estimates (3.13) and (3.14) implies that pε,ν,α and pε,ν converge as ε goes to zero (up to sub-
sequence). Denoting by p̄ν,α = lim

ε→0
pε,ν,α and by p̄ν = lim

ε→0
pε,ν and taking ε to zero in (3.12), we

obtain

η

(T − tν)2 + 2 (tν − tη) ≤ Hi0,i0
(sν , p̄ν) −Hi0,i0

(tν , p̄ν,α)

= Hi0,i0
(sν , p̄ν) −Hi0,i0

(sν , p̄ν,α)

+Hi0,i0
(sν , p̄ν,α) −Hi0,i0

(tν , p̄ν,α) .

Recalling Remark 3.7 and using (3.13),(more precisly, we use (3.13) after taking ε to 0) , we deduce
that

Hi0,i0
(sν , p̄ν,α) −Hi0,i0

(tν , p̄ν,α) ≤ BT |tν − sν | C̃ν,T .

with C̃ν,T = max

(

CT ,
sν − tν
ν

+ 2 (tη − tν)

)

. Therefore, we obtain

η

(T − tν)
2 + 2 (tν − tη) ≤ Hi0,i0

(sν , p̄ν) −Hi0,i0
(sν , p̄ν,α) +BT |tν − sν | C̃ν,T .

First, we send α to zero to get that the limit of Hi0,i0
(sν , p̄ν) − Hi0,i0

(sν , p̄ν,α) = 0 and then,
recalling Lemma 3.8 and the definition of C̃ν,T , we send ν to zero to obtain a contradiction.

Subcase xν = bi0
(tν). In this case, we will use the following lemma

Lemma 3.9. We have the following inequality

−
η

(T − tν)2 +
sν − tν
ν

+ 2 (tη − tν) ≥ max

(

min
R

Hi0+1,i0
(tν , ·) ,min

R

Hi0,i0
(tν , ·)

)

.

Proof. We can assume that the maximum Mν,α is strict, (if not we add the term

− (t− tν)2 − (s− sν)2 − (x− xν)2) .
We introduce the function ψ : [0, T ] −→ R defined by

ψ(t) = u (t, bi0
(t)) − v (sν , bi0

(sν)) −
η

T − t
−

(t− sν)
2

2ν
− (t− tη)

2

This function reaches its strict maximum at tν . Let φ : [0, T ] × R −→ R defined as follows

φ (t, x) = u (t, x) − v (sν , bi0
(sν)) −

η

T − t
−

(t− sν)
2

2ν
− α (x− bi0

(t))
2

− (t− tη)
2

− L |x− bi0
(t)|

with L > 0 a constant such that for all i ∈ {1, ..., N + 1}










Hi (L) − 3KTL >
T

ν
+ 2T

Hi (−L) − 3KTL >
T

ν
+ 2T

(3.15)
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with KT an upper-bound of
∣

∣b′
j

∣

∣ on [0, T ] for all j ∈ {1, ..., N}. The constant L is well defined due
to the superlinearity property of Hi(see (A2)).

The maximum of this function is reached at a point (t, x) with t close to sν (which implies that
t 6= 0 and t 6= T ). If x 6= bi0

(t), then writing the subsolution inequality, we obtain a contradiction
using (3.15). We deduce that x = bi0

(t). Moreover, using that the stict maximum of ψ is reached
at tν , we deduce that t = tν and x = bi0

(tν). Writting the subsolution inequality, we obtain

η

(T − tν)2 +
tν − sν

ν
+ 2 (tν − tη) + max

(

Ai0
(tν) , H+

i0,i0
(tν ,−L) , H−

i0+1,i0
(tν , L)

)

≤ 0.

The inequality above implies directly the desired result.

In order to introduce the new supremum M ′
ν,α,ε, we will define two constant λ1 and λ2 whose

existence is due to the preceding lemma and the properties of Hk,i (t, ·) for k = i, i+ 1.

Definition 3.10. Let pi0+1,i0

0 (t) and qi0,i0

0 (t) the two functions defined in Remark 3.7. Let ν

small enough such that 2 (tη − tν) <
η

2T 2
. We define λ1 and λ2 such that λ1 > pi0+1,i0

0 (tν),

λ2 < qi0,i0

0 (tν) and














−
η

(T − tν)2 +
sν − tν
ν

+ 2 (tη − tν) < H+
i0+1,i0

(tν , λ1) <
sν − tν
ν

−
η

2T 2

−
η

(T − tν)2 +
sν − tν
ν

+ 2 (tη − tν) < H−
i0,i0

(tν , λ2) <
sν − tν
ν

−
η

2T 2
.

The existence of λ1 and λ2 is due to the quasi-convexity property of Hi0+1,i0
(t, ·) and Hi0,i0

(t, ·).
We also have that

H+
i0+1,i0

(sν , λ1) <
sν − tν
ν

.

In fact, using that lim
p→+∞

H+
i0+1,i0

(tν , p)

p
= +∞, we deduce that there exists CT > 0 such that

λ1 ≤ max

(

CT ,
sν − tν
ν

−
η

2T 2

)

and in particular

|λ1| ≤ max

(

CT ,
sν − tν
ν

−
η

2T 2
, pi0+1,i0

0 (tν)

)

.

Using the fact that the continuous function pi0+1,i0

0 is bounded on [0, T ], we deduce using Remark
3.7 that

lim
ν→0

(

H+
i0+1,i0

(sν , λ1) −H+
i0+1,i0

(tν , λ1)
)

= 0

and that for ν small enough,

H+
i0+1,i0

(sν , λ1) <
sν − tν
ν

.

Similary, we have also H−
i0,i0

(sν , λ2) <
sν − tν
ν

.

Before defining M ′
ν,α,ε, we recall the definition of function G, see (3.7) and the notations used

above, see (3.9). We set

M ′
ν,α,ε = sup

t,s∈[0,T ]
L≤x,y≤R







u(t, x) − v(s, y) −
η

T − t
−

(t− s)
2

2ν
− α (x− bi0

(t))
2

− (t− tη)
2

−G (t, s, x, y) − ψ (t, s, x) − ϕ (x− bi0
(t)) + ϕ (y − bi0

(s))







11



with

ϕ (x) =

{

λ1x if x ≥ 0

λ2x if x < 0.

The maximum is reached at a point (t, s, x, y) and we have that

(t, s, x, y) −→
ε→0

(tν , sν , bi0
(tν), bi0

(sν)) .

We distinguish three cases depending on the sign of x− bi0
(t).

If x > bi0
(t). If y > bi0

(s), we obtain the contradiction proceeding as in the case where
xν 6= bi0

(tν). If y ≤ bi0
(s), then using the fact that u is a subsolution, we obtain

η

(T − t)2 +
t− s

ν
+ 2 (t− tη) + 2 (t− tν) +Hi0+1,i0

(t, pε,ν,α + λ1) ≤ 0. (3.16)

Using that Hi0+1,i0
(t, p) ≥ H+

i0+1,i0
(t, p) and the fact that pε,ν,α > 0, and using (3.16), we deduce

that

η

(T − t)
2 +

t− s

ν
+ 2 (t− tη) + 2 (t− tν) +H+

i0+1,i0
(t, λ1) ≤ 0.

Sending ε to zero, we obtain a contradiction with the definition of λ1.
If x < bi0

(t). We proceed as in the case where x > bi0
(t) using that Hi0,i0

(t, p) ≥ H−
i0,i0

(t, p),
that pε,ν,α < 0 and the definition of λ2.

If x = bi0
(t). Using the fact that u is a subsolution, we obtain that

η

(T − t)
2 +

t− s

ν
+ 2 (t− tη) + 2 (t− tν) + FAi0

(t, pε,ν + λ2, pε,ν + λ1) ≤ 0. (3.17)

This time, we distinguish three cases depending on the sign of y − bi0
(s).

If y > bi0
(s). Note first that using (3.17), we have that

η

(T − t)
2 +

t− s

ν
+ 2 (t− tη) + 2 (t− tν) +H−

i0+1,i0
(t, pε,ν + λ1) ≤ 0. (3.18)

Using the fact that v is a super-solution, we have that

t− s

ν
+ 2 (sν − s) +Hi0+1,i0

(s, pε,ν + λ1) ≥ 0. (3.19)

We claim that

t− s

ν
+ 2 (sν − s) +H−

i0+1,i0
(s, pε,ν + λ1) ≥ 0. (3.20)

In order to obtain this inequality, we will prove that

t− s

ν
+ 2 (sν − s) +H+

i0+1,i0
(s, pε,ν + λ1) < 0. (3.21)

If (3.21) is true, then combining it with (3.19), (3.20) will remain true. For ε small enough and
using the fact that pε,ν < 0, we have that

t− s

ν
+ 2 (sν − s) +H+

i0+1,i0
(s, pε,ν + λ1) ≤

t− s

ν
+ 2 (sν − s) +H+

i0+1,i0
(s, λ1) < 0.
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In fact, the above inequality is true for ε small enough using the definition of λ1. Finally, com-
baining (3.18) and (3.20), we deduce that

η

(T − t)2 + 2 (t− tη) + 2 (t− tν) + 2 (s− sν) ≤ H−
i0+1,i0

(s, pε,ν + λ1)

−H−
i0+1,i0

(t, pε,ν + λ1) . (3.22)

Recalling that lim
p→+∞

H+
i+1,i (t, p)

p
= +∞ and lim

p→−∞

H−
i+1,i (t, p)

p
= −∞, we deduce, using

(3.21) and (3.18) that there exists a constant CT > 0 such that

|pε,ν + λ1| ≤ max
(

CT , H
+
i0+1,i0

(s, pε,ν + λ1) , H−
i0+1,i0

(t, pε,ν + λ1)
)

≤ max

(

CT ,
s− t

ν
+ 2 (s− sν) ,

s− t

ν
+ 2 (tη − t) + 2 (tν − t)

)

. (3.23)

As in the case where xν 6= bi0
(tν), we take first ε to zero in (3.22), and then taking ν to zero,

thanks to Remark 3.7 and Lemma 3.8, we obtain a contradiction.

If y < bi0
(s). Note first that using (3.17), we have that

η

(T − t)
2 +

t− s

ν
+ 2 (t− tη) + 2 (t− tν) +H+

i0,i0
(t, pε,ν + λ2) ≤ 0.

As above, we can prove that

t− s

ν
+ 2 (sν − s) +H+

i0,i0
(s, pε,ν + λ2) ≥ 0.

and then we obtain the contradiction.
If y = bi0

(s). In this case, we have

t− s

ν
+ 2 (sν − s) + FAi0

(s, λ2, λ1) ≥ 0.

As above, we use the sub-solution inequality and the locally lipschitz property for Ai0
then we

send first ε to zero and then ν to zero to obtain the contradiction.

4 A homogenization problem

The goal of this section is to prove that after rescaling, the solution of the Hamilton-Jacobi
equation formulation of (4.1) below converges towards the unique solution of (1.1) including only
one Hamiltonian and one function b. Most of the results are presented without much details since
they can be found in previous works [14, 13].

4.1 Presentation of the model

We consider the following model which modelize a moving capacity restriction (like a bus or more
generally called "moving bottelneck") of the density of the vehicles, for (t, x) ∈ R

+ × R,

ρt + (f (ρ)φ (x− b (t)))x + (g (ρ) (1 − φ (x− b (t))))x = 0 (4.1)

where ρ is the density of vehicles, b represents the position of the bottelneck, f is the flux function
outside the bottleneck region, g is the flux function in the bottelneck region and φ is a transition
function. We make the following assumptions.
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Assumptions (B).

• (B1) The flux function f is the Greenshields fundamental digram [17] given by

f (ρ) = ρVmax

(

1 −
ρ

ρmax

)

where Vmax represents the maximal mean velocity of vehicls and ρmax is the maximal density
far from the bus.

• (B2) The flux function around the bus g is given by

g (ρ) = ρVmax

(

1 −
ρ

σmax

)

where σmax is the maximal density around the bus. Moreover, σmax < ρmax.

• (B3) b is a linear function describing the trajectory of the bus and is defined by

b (t) = Vbt and we assume that 0 < Vb < Vmax.

• (B4) The function φ is a C1 transition function and is given by

φ (t) =

{

0 if x ∈ [−r, r]

1 if x < −r − 1 ou x > r + 1.

Figure 1: Schematic representation of f (blue) and g (red) .

We assume that the initial density satisfies

0 ≤ ρ (0, x) ≤

{

ρmax if |x| > r + 1

σmax if |x| ≤ r + 1.

4.2 Main result

Like in subsection 2.2, we will derive the Hamilton-Jacobi equation from model (4.1) by defining
the analogue of the discrete vehicles label,

u (t, x) = h (t) −

x
∫

0

ρ (t, y) dy
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where

h (t) =

t
∫

0

(f (ρ (s, 0))φ (−b (s)) + g (ρ (s, 0)) (1 − φ (−b (s)))) ds.

A simple computations yields to

ut − f (−ux)φ (x− b (t)) − g (−ux) (1 − φ (x− b (t))) = 0.

Setting H (p) = −f (−p) and F (p) = −g (−p) and recalling the definition of the function b (see
assumption (B3)), we obtain the following Hamilton-Jacobi equation

ut +H (ux)φ (x− Vbt) + F (ux) (1 − φ (x− Vbt)) = 0 (t, x) ∈ R
+ × R.

Figure 2: Schematic representation of H (blue) and F (red) .

In order to introduce the convergence result, let us define the new Hamiltonians H̃ and F̃
defined as

{

H̃ (p) = H (p) − b′ (t) p = H (p) − Vbp

F̃ (p) = F (p) − b′ (t) p = F (p) − Vbp.

Clearly, F̃ > H̃ and we will use the following notations

{

H̃0 = minR H̃

F̃0 = minR F̃ .

The main result of this section is the following theorem. Let uε be the unique solution of







uε
t +H (uε

x)φ

(

x− Vbt

ε

)

+ F (uε
x)

(

1 − φ

(

x− Vbt

ε

))

= 0 (t, x) ∈ R
+ × R

uε (0, x) = u0 (x) x ∈ R.
(4.2)

We assume that the initial condition u0 is a lipshtiz function satisfying

(A0)

{

−ρmax ≤ (u0)x ≤ 0 if |x| > r + 1

−σmax ≤ (u0)x ≤ 0. if |x| ≤ r + 1
(4.3)
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Theorem 4.1 (Junction condition by homogenization). Assume (B) and (A0). For ε > 0, let
uε be the unique solution of (4.2). Then there exists A ∈

[

F̃0, 0
]

such that uε converges locally
uniformly to the unique viscosity solution u0 of the following equation















ut + H (ux) = 0 if x 6= Vbt
d

dt
u (t, Vbt) + max

(

A, H̃+ (u−
x (t, Vbt)) , H̃

− (u+
x (t, Vbt))

)

= 0 if x = Vbt

u (0, x) = u0 (x) .

(4.4)

4.3 Viscosity solutions

In this subsection, we give the definition of viscosity solutions of equation (4.2) for ε = 1. We then
study the space and time oscillations of the solution. The considered equation is given by

{

ut +H (ux)φ (x− Vbt) + F (ux) (1 − φ (x− Vbt)) = 0 (t, x) ∈ R
+ × R

u (0, x) = u0 (x) x ∈ R.
(4.5)

4.3.1 Definition

We will introduce now the standard notion of viscosity solutions of equation (4.5).

Definition 4.2 (Viscosity solutions for (4.5)). Let T > 0. An upper semi-continuous function
(resp. lower semi-continuous) u : [0,+∞)×R → R is a viscosity sub-solution (resp. super-solution)
of ( (4.5)) on [0, T ] × R, if u(0, x) ≤ u0(x) (resp. u(0, x) ≥ u0(x)) and for all (t, x) ∈ (0, T ) × R

and for all ϕ ∈ C1([0, T ] ×R) such that u−ϕ reaches a maximum (resp. a minimum) at the point
(t, x), we have

ϕt +H (ϕx)φ (x− Vbt) + F (ux) (1 − φ (x− Vbt)) ≤ 0 (resp ≥ 0).

We say that a function u is a viscosity solution of ( (4.5)) if u∗ and u∗ are respectively a sub-solution
and a super-solution of ( (4.5)).

4.4 Results for viscosity solutions of (4.5)

We begin by stating the comparison principle for (4.5) whose proof is standard [2, 9].

Proposition 4.3 (Comparison principle for (4.5)). Let u be a sub-solution of (4.5) and v be a
super-solution of (4.5). Let us also assume that there exists a constant K > 0 such that for all
(t, x) ∈ [0, T ] × R,

u(t, x) ≤ u0(x− Vbt) +Kt and − v(t, x) ≤ −u0(x − Vbt) +Kt. (4.6)

Then we have u(t, x) ≤ v(t, x) for all (t, x) ∈ [0, T ] × R.

Theorem 4.4. Let C1 = (|H0| + |F0|) and C2 = ρmaxVb. There exists a unique viscosity solution
of (4.5) such that

u0 (x− Vbt) − C2t ≤ u (t, x) ≤ u0 (x− Vbt) + C1t.

Moreover, for all x, y ∈ R such that x ≥ y and for all t, s ∈ [0, T ] such that t ≥ s, we have

−C2 (t− s) ≤ u(t, x) − u(s, x) ≤ (C1 + C2) (t− s) and

−ρmax (x− y) ≤ u(t, x) − u(t, y) ≤ 0.
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In order to prove Theorem 4.4, we will study the following simpler equation since it’s invariant
by time translation.

{

wt − Vbwx +H (wx)φ (x) + F (wx) (1 − φ (x)) = 0

w(0, x) = u0 (x) .
(4.7)

The unique solution u of (4.5) is given by

u (t, x) = w (t, x− Vbt)

where w is the unique viscosity solution of (4.7).

Remark 4.5. The definition of viscosity solution of equation (4.7) is the same as Definition 4.2
i.e replacing wx and wt respectively by ϕx and ϕt. Moreover, a comparison principle exists for
(4.7).

Lemma 4.6 (Existence of barriers for (4.7)). The functions

w+(t, x) = u0 (x) + C1t and w−(t, x) = u0(x) − C2t

are respectively super and sub-solutions of (4.7).

Proof. We will only prove that w− is a sub-solution since the proof that w+ is a super-solution
is similar. Let ϕ a test function such that w− − ϕ reaches a maximum at (t0, x0). First, using
the fact that w− is a C1 function in time, we have that ϕt (t0, x0) = −ρmaxVb. Secondly, since u0

is a lipschitz function, we deduce that (u0)x

(

x+
0

)

and (u0)x

(

x−
0

)

exists. Moreover, the fact that
w− − ϕ reaches a maximum at (t0, x0) ensures that

(u0)x

(

x+
0

)

≤ ϕx (t0, x0) ≤ (u0)x

(

x−
0

)

.

We recall that we want to prove the following inequality at (t0, x0),

ϕt − Vbϕx + H (ϕx)φ (x) + F (ϕx) (1 − φ (x)) ≤ 0. (4.8)

Inequality (4.8) is true since if |x0| < r + 1, we have that ϕx (t0, x0) ≥ −σmax which implies that
H (ϕx (t0, x0)) ≤ 0 and F (ϕx (t0, x0)) ≤ 0. On the other hand, if |x0| ≥ r+ 1 then φ (x0) = 1 and
ϕx (t0, x0) ≥ −ρmax, which implies that H (ϕx (t0, x0)) ≤ 0.

Applying Perron’s method joint to the comparison principle, we obtain the following result.

Theorem 4.7 (Existence and uniqueness of viscosity solutions for (4.7)). There exists a unique
continuous solution w of (4.7) which satisfies

u0(x) − C2t ≤ w(t, x) ≤ u0(x) + C1t.

4.5 Control of the oscillations for (4.7)

Proposition 4.8 (Control of the oscillations). Let T > 0. The unique solution w of (4.7) satisfies
the following: for all x, y ∈ R, x ≥ y and for all t, s ∈ [0, T ], t ≥ s, we have

−C2t ≤ w(t, x) − w(s, x) ≤ C1(t− s) and (4.9)

−ρmax (x− y) ≤ w(t, x) − w(t, y) ≤ 0. (4.10)
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Proof. We begin by proving inequality (4.9). Let h > 0. We define v (t, x) = w (t+ h, x) and the
goal is to prove that

w (t, x) − C2h ≤ v (t, x) ≤ w (t, x) + C1h. (4.11)

All members of inequality (4.11) are viscosity solutions on (0,+∞) of (4.7) since equation (4.7) is
invariant by time translation and by addition of constants. Using Lemma 4.6, we have that

w (0, x) − C2h ≤ v (0, x) ≤ w (0, x) + C1h.

The comparison principle for equation (4.7) implies directly that (4.11) is true.
We now turn to the proof of (4.10). In the rest of the proof we will use the following notation:

Ω =
{

(t, x, y) ∈ [0, T ) × R
2 s.t. x ≥ y

}

.

Proof of the upper inequality for the control of the space oscillations. We introduce,

M = sup
(t,x,y)∈Ω

{w(t, x) − w(t, y)} .

We want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

Step 1: the test function. For η, α > 0, small parameters, we define

ϕ(t, x, y) = w(t, x) − w(t, y) −
η

T − t
− αx2 − αy2.

Classicly, ϕ reaches a maximum at a point that we denote by (t̄, x̄, ȳ) ∈ Ω and for η and α small
enough, we have that



















0 <
M

2
≤ ϕ(t̄, x̄, ȳ),

α|x̄|, α|ȳ| → 0 as α → 0
T > t̄ > 0
x̄ > ȳ.

Step 2: utilisation of the equation. By doubling the time variable and passing to the
limit in this duplication parameter, we get that

η
(

T − t̄
)2 ≤ 2αx̄Vb −H (2αx̄)φ (x̄) − F (2αx̄) (1 − φ (x̄))

+ 2αȳVb +H (−2αȳ)φ (ȳ) + F (−2αȳ) (1 − φ (ȳ)) .

Passing to the limit as α goes to 0 and using the fact that H (0) = F (0) = 0, we obtain a
contradiction.

Proof of the lower inequality for the control of the space oscillations We introduce

M = sup
(t,x,y)∈Ω

{w(t, y) − w(t, x) − ρmax(x − y)} .

We want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.
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Step 1: the test function. For η, α, ν > 0 small parameters, we define

ϕ(t, s, x, y) = w(t, y) − w(s, x) − ρmax (x− y) −
(t− s)2

2ν
−

η

T − t
− αx2 − αy2.

The maximum of ϕ for (t, s, x, y) ∈ [0, T ]2 × R
2 such that x ≥ y reaches a maximum at a point

that we denote by (t̄, s̄, x̄, ȳ) and for η,α and ν small enough, we have that



















0 <
M

2
≤ ϕ(t̄, s̄, x̄, ȳ),

α|x̄|, α|ȳ| → 0 as α → 0
T > t̄, s̄ > 0
x̄ > ȳ.

Step 2: Utilisation of the equation Let ψ : [0, T ] × R → R defined as follows

ψ (t, y) = w (s̄, x̄) + ρmax (x̄− y) +
(t− s̄)

2

2ν
+

η

T − t
+ αx̄2 + αy2.

Since w − ψ reaches a maximum at
(

t̄, ȳ
)

, we deduce using the control of the time oscillations of

w (estimate (4.9)) that ψt

(

t̄, ȳ
)

≥ −ρmaxVb. Denoting pα = (−ρmax + 2αȳ) and recalling that w
is a sub-solution of (4.7), we obtain that

−ρmaxVb ≤
η

(T − t)
2 +

t̄− s̄

ν
≤ Vbpα −H (pα)φ (ȳ) − F (pα) (1 − φ (ȳ)) .

Sending α to zero and recalling that H (−ρmax) = 0 and F (−ρmax) > 0, we obtain that
−ρmaxVb < −ρmaxVb which yields to a contradiction. We deduce that M ≤ 0 and the proof is
complete.

5 Proof of convergence

The proof of convergence is based on the construction of correctors. Let λ be a constant greater
than H̃0. The definition of H̃ ensures the existence of two constants p̃λ

+ and p̃λ
− such that

{

H̃
(

p̃λ
+

)

= H̃+
(

p̃λ
+

)

= λ

H̃
(

p̃λ
−

)

= H̃−
(

p̃λ
−

)

= λ

where H̃+ and H̃− are respectively the non-decreasing and the non-increasing part of H̃ . For
every λ ≥ H̃0, we define the following function

Wλ (t, x) = p̃λ
+ (x− Vbt) 1{x−Vbt>0} + p̃λ

− (x− Vbt) 1{x−Vbt<0}.

Theorem 5.1. There exists a unique constant A ∈
[

F̃0, 0
]

such that there exists w solution of the
following equation

wt +H (wx)φ (x− Vbt) + F (wx) (1 − φ (x− Vbt)) = A

and such that wε (t, x) = εw

(

t

ε
,
x

ε

)

converges locally uniformly towards the function WA.

Proof. We will not go into details because the proof is very similar to the proof of [14, 13]. The
idea is to construct a corrector on a truncated domain. We consider l >> r and we want to find
λl ∈ R such that there exists wl solution of
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−Vbv
l
x +H

(

vl
x

)

φ (x) + F
(

vl
x

)

(1 − φ (x)) = λl if x ∈ (−l, l)

H̃+
(

vl
x

)

= λl if x = l

H̃−
(

vl
x

)

= λl if x = −l.

(5.1)

To do this, we consider the following approximated problem











δvδ,l − Vbv
δ,l
x +H

(

vδ,l
x

)

φ (x) + F
(

vδ,l
x

)

(1 − φ (x)) = 0 if x ∈ (−l, l)

δvδ,l + H̃+
(

vδ,l
x

)

= 0 if x = l

δvδ,l + H̃−
(

vδ,l
x

)

= 0 if x = −l.

(5.2)

We construct a unique solution vδ,l of problem (5.2) such that

0 ≤ vδ,l ≤

∣

∣H̃0

∣

∣

δ
.

In particular, we remark also that δvδ,l (0) ≤
∣

∣F̃0

∣

∣. Then, as in the proof 4.5, we prove for all
x, y ∈ [−l, l] such that x ≥ y

−ρmax (x− y) ≤ vδ,l (x) − vδ,l (y) ≤ 0. (5.3)

We can prove (5.3) only considering the sub-solution inequality using that

{

H̃+ (0) = H (0) = F (0) = 0,

H̃− (−ρmax) , F (−ρmax) > H (−ρmax) = 0.

Considering the function vδ,l (x) − vδ,l (0) and passing to the limit as δ goes to zero (due to
Arzelà-Ascoli Theorem), we obtain a solution of problem (5.1) where λl = lim

δ→0
−δvδ,l (0).

The rest of the proof is the same as in [14], and even simpler since the constructed solution of
problem (5.1) is lipschitz so we don’t need to consider lim sup, lim inf and the function m. Finally
we obtain a unique constant A and a function v solution of

−Vbvx +H (vx)φ (x) + F (vx) (1 − φ (x)) = A, x ∈ R

such that vε (x) = εv
(x

ε

)

converges locally uniformly towards the function p̃A
+1{x>0} + p̃A

−1{x<0}.

The function w (t, x) = v (x− Vbt) is the desired function of Theorem 5.1.

The following lemma is a direct result of Theorem 4.4 .

Lemma 5.2 (Uniform gradient bound). Assume (A0) and (B). Then the solution uε of (4.2)
satisfies for all t > 0, for all x, y ∈ R, x ≥ y,

−ρmax(x− y) ≤ uε(t, x) − uε(t, y) ≤ 0.

We now turn to the proof of Theorem 4.1 .

Proof of Theorem 4.1. We introduce

u(t, x) = lim sup
ε→0

∗uε and u(t, x) = lim inf
ε→0 ∗

uε.
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We want to prove that u and u are respectively a sub-solution and a super-solution of (4.4). In
this case, the comparison principle will imply that u ≤ u. But, by construction, we have u ≤ u,
hence we will get u = u = u0, the unique solution of (4.4).

Let us prove that u is a sub-solution of (4.4) (the proof for u is similar and we skip it). We
argue by contradiction and assume that there exists a test function ϕ ∈ C1(R+ × R) and a point
(t̄, x̄) ∈ (0,+∞) × R such that for r̄, η > 0 and θ > 0



























u(t̄, x̄) = ϕ(t̄, x̄)
u ≤ ϕ on Qr̄,r̄(t̄, x̄)
u ≤ ϕ− 2η outside Qr̄,r̄(t̄, x̄)
ϕt(t̄, x̄) +H(ϕx(t̄, x̄)) = θ if x̄ 6= Vb t̄
d

dt
ϕ(t̄, Vb t̄) + max

(

A, H̃+
(

ϕ−
x

(

t̄, x̄
))

, H̃−
(

ϕ+
x

(

t̄, x̄
)))

= θ if x̄ = Vb t̄.

(5.4)

Lemma 5.2 implies that the function u satisfies for all t > 0 and x, y ∈ R, x ≥ y,

−ρmax(x− y) ≤ u(t, x) − u(t, y) ≤ 0. (5.5)

First case: x̄ 6= Vb t̄. We choose r small enough such that x 6= Vbt for all (t, x) ∈ Qr,r

(

t̄, x̄
)

and

then we prove that ϕ is a super-solution of (4.2) on Qr,r

(

t̄, x̄
)

using the last inequality of (5.4),
inequality (5.5) and the fact that

φ

(

x− Vbt

ε

)

= 1.

.

Getting a contradiction. We have for ε small enough,

uε ≤ ϕ− η outside Qr̄,r̄(t̄, x̄).

Using the comparison principle on bounded subsets we get

uε ≤ ϕ− η on Qr̄,r̄(t̄, x̄).

Passing to the limit as ε → 0, we get u ≤ ϕ − η on Qr̄,r̄(t̄, x̄) and this contradicts the fact that
u(t̄, x̄) = ϕ(t̄, x̄).

Second case: x̄ = Vb t̄. In this case, using Theorem 3.2, the definition of the test function ϕ is
given by

ϕ (t, x) = g (t) + p̃A
+ (x− Vbt) 1{x−Vbt>0} + p̃A

− (x− Vbt) 1{x−Vbt<0}

with g ∈ C1 (R+) and the last line in (5.4) becomes

g
(

t̄
)

+A = θ. (5.6)

We define the perturbed test function ϕε as

ϕε (t, x) =

{

g (t) + wε (t, x) on Q2r̄,2r̄

(

r̄, Vbt̄
)

ϕ (t, x) outside Q2r̄,2r̄

(

t̄, Vb t̄
)

.

where wε is defined in Theorem 5.1. Using (5.6) and the definition of w, we prove that ϕε satisfies
in the viscosity sense

ϕε
t +H (ϕε

x)φ

(

x− Vbt

ε

)

+ F (ϕε
x)

(

1 − φ

(

x− Vbt

ε

))

≥
θ

2
on Qr̄,r̄

(

t̄, Vb t̄
)

.
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Getting the contradiction. We have that for ε small enough

uε + η ≤ ϕ = g (t) +WA (t, x) on Q2r̄,2r̄(t̄, Vb t̄)\Qr̄,r̄(t̄, Vb t̄).

Using the fact that wε → WA, we have for ε small enough

uε +
η

2
≤ ϕε on Q2r̄,2r̄(t̄, Vb t̄)\Qr̄,r̄(t̄, Vbt̄).

By the comparison principle on bounded subsets, the previous inequality holds in Qr̄,r̄(t̄, Vb t̄).
Passing to the limit as ε → 0 and evaluating the inequality in (t̄, Vb t̄), we obtain

u(t̄, Vbt̄) +
η

2
≤ ϕ(t̄, Vbt̄) = u(t̄, Vb t̄),

which is a contradiction.
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