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Abstract. Biological motion is a problem for non- or mini-invasive interventions

when conducted in mobile/deformable organs due to the targeted pathology

moving/deforming with the organ. This may lead to high miss rates and/or incomplete

treatment of the pathology. Therefore, real-time tracking of the target anatomy during

the intervention would be beneficial for such applications.

Since the aforementioned interventions are often conducted under B-mode ultrasound

(US) guidance, target tracking can be achieved via image registration, by comparing

the acquired US images to a separate image established as positional reference.

However, such US images are intrinsically altered by speckle noise, introducing

incoherent gray-level intensity variations. This may prove problematic for existing

intensity-based registration methods. In the current study we address US-based target

tracking by employing the recently proposed EVolution registration algorithm. The

method is, by construction, robust to transient gray-level intensities. Instead of directly

matching image intensities, EVolution aligns similar contrast patterns in the images.

Moreover, the displacement is computed by evaluating a matching criterion for image

sub-regions rather than on a point-by-point basis, which typically provides more

robust motion estimates. However, unlike similar previously published approaches,

which assume rigid displacements in the image sub-regions, the EVolution algorithm

integrates the matching criterion in a global functional, allowing the estimation of an

elastic dense deformation.

The approach was validated for soft tissue tracking under free-breathing conditions

on the abdomen of 7 healthy volunteers. Contact echography was performed on all

volunteers, while 3 of the volunteers also underwent standoff echography. Each of the

two modalities is predominantly specific to a particular type of non- or mini-invasive

clinical intervention. The method demonstrated on average an accuracy of ∼1.5 mm

and submillimeter precision. This, together with a computational performance of 20

images/s make the proposed method an attractive solution for real-time target tracking

during US-guided clinical interventions.

Keywords : Deformable image registration, Ultrasound-guidance, Real-time system.
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1. Introduction

B-mode ultrasound (US) guidance is currently common practice for a large variety

of percutaneous clinical applications (Dogra & Saad 2009). For example, US-guided

percutaneous needle biopsies are routinely performed when abnormal tissues are

discovered inside a patients body (Dogra & Saad 2009, Gupta & Madoff 2007).

Collecting samples of the tissue can become, however, problematic when the procedure

is conducted in mobile and/or deformable organs, in particular if limited US-visibility

of the lesion requires stereotactic guidance. Due to organ motion and/or deformation

induced by the needle insertion process, the position of the targeted tissue may change

during the intervention. This can prolong the procedure, lead to sub-optimal sampling

or to missing the target altogether, increasing the risk of false negatives. With the

development of robotic tissue sampling systems, this becomes particularly problematic

(Kaye et al. 2014, Liang et al. 2010).

Another example of percutaneous clinical applications that are often conducted in

conjunction with B-mode US-guidance are thermal ablations of tumorous tissues

via laser, radiofrequency (RF) or high intensity focused ultrasound (HIFU) (Chu

& Dupuy 2014, Mou et al. 2016, Hofer et al. 2008, Zhang & Wang 2010). HIFU

in particular, is currently the only percutaneous thermal ablation procedure that is

completely non-invasive (Chu & Dupuy 2014). It has already been applied successfully

for the treatment of numerous pathologies such as uterine fibroids (Chapman & ter

Haar 2007), prostate cancer (Blana et al. 2008), liver tumors (Okada et al. 2006, Li

et al. 2007), thyroid nodules (Kovatcheva et al. 2015a), palliation of bone metastases

(Liberman et al. 2009), breast fibroadenoma (Kovatcheva et al. 2015b) and tremor-

dominant Parkinson’s disease (Zaaroor et al. 2017). Treatment becomes challenging,

however, when therapy is conducted in the abdomen and the lower thorax. Physiological

motion such as respiration, peristalsis and/or spontaneous motion, may cause the

targeted area to continuously change position over the duration of the intervention.

If left un-addressed, this can lead to the therapeutic energy dose to be diverted from

the target area and in turn to the under-treatment of the pathology. If motion

effects are severe, damage to organs at risk may occur (Ries et al. 2010, Auboiroux

et al. 2012, Holbrook et al. 2014). A solution to this is to use the acquired B-mode US

images to track the motion of the target area, followed by a corresponding adaptation of

the HIFU energy delivery. In this sense, previous studies have proposed and developed

integrated systems capable of delivering US-based motion compensated HIFU therapies.

For example, Seo et al designed a system consisting of two US imaging probes integrated

with a HIFU transducer (Seo et al. 2011a, Seo et al. 2011b, Seo et al. 2016). One probe

was placed at the center of the parabolic transducer, while the second was placed on the

edge of the transducer at a 45◦ angle with respect to the first one. This arrangement of

the US probes provided two orthogonal US imaging planes intersecting at the transducer

focal point, offering the possibility to track both in-plane and out-of-plane motion. The

displacements were estimated either by matching the intra-operative target surface to a
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pre-operative model (Seo et al. 2011a, Seo et al. 2011b) or by tracking the discriminative

speckle pattern produced in the US images by the HIFU-induced lesion (Seo et al. 2016).

Beam steering with respect to the estimated motion was achieved by visual servoing

implemented in a three-axis robot. Promising results were obtained with tracking errors

of 1.5 - 2 mm, however, in-vivo validation is yet to be performed. A different integrated

system capable of providing simultaneous magnetic resonance imaging (MRI) and US

guidance during HIFU therapies was developed by Auboiroux et al and is described

in several related studies (Auboiroux et al. 2012, Petrusca et al. 2013, Preiswerk

et al. 2014). US guidance was provided by a probe placed on a custom-built support,

allowing 5 degrees of freedom for movement around the patient. The support was

attached to the MR patient table, which also contained the HIFU transducer. US-based

motion estimation was achieved both by an optical flow approach (Auboiroux et al. 2012)

and also by a more advanced estimation-prediction algorithm relying on a population-

based statistical model (Preiswerk et al. 2014). This lead to motion estimates with a

1-3 mm accuracy, available with near real-time latency.

In summary, in order to facilitate motion compensated therapy deliveries, accurate and

precise motion estimation algorithms are paramount. A large variety of US-based motion

tracking methods have already been proposed in the literature (De Luca et al. 2015b).

The majority of these methods aim to estimate the position of a structure-of-interest

at a particular time-instant by aligning an US-image (also called moving image) to

a reference image through a process called registration (Mani & Arivazhagan 2013).

According to the classification made in the review work of de Luca et al (De Luca

et al. 2015b), registration methods can be coarsely divided into three categories:

intensity-based, feature-based and hybrid. Hybrid approaches, in particular, have the

benefit of an improved accuracy and precision of the estimated deformation compared

to intensity-based and feature-based methods (De Luca et al. 2015b). Cifor et al

(Cifor et al. 2013), for example, propose a so-called Hybrid Feature-based Diffeomorphic

(HFD) registration, inspired by the diffeomorphic Log-Demons registration framework.

The method estimates the deformation between two US images by the means of a

diffeomorphic transformation, which in turn is computed based on a set of demon-

like forces (Thirion 1998) driven by local image features, including: image intensity,

local phase (Woo et al. 2009) and phase congruency (Kovesi 2000). The method was

used to track liver tumors on B-mode US images acquired on 7 patients. Results have

shown an improvement of the Dice similarity coefficient (Dice 1945) from an average of

73.9±19.5, in the absence of tracking, to 90.4±5.5. A drawback of the approach is that

it requires the optimization and/or computation of several input parameters to which

the method is more or less sensitive, encumbering its application on a case-by-case basis.

Moreover, the method is computationally demanding, requiring 5 min for registering one

pair of 2D images. Hybrid methods, making use of both image intensity and contour

information, have also been proposed in the past for contour tracking in B-mode US

images (Li et al. 2005, Wang et al. 2010, Huang et al. 2014). The approach proposed

by Li et al (Li et al. 2005) relies on the active contour framework (Kass et al. 1988)
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in order to track from frame-to-frame the deformation of a manually-selected image

contour. As an application scenario, the method was employed for automatic US-based

tracking of tongue movements during speech. It was demonstrated to have a good

accuracy, with an average sum of distances between the automatically tracked tongue

contour and the delineations performed by experts of 0.54 - 1.06 mm. While robust,

the method requires a moderate amount of user interaction. This includes manual

initialization of the contour, its re-initialization in case of large inter-frame displacements

and the tuning of several input parameters. Moreover, since the method uses the state

of the contour from the previous frame as an initialization for the current frame, it

is susceptible to error accumulation. The approaches proposed by Wang and Huang

(Wang et al. 2010, Huang et al. 2014), on the other hand, make use of prior information

learned on training datasets in order to perform automatic contour detection and/or

motion characterization. Both methods were used in the context of echocardiography, for

automatic tracking of heart contours. The solution proposed by Wang et al was shown

to have an accuracy and precision of 2.68 mm and 2.63 mm, respectively, for tracking

“end - systole” - “end - diastole” heart deformations. Similarly, the approach of Huang et

al demonstrated promising results, with a Hausdorff distance (Huttenlocher et al. 1993)

between automatically-tracked and expert-defined contours of 2.95 ± 0.62mm for the

endocardium and 3.03 ± 0.76mm for the epicardium. The method was also evaluated

in terms of the Dice similarity coefficient, with an average value after registration of 93

and 97 for the endocardium and epicardium, respectively. Such approaches, however,

have complex numerical schemes and require moderate user interaction. Moreover, due

to the fact that they are learning-based, the prior information has to be updated on a

case-by-case basis, having also difficulties in handling deformation patterns that are not

included in the learned atlas/dictionary. As previously mentioned, many other US-based

tracking solutions are available in prior art, dedicated to various applications. While

individual validation of the methods was performed using several different criteria, it

was concluded in the review work of de Luca et al (De Luca et al. 2015b) that, on

average, existing US-based tracking methods can achieve an accuracy of 1 - 2 mm.

For the interventional guidance of mini- or non-invasive procedures, a motion tracking

solution with real-time capabilities is of particular importance. In the scope of this work,

a registration method is defined as “real-time” if it is capable of aligning two images

with a sufficiently low latency such that the monitoring and control of the intervention

is not hampered by the associated delay. Naturally, the term “sufficient” depends on

the particularities of the application. In this sense the so-called variational registration

methods (Weickert et al. 2003) are a particularly attractive option for real-time US-

based motion tracking (Ries et al. 2010). This is due to both their fast numerical

schemes and the reduced number of required input parameters, with the latter leading

to an increased ease-of-use in a clinical setting on a case-by-case basis.

In the present study we propose a real-time US-based motion tracking solution based

on the EVolution algorithm, recently proposed by Denis de Senneville et al (Denis de

Senneville et al. 2016). EVolution is a variational registration method which, intuitively
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speaking, in order to estimate the deformation between two images, searches for similar

local contrast patterns in the two images, which it then tries to align. With respect

to the classification made by de Luca et al in (De Luca et al. 2015b), EVolution falls

into the category of hybrid registration methods. This is due to the fact that the

method computes a deformation field on a point-by-point basis, iteratively minimizing

a global matching criterion between the images (which is specific to intensity-based

methods), however, it does not operate directly on image intensities, matching instead

local contrast patterns in the images (which is historically more used in feature-based

approaches). Similar to the methods proposed in (König et al. 2014) and (Kubota

et al. 2014), the EVolution algorithm operates on square sub-regions (called patches

or windows) rather than on a point-by-point basis. This typically provides a robust

local displacement, since the motion in a point-of-interest is calculated based on several

pixels/voxels. However, while the aforementioned approaches assume a rigid motion

inside the sub-regions, EVolution integrates the patch-based matching criterion in a

global variational framework, which allows estimating an elastic deformation on a point-

by-point basis.

The current study validates the EVolution algorithm with both ex-vivo and in-vivo US-

based motion estimation experiments. The method was tested hereby for both contact

echography, which is, for example, specific to needle biopsies, as well as for standoff

echography, which is typical for set-ups employed for US-guided HIFU therapies. In

particular for the standoff case, the evaluation was conducted directly on a prototype of

a clinical US-guided HIFU system developed at our institute, which ultimately imposed

additional constraints on obtainable image quality.

2. Method description

2.1. Proposed solution for B-mode US-based motion tracking

2.1.1. The EVolution algorithm Motion estimation via the EVolution algorithm,

implies finding the minimizer of the following functional:

E(T ) =

∫

Ω

e−C(T ) +
α

2

(

‖~∇u‖2 + ‖~∇v‖2
)

d~r (1)

with

C(T ) =

∫

Γ

∣

∣

∣

~∇I(T (~r)) · ~∇J(~r)
∣

∣

∣
d~r

∫

Γ
‖~∇I(T (~r))‖2‖~∇J(~r)‖2d~r

(2)

where T = (u, v) is the 2D displacement to be estimated, I and J are the reference and

the moving image, α is a parameter linking the two terms of the functional, ~∇ is the

spatial gradient operator, ‖ · ‖2 is the Euclidean norm, Ω is the image domain, ~r is a

spatial location and Γ is a square image patch centered on the pixel of interest. The

term C(T ) in Eq. 2 can be rewritten as:

C(T ) =

∫

Γ
wT (~r) |cos(∆θT (~r))| d~r

∫

Γ
wT (~r)d~r

(3)
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with the terms wT (~r) and ∆θT (~r) being computed based on the magnitude M and the

phase θ of the reference and moving image spatial gradients:

wT (~r) = MI(T (~r))MJ(~r)

∆θT (~r) = θI(T (~r))− θJ(~r)
(4)

The term C(T ) can be interpreted as follows: |cos(∆θT (~r))| in Eq. 3 favors

transformations that align edges in the reference and the moving image, regardless of any

possible contrast reversals. This basically makes the algorithm capable of both mono

and multi-modal registration. On the other hand, wT (~r) favors strong edges that exist

in both images. Thus the method is, by construction, robust to transient structures.

Minimizing e−C(T ) alone, however, is a severely ill-posed problem with infinite solutions.

For this reason, the functional in Eq. 1 contains a regularization term weighted

by α, constraining the estimated displacements to be spatially differentiable, which

“enforces”/mimics plastic deformations (Horn & Schunck 1981). This renders the

optimization problem overdetermined and therefore solvable with variational methods.

2.1.2. Implemented optimization scheme The EVolution functional was minimized

via the iterative procedure described in (Denis de Senneville et al. 2016). Similarly,

the iterative process was stopped when the average absolute difference between the

displacements at the current and the previous iteration was smaller or equal to 10−3

pixels.

Due to the strong non-linearity of the functional, the algorithm has difficulties estimating

large displacements. For this reason, a coarse-to-fine strategy was adopted in which

motion is estimated step-by-step starting from a 16-fold downsampled version of the

images up to their original resolution. The displacements estimated at a particular

resolution level are then used as an initialization for the next level.

2.2. Experimental setup

In the current study, the capabilities of the EVolution algorithm for B-mode US tracking,

were validated for both contact and standoff echography, with a separate experiment

dedicated to each of the two US-acquisition modalities. The two experiments are detailed

in the following sections.

2.2.1. In-vivo contact echography study The current healthy volunteer study was

conducted in agreement with the required standards and regulatory requirements.

Ethical approval was provided by the Ethics Board of the University Medical Center

Utrecht. B-mode US imaging was performed under free-breathing conditions on the

liver and one of the kidneys of 7 healthy volunteers. The images were acquired using

a Telemed C3.5/60/128Z convex array transducer (number of elements = 128, radius

of curvature = 65 mm, field-of-view = 59◦) connected to a LS128 EXT-1Z Telemed

beamformer. The acquisition sequence employed the following parameters: Frequency
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= 5 MHz, Depth = 80 mm, FPS = 18 and pixel size = 0.25×0.25 mm2. The images

were saved on disk and processed offline. Since approximately half of the far field-of-

view of the images contained either anatomical structures that were not of interest in

the scope of this study, either exclusively noise due to signal attenuation, these parts

were manually discarded from the images. Note, however, that this step was performed

only in the scope of the current work and can be omitted in practice. For computational

purposes, the manual discarding of parts of the field-of-view was followed by a spatial

sub-sampling of the images by a factor of 2. These two pre-processing steps resulted in

each image in the series having a size of 256×256 with a pixel size of 0.5×0.5 mm2.

For both the liver and the kidney datasets, three identifiable landmarks were selected,

for which the tracking capabilities of the EVolution algorithm was evaluated. More

specifically, for the liver this consisted in the lower boundary of segment # 4 (landmark

# 1) and two branches of the hepatic artery/portal vein (landmarks # 2 and # 3).

The two blood vessels were chosen in approximately the same liver regions across all

of the 7 volunteers. For the kidney, the selected landmarks were the caudal boundary

(landmark # 1) and the two extremities of the major calyx in the cranio-caudal direction

(landmarks # 2 and # 3). In case not all of the landmarks would be visible in a

single sequence, additional imaging would be performed on the volunteer, with the

FOV focused on the missing landmark(s). Note that, in some cases, the breathing

dynamics of the volunteer would change in between the sequences (i.e. becoming

deeper or shallower). The landmarks were manually tracked on a time-frame of ∼ 8 s

(which usually included 2-3 breathing cycles), and the coordinates of the each landmark

were stored and used as a gold standard. The displacements in each liver and kidney

dataset were then estimated on a pixel-by-pixel basis via the EVolution algorithm and

the resulting coordinates of the same landmarks were compared against the manually

established gold standard. The comparison was performed both visually, by plotting

the estimated and the manually determined trajectory for the landmarks, and by the

evaluating the target registration error (TRE) (Maurer et al. 1997) defined as:

TRE[mm] =
√

(xI + u(~rI)− xJ)2 + (yI + v(~rI)− yJ)2 (5)

where (xI , yI) and (xJ , yJ) are the manually determined landmark coordinates in the

reference and the moving image, and (u(~rI), v(~rI)) is the displacement estimated by the

EVolution algorithm for that particular landmark.

2.2.2. Standoff echography study A system was developed at our institute that allows

clinical HIFU interventions under MR and/or US guidance (see Fig. 1(a)). The system

is a modified Philips Sonalleve abdominal HIFU platform (Philips Healthcare, Vantaa,

Finland), which is integrated in a 1.5T Philips Achieva scanner (Philips Healthcare,

Best, Netherlands). Therapeutic HIFU energy in this modified system is provided by

a custom-built sparse spherical phased transducer (IMASONIC, Voray sur l’Ognon,

France), which replaces the original spherical transducer and is described in detail here

(Ramaekers et al. 2017). The custom-built transducer is composed of 256 elements,
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operates at a frequency of 1.3 MHz and has an aperture diameter and radius of curvature

of 16cm. Embedded in the therapeutic matrix of the transducer is a linear 128-

element single-crystal linear phased array, which operates at a frequency of 3.5 MHz

(see Fig. 1(b)). The imaging array provides a co-axial image of the focus area of the

HIFU transducer at 16 cm. Both the therapeutic array as well as the embedded US-

imaging array are passively and actively MR-compatible and thus allow full simultaneous

operation with real-time MRI in absence of mutual interference. A passively RF-

shielded Verasonics beamformer (Kaczkowski & Daigle 2011, Verasonics 2017), which

can thus also be operated in the Faraday cage of the MR-scanner, is used over a shielded

cable connector to drive the imaging probe. The beamformer is operated via a fiber-

optical PCIe link from a computer located adjacent to the MR-scanner console outside

the Faraday cage. Time synchronization between the MR-acquisition level and the

Verasonics beamformer was achieved by the means of a dedicated TTL line between

the two systems and a Cortex M3 microcontroller as an intermediary. A third TTL-

connection from the microcontroller allowed additional time synchronization of the

HIFU-generator. This setup allowed the following two configurations, which were used

in the scope of this paper: 1) MRI as the master-clock and the US-imager and the HIFU

system slaved (with independent delays) and 2) The microcontroller as the master-clock

with both HIFU and US-imager slaved, while the MRI runs asynchronously.

One purpose of the standoff echography study was to analyze the tracking capabilities of

the EVolution algorithm as a means for B-mode US-based motion compensation during

hybrid MR-US-guided HIFU therapies. Two separate experiments were conducted in

this regard: one on a gel phantom undergoing a known motion pattern and an in-vivo

study on three healthy volunteers. A third independent experiment was carried-out

on a gel phantom in order to ensure that HIFU ablations are possible with minimal

interference between the HIFU therapeutic signal and the US imaging signal.

1.5T Philips Achieva 

MRI Scanner

HIFU Transducer with 

Integrated US 

Imaging Probe

(a)

HIFU Transducer

US Imaging Probe

(b)

Figure 1: The custom-built HIFU system developed at our institute, which can provide

MR and/or B-mode US guidance. (a): Overall setup. (b): The HIFU transducer

together with the integrated US imaging probe.
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Ex-vivo standoff echography phantom experiment Since motion estimation algorithms

typically rely on structural information in order to provide accurate displacements, a

custom phantom was built for the current experiment. The phantom consisted in two

perpendicular grid-like structures placed inside a cylindrical plastic casing, provided with

a lid on one end and with an acoustic-transparent mylar membrane at the other. Prior

to sealing the plastic case, the phantom was filled with an acoustically semi-transparent

polymer gel. The phantom was then placed on a motorized platform, which allowed

to move the US-phantom in a linear fashion over the acoustic window of the HIFU

platform. The motor of the platform (USR60-E3T, Shinsei Corporation, Tokyo Japan)

was controlled by an embedded microcontroller (ARM Cortex M3), which provided

full closed-loop proportional-integral-derivative (PID) control over the linear motion

pattern. In the scope of the experiment, a motion pattern corresponding to the average

head-foot liver displacement of a free-breathing volunteer from previous studies (Zachiu

et al. 2015) was loaded into the controller algorithm (duration ∼ 90 s, with an original

sampling density of 6 Hz, up-sampled by sinc interpolation to 100 Hz). Both the motion

platform and the acoustic phantom were designed such that the HIFU transducer (and

implicitly the US imager) had acoustic access to the phantom during the entire motion

cycle.

Simultaneous MR and B-mode US imaging was performed on the moving phantom. The

MR acquisition sequence was a multi-shot (4 shots per image) gradient recalled echo

with an echo planar read-out, employing the following parameters: TR = 45 ms, TE =

11 ms, FA = 25◦, BWread = 1132 Hz, image size = 176×176, pixel size = 2×2×7 mm3,

acquiring a total of 500 images over a duration of ∼90 s. Synchronously with the MRI, a

B-mode US-image series was acquired using a 3-cycle pulse with a frequency of 3.5 MHz,

image size 1024×256, a 0.25×0.25 mm2 pixel size and at the same imaging rate as the

MR sequence. The images were obtained using a spatial compounding over 6 angles (45◦

angle range) and synthetic aperture focusing, with the virtual source placed at a depth

of 125 mm (Nikolov & Jensen 2002, Frazier & O’Brien 1998). Both the MR and the

US images were saved on disk and processed offline. Timing-wise, for the synchronized

MR-US acquisition, the US-imager is triggered with the acquisition of the first k-space

segment of an MR-slice (which acquires the k-space center). After the trigger signal is

received, the US-imager immediately acquires the 6 compounding angles, while the MRI

acquires simultaneously the first k-space segment. The US-acquisition is completed with

the first k-space segment acquisition.

During the ex-vivo experiment, the motion pattern induced to the phantom by the

motorized platform can be used as a gold standard. In comparison, for in-vivo scenarios,

obtaining a reliable ground-truth in-vivo in a non-invasive manner can be a difficult task.

For this reason, in anticipation to the in-vivo study described in the following section,

the phantom experiment was used to validate both the EVolution algorithm applied on

the US image series and the optical flow algorithm (Zachiu et al. 2015) applied on the

simultaneously acquired MR images. The output provided by the optical flow algorithm

on MR images will be used as a validation mechanism during the in-vivo study on the
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three healthy volunteers.

The phantom trajectory estimated in both the MR and the US image series was

compared to the injected motion pattern. However, note that the MR and the US images

were acquired in a different coordinate system. Thus, in order to ensure consistency

between the displacements estimated on the two modalities, prior to registration, the

MR and the US images were re-sampled on a common frame-of-reference. The axes of

the new coordinate system were aligned with the axes of the MR images, whereby, the

size of the the common reference frame was established at 256×256 with a 1×1 mm2 pixel

size. Moreover, prior to re-sampling, the far field of the US images was cropped-out, since

for the current experiment it did not contain useful information. The US images also

underwent a histogram equalization procedure. The average phantom displacements

estimated from the two modalities were analyzed in relation to the injected motion

pattern both in terms of followed trajectory and the pixel-wise error in flow endpoint

(FEP) (Baker et al. 2011):

FEP[mm] =
√

(ugold − uest)2 + (vgold − vest)2 (6)

where (ugold, vgold) and (uest, vest) are the gold standard and the estimated motion fields,

respectively. For the current experiment, ugold is the displacement induced to the moving

phantom, while vgold was set to 0, since the moving platform only underwent a 1D

translational motion. Thus, unlike the contact echography study, the gold standard

here is a set of displacements, rather than a set of coordinates providing the location of

a landmark over the US image series. By definition, the FEP relates two motion vector

fields to one-another, reason for which, in this case, it was deemed to be a more suitable

metric than the TRE.

In-vivo standoff echography study The current healthy volunteer study was conducted

in agreement with the required standards and regulatory requirements. Ethical

approval was provided by the Ethics Board of the University Medical Center Utrecht.

Simultaneous MR and B-mode US imaging was carried-out on the abdomen of three

healthy volunteers. The MR acquisition sequence was a multi-shot (9 shots per image)

gradient recalled echo with echo planar readout employing the following parameters:

TR = 36 ms, TE = 11 ms, FA = 30◦, BWread = 1131 Hz, image size 176×176, voxel

size = 2×2×7mm3, acquiring a total of 300 images over a duration of ∼100 s. The

US acquisition sequence employed the same parameters and had the same timing as

in the phantom experiment described in the previous section. The exact same pre-

processing and processing steps as in the phantom experiment were carried-out on the

data acquired on the healthy volunteers. However, as anticipated from the previous

section, the displacements estimated by the EVolution algorithm on the US images were

evaluated with respect to the ones estimated by the optical flow on the simultaneously-

acquired MR images (Zachiu et al. 2015). Motion analysis was conducted in a region of

interest surrounding the lower boundary of liver segment # 5, using the same motion

quality evaluation criteria as in the phantom experiment. However, for the computation
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of the FEP, (ugold, vgold) from Eq. 6 were replaced with the 2D displacements estimated

by the optical flow algorithm on the MR series.

Interference avoidance scheme between the HIFU therapeutic signal and the B-mode

US imaging signal For the system used in the standoff echography study, in case the

HIFU transducer and the US imager operate simultaneously, the high amplitude of the

the HIFU signal may completely saturate the low intensity electronics of the imaging

system receiver. This will most likely lead to severe interference artifacts in the acquired

B-mode US images, potentially affecting the tracking capabilities of the EVolution

algorithm. In order to address this issue, previous studies propose implementing a

synchronization scheme between the HIFU transducer and the US imager such that the

HIFU beam is off during US-acquisitions (Vaezy et al. 2001). Another solution, which

allows continuous operation of both the HIFU transducer and the US imager, is to filter

the composite signal received by the US imager. In this sense, the HIFU therapeutic

signal is attenuated to an extent that it has only minimal impact on the B-mode image

quality (Jeong et al. 2009, Jeong et al. 2010, Jeong et al. 2012, Jeong et al. 2013, Takagi

et al. 2016). In the scope of this study, the more technically simple solution of a time-

synced acquisition was adopted, where US-imaging and HIFU are rapidly interleaved.

HIFU-US synchronization was achieved using the setup described in the first paragraph

of section 2.2.2.

In order to study the effectiveness of the proposed interference avoidance scheme, a

HIFU heating experiment was conducted on a moving gel phantom. The phantom was

placed on the same motorized platform as in the previous phantom experiment, however,

the motion pattern induced here consisted in a simple sinusoidal displacement. A 300 W

sonication was performed on the moving phantom, while continuously acquiring B-mode

US images (frequency 20 images/s) over a duration of 55 s. MR-Thermometry (Rieke &

Pauly 2008) was simultaneously performed, in order to ensure that a lethal amount of

thermal damage (Sapareto & Dewey 1984) is achieved at the focus point. Both HIFU

energy delivery and MR-Thermometry were gated using an MR pencil-beam navigator,

however, the MR scanner and the US imager operated asynchronously. The quality of

the B-mode US images was then evaluated both in the presence and in the absence of

the proposed interference avoidance method.

2.3. Configuration of algorithm input parameters

The EVolution algorithm requires two parameters as input: the regularization parameter

α and the patch size Γ (see Eq. 1 and 2). An exhaustive optimization procedure was

performed for both parameters. For both the contact and standoff echography studies,

the value of α was varied between 0.1 and 1.0 with an increment of 0.05, while the size

of Γ was varied between 3× 3 and 21× 21 with an increment of 2× 2. The combination

of α and Γ which provided the minimum average TRE (for contact US) or FEP (for

standoff US) was selected for use. For contact echography, the optimization procedure
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was carried-out per US sequence, with the average TRE including all three landmarks.

For the standoff data, the average FEP was computed over the three volunteers.

The procedure described above also allowed the study of the algorithm’s sensitivity

to the two input parameters. This was achieved by evaluating the average TRE and

FEP computed across all the contact and standoff sequences, respectively, for each

combination of α and Γ.

2.4. Implementation

A computer unified device architecture (CUDA) implementation was performed for both

the EVolution and the optical flow algorithms used to register the US and the MR im-

ages, respectively. The implementation was then executed on an nVidia Tesla K20

graphical processing unit (GPU).

3. Results

3.1. Tracking quality evaluation for contact B-mode echography

Fig. 2 showcases the tracking capabilities of the EVolution algorithm in one of the

volunteers included in the contact echography study (see section 2.2.1). More precisely,

Fig. 2(a) and 2(d) illustrate for the liver and kidney, the images used as positional

reference during the tracking process. The red dashed lines in the two figures delineate

the contour of the organs of interest, while the yellow numbered arrows indicate the

location of the tracked landmarks. Fig. 2(b) and 2(c) plot the vertical and horizontal

displacements of landmark # 1 in the liver, resulting from both manual tracking (red

curve) and the EVolution algorithm (blue curve). The same curves were plotted in Fig.

2(e) and 2(f) for landmark # 2 in the kidney. A good similarity can be observed between

manual tracking and the EVolution motion curves.

A quantitative evaluation of the algorithm’s performance is provided in Table 1 for all 7

volunteers. The TRE between the manually determined and the estimated position of

the tracked landmarks is reported for both the liver and kidney. The TRE was evaluated

under the format mean ± standard deviation both in the presence and in the absence of

a registration procedure via the EVolution algorithm. The two statistics were computed

on the TREs pooled from all time samples. The TRE in the absence of registration was

evaluated by setting u(~rI) and v(~rI) in Eq. 5 to 0, while keeping (xI , yI) and (xJ , yJ) un-

altered. Since the latter were established as gold standard (thus it is assumed that their

values are in correspondence with the true motion), by setting u(~rI) and v(~rI) equal to

0, the TRE provides the tracking errors/misalignments that would occur in the absence

of a registration procedure. When tracking is enabled, a considerable improvement is

attained in all analyzed cases, with a mean and standard deviation of the registration

errors under 1.6 mm for most of the landmarks. It is only in a few isolated instances in

which the accuracy drops to 1.6 - 1.7 mm.
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Kidney contact ultrasound
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Figure 2: Tracking capabilities of the EVolution method for B-mode contact echography:

(a), (d): US images used as positional reference for liver and kidney tracking, in one

of the volunteers included in the contact echography studies. The red dashed line

emphasizes the contour of the organs of interest while the yellow numbered arrows

indicate the tracked landmarks. (b), (c): Horizontal and vertical displacements of

landmark # 1 in the liver. (e), (f): Horizontal and vertical displacements of landmark

# 2 in the kidney. The red curves are the manually determined displacements (used as

a gold standard), while the blue curves correspond to the displacements estimated by

the EVolution method.

3.2. Tracking quality evaluation for standoff B-mode echography

3.2.1. Phantom study The purpose of this experiment was to validate both the optical

flow and the EVolution algorithm against a gold standard consisting in a known motion

pattern induced to a phantom. Fig. 3 illustrates the images used as positional reference

during the phantom tracking study (detailed in section 2.2.2). Fig. 3(a) and 3(b)

showcase the reference images for the MR and US series, in their original frame-of-

reference. The yellow dashed line in Fig. 3(a) indicates the tracked structure. Fig.

3(c) displays the two images in the same coordinate system. In order to show how the

content of the two images relate to one-another, the US imaging plane was indicated on

the MR image by a green dashed contour in Fig. 3(c). Also, the part where the two

images overlap was replaced with the content of the US image, after its transformation

in the new coordinate system.

Fig. 4 depicts the trajectory of the structure indicated by the yellow contour in Fig.
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Volunteer Landmark Target registration error [mm]

number number Liver Kidney

Without With Without With

registration registration registration registration

# 1 4.34 ± 2.18 1.35 ± 0.88 4.47 ± 2.74 1.58 ± 0.76

1 # 2 4.51 ± 2.52 1.09 ± 1.00 5.33 ± 2.98 1.54 ± 0.65

# 3 4.00 ± 2.00 1.77 ± 1.07 3.75 ± 2.07 1.23 ± 0.64

# 1 4.28 ± 3.94 1.54 ± 0.86 5.97 ± 3.17 1.45 ± 0.95

2 # 2 5.90 ± 2.82 1.56 ± 0.92 6.01 ± 2.91 1.10 ± 0.62

# 3 6.31 ± 3.27 1.52 ± 0.83 5.37 ± 2.39 1.37 ± 0.73

# 1 4.63 ± 2.27 1.61 ± 0.88 6.05 ± 2.65 1.52 ± 0.65

3 # 2 11.80 ± 5.12 1.47 ± 1.06 5.85 ± 2.82 0.90 ± 0.43

# 3 13.56 ± 8.51 1.43 ± 0.60 6.42 ± 2.72 1.49 ± 1.05

# 1 3.61 ± 2.00 1.05 ± 0.58 2.86 ± 1.20 1.29 ± 0.65

4 # 2 3.55 ± 2.87 1.03 ± 0.62 4.95 ± 3.99 1.53 ± 0.91

# 3 4.11 ± 2.63 0.85 ± 0.47 5.23 ± 3.17 0.97 ± 0.48

# 1 3.51 ± 2.59 1.19 ± 0.80 6.90 ± 3.45 1.50 ± 0.98

5 # 2 3.83 ± 2.60 1.77 ± 0.97 7.48 ± 3.51 1.25 ± 0.73

# 3 7.01 ± 3.85 1.42 ± 1.05 6.30 ± 2.99 1.24 ± 0.53

# 1 5.41 ± 3.06 1.39 ± 0.82 5.58 ± 3.32 1.52 ± 0.89

6 # 2 6.76 ± 3.55 1.20 ± 0.76 3.67 ± 2.02 1.70 ± 0.97

# 3 6.34 ± 2.94 1.70 ± 0.85 4.96 ± 3.08 1.30 ± 0.56

# 1 2.88 ± 1.79 1.16 ± 0.55 4.42 ± 1.88 1.57 ± 0.67

7 # 2 3.20 ± 2.16 1.53 ± 0.66 5.62 ± 2.34 1.45 ± 1.04

# 3 7.25 ± 4.22 1.10 ± 0.60 4.71 ± 2.11 1.35 ± 0.66

Table 1: Accuracy and precision of the EVolution algorithm following the contact

echography study on the 7 healthy volunteers. The table reports the TRE for the tracked

landmarks in the liver and kidney, in the absence and in the presence of registration

via the EVolution algorithm. Reporting is made under the format: mean ± standard

deviation.

3(a) during the first ∼60 s of the phantom study. The red curve corresponds to the

known motion pattern induced to the phantom by the motorized platform, while the

blue and the green curves are the average displacements estimated for the structure of

interest by the optical flow and the EVolution algorithm, respectively, on the MR and

the simultaneously acquired B-mode US image series. The trajectory is displayed only

for the phantom’s direction of travel, since the estimated magnitude of the perpendicular

component was negligible. From a visual perspective, a good similarity between the red

(used as a gold standard) and the other two curves can be observed. An evaluation of

the FEP reveals a reduction of the alignment errors from 3.00 mm ± 3.35 mm in the
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(a) (b) (c)

Figure 3: Example of data used during the phantom tracking study: (a), (b): Reference

MR and its corresponding US image in their original coordinate system. The yellow

dashed contour indicates the structure which was tracked during the experiment. (c):

The MR and the US images in (a) and (b), projected onto a common reference frame.

The green dashed contour delineates the US imaging plane in the illustrated composite

image.

absence of tracking to 0.33 mm ± 0.31 mm for the optical flow and 0.37 mm ± 0.48 mm

for the EVolution algorithm. The statistics on the registration errors were computed

based on the pooled errors from all temporal sampling points.

3.2.2. In-vivo healthy volunteer study The simultaneous MR-US healthy volunteer

study had the purpose of showcasing the performance of the EVolution tracking method

for in-vivo standoff B-mode echography. Similar to Fig. 3, Fig. 5 displays the reference

MR and US images acquired on one of the healthy volunteers, both in their original

(Fig. 5(a) and 5(b)) and in a common coordinate system (Fig. 5(c)). The red dashed

lines contour the visible part of the liver in the two images, while the blue lines delineate

the abdominal wall. Again, in order to show how the content of the two images relate

to one-another, the US imaging plane is indicated on the MR image in Fig. 5(c) by

a green dashed line and the overlapping region was replaced with the transformed US

image.

Fig. 6(a) illustrates, for volunteer #3, the spatial distribution of the temporally

averaged FEP between the motion vectors estimated by the optical flow and the

EVolution algorithm, respectively, on the simultaneously acquired MR and US image

series. The average FEP has been overlaid on the image used as reference during the

registration of the standoff US image series. Note that the analysis was limited to a

region of interest (ROI) (indicated by the dashed yellow contour in Fig. 6(a)) around the

lower bound of liver segment # 5. It can be observed that, for the majority of the pixels,

the temporally averaged FEP rests below 2 mm. Fig. 6(b) plots the temporal evolution

of the spatially averaged displacements estimated for the liver of volunteer #3. The

average was calculated in the same ROI indicated by the yellow contour in Fig. 6(a).

The analysis was conducted only for the head-foot component, since the displacement
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Figure 4: Performance evaluation of the optical flow and the EVolution algorithms

following the phantom tracking experiment: The average spatial displacement in the

direction of travel of the structure of interest during the first ∼60 s of the study. The

blue curve corresponds to the displacements estimated by the optical flow algorithm

on the MR-image series, while the green curve showcases the displacements estimated

by the EVolution method on the simultanously acquired US images. The red curve

illustrates the motion pattern induced to the phantom via the motorized platform.

in the anterior-posterior direction was negligible. The blue curve corresponds to the

displacements estimated by the optical flow algorithm on the MR image series, which

played the role of silver standard in the current experiment, while the green curve is

the trajectory estimated by the EVolution method on the simultaneously acquired US

image sequence.

Table 2 reports the FEP for all 3 volunteers, in the absence and in the presence of the

EVolution tracking method. Since (ugold, vgold) in Eq. 6 stand for the true motion of the

tracked structure, the FEP in the absence of the EVolution algorithm was computed by

setting (uest, vest) to 0. The values in Table 2 report the mean ± standard deviation of

the spatially averaged FEP in a region of interest covering the inferior part of the liver,

with the statistics computed on the pooled values from all temporal sampling points.

Improvements can be observed in all cases, with both the accuracy and precision of the

proposed tracking method residing beneath 1.5 mm. Noteworthy is also the inter-subject

variability in tracking performance.

3.2.3. Efficiency of the proposed interference avoidance scheme Sections 3.2.1 and 3.2.2

report the achievable accuracy and precision of the EVolution algorithm for standoff US-
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(a) (b) (c)

Figure 5: Example of data used for tracking during the in-vivo standoff echography

study: (a), (b): The MR and its corresponding B-mode US image used as positional

reference for volunteer #3, in their original coordinate system. In both (a) and (b) the

red dashed line delineates the visible part of the liver, while the blue line delineates the

abdominal wall. (c): The two images projected onto a common frame-of-reference. The

green contour delineates the US imaging plane on the composite MR-US image. The

red and the blue contours maintain the significance they had in (a) and (b).

Error in flow endpoint [mm]

Without registration With registration

Volunteer #1 3.68 ± 3.16 1.3 ± 1.2

Volunteer #2 2.55 ± 2.87 1.25 ± 1.26

Volunteer #3 3.72 ± 3.92 0.8 ± 1.01

Table 2: Accuracy and precision of the EVolution method following the standoff B-

mode US study on the three healthy volunteers. Evaluation was performed for an ROI

at the lower bound of liver segment # 5, both in the presence (third column) and in the

absence (second column) of the EVolution tracking method. The FEP in the absence of

the EVolution algorithm was computed by setting (uest, vest) to 0 in Eq. 6. The errors

are reported under the format mean ± standard deviation of the spatially averaged FEP

pooled from all sampling time points.

based tracking. However, both the experiments were conducted with the HIFU beam

off. As pointed-out in section 2.2.2, the HIFU therapeutic signal may oversaturate the

signal received by the US imager and affect the quality of the US images and implicitly

the performance of the tracking algorithm. Fig. 7 showcases such saturation effects in

US images acquired during the experiment described in 2.2.2, paragraph 3. Fig. 7(a)

illustrates one of the US images acquired while the HIFU transducer is off. Fig. 7(b)

displays an US image acquired during a 50 W sonication in absence of an interference

avoidance scheme. Note the strong interference artifacts that are present in the image,

obscuring the imaged phantom. Fig. 7(c) displays an US image acquired during a 300

W sonication, with the proposed synchronization scheme between the HIFU transducer
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Figure 6: Performance evaluation of the EVolution method for in-vivo standoff B-mode

echography. (a): Spatial distribution of the temporally averaged FEP calculated for

volunteer #3 and overlaid on the corresponding reference image of the standoff B-mode

US image series. (b): The average liver displacement in the region-of-interest indicated

by the yellow contour in (a), in the head-foot direction during the first 30 s of the study

conducted on volunteer #3. The blue curve illustrates the estimation provided by the

optical flow algorithm on the MR image series (established as silver standard during

the current experiment), while the green curve plots the one provided by the EVolution

algorithm on the simultaneously acquired US image series.

and the US imager enabled. It can be observed that the saturation artifacts become

visually unnoticeable.

Fig. 8(a) and 8(b) showcase a coronal and a sagittal MR-Thermometry image acquired

on the moving phantom during the HIFU heating experiment described in section 2.2.2,

paragraph 3. The illustrated images were acquired at peak temperature, with the

focal region magnified for better visibility. The white curve around the focal point

indicates the region estimated to have received a lethal amount of thermal damage.

This demonstrates that the proposed interference avoidance scheme does not hamper

the system’s ability for HIFU ablations. Moreover, no degradation in MR and US image

quality was observed, despite the fact that the MR scanner and the US imager operated

asynchronously during this experiment.

3.3. Algorithm sensitivity to the choice of input parameters

Fig. 9(a) and 9(b) illustrate the average TRE and FEP as a function of α and Γ for the

contact and standoff echography studies, respectively. For details on how these figures
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(a) (b) (c)

Figure 7: Efficiency of the proposed interference avoidance scheme between the HIFU

therapeutic signal and the US imaging signal. (a) US image acquired while the HIFU

transducer is off. (b): US image acquired during a 50 W HIFU sonication, without

synchronization between the HIFU transducer and the US imager. (c): US image

acquired during a 300 W HIFU sonication, with the interference avoidance scheme

enabled.

(a) (b)

Figure 8: A (a): coronal (b): sagittal MR-Thermometry image acquired at peak

temperature on the moving phantom during the heating experiment. The focal region

was magnified for better visibility, with the white contour indicating the area estimated

to have received a lethal amount of thermal damage.

were obtained, please see section 2.3. It can be observed that for contact echography, the

maximum accuracy is attained for (α,Γ) = (0.3, 15× 15), while for standoff echography

the optimal combination is (α,Γ) = (0.35, 3× 3). For both the contact and the standoff
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studies, the errors tend to be notably larger for small values of α and Γ, with a sudden

drop at a value of ∼ (0.1, 5×5)−(0.15, 7×7). As the values of α and Γ increase towards

their maximum, the registration errors also show a slight tendency to increase.
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Figure 9: Sensitivity of the EVolution algorithm to input parameters α and Γ. Average

(a): TRE and (b): FEP as a function of α and Γ for the contact and standoff echography

studies, respectively.

3.4. Algorithm computational performance evaluation

The GPU implementation of the EVolution algorithm converged on average in ∼50 ms.

The convergence time was measured for images of size 256×256, which was the case for

all data processed in the current study.

4. Discussion

The current study evaluates the real-time tracking capabilities of the recently proposed

EVolution algorithm (Denis de Senneville et al. 2016) for both contact and standoff
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B-mode echography. The tracking method was chosen due to its intrinsic robustness

to transient image structures (such as speckles in US images), fast convergence and re-

duced number of input parameters, while at the same time providing displacements on a

pixel-by-pixel basis. According to the classification made in (De Luca et al. 2015b), the

EVolution algorithm is a hybrid registration method. However, compared to existing

hybrid methods for B-mode US registration, the EVolution algorithm has low computa-

tional demands, requires the configuration of a small number of input parameters, with

no user interaction being necessary. Also, it does not require a learning step prior to

its application, therefore its performance does not depend on the reproducibility of the

estimated motion.

The evaluated tracking method was validated in three independent experiments, which

were chosen as representative mock-ups of two clinical application scenarios: guidance

of automated percutaneous interventions and HIFU therapies. The experiments en-

compassed an in-vivo contact echography study conducted separately on the liver and

kidney of 7 healthy volunteers, a standoff echography study conducted on a phantom

undergoing a known motion pattern and an in-vivo standoff echography experiment

performed on the liver of three healthy volunteers. The low signal-to-noise (SNR) ratio,

artifacts, poor contrast and orientation-dependent appearance of B-mode US images

make tracking via gradient-based methods a challenging task (Jacob et al. 1999). It

should also be noted that, in the scope of this study, with respect to the choice of

the images, the employed equipment and acquisition schemes, no particular selection

with respect to image quality has been made. Despite all this, the EVolution algorithm,

which is gradient-based, provided in the majority of the analyzed cases, for both contact

and standoff echography, motion estimates with an accuracy and precision higher than

1.6 mm, which is on par with state-of-the-art algorithms dedicated to B-mode US image

registration (De Luca et al. 2015a, De Luca et al. 2015b). However, while comparable,

there is still a particular amount of inter-experiment and inter-subject variability in

terms of tracking accuracy and precision. The cause to this is most likely variations in

image quality (i.e. SNR, artifacts, etc.) between the different US image series and the

US images themselves. Moreover, during the in-vivo studies, due to the limited acoustic

window of the employed B-mode US imager, parts of the organs-of-interest would peri-

odically enter and leave the field-of-view (FOV). In the scope of this paper, the tracked

landmarks/ROIs were purposefully maintained in the FOV during the acquisition pro-

cess. However, this aspect requires special attention when tracking is performed in a

clinical setting, such that the region-of-interest does not leave the FOV. Also, note that

the evaluation in the standoff echography study was limited to the lower bound of liver

segment # 5. The rather large distance between the US probe and the organ-of-interest

led to a poor signal in regions towards the interior of the liver. Due to a lack of visible

structures (such as organ boundaries and/or blood vessels), the algorithm performed

poorly in these areas. Therefore, future work should should focus on improving the

quality of the standoff US images acquired on the hybrid MR-US HIFU system.

One of the challenges that occurred during the validation of the proposed tracking
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method in the in-vivo scenarios was the choice of a reliable ground truth. For the

in-vivo contact echography study the gold standard was determined by the means of

manual tracking of identifiable anatomical landmarks. While a reliable approach, it is

still sensitive to the observer’s subjectivity, especially given the time-varying visibility of

the structures in the US images over the respiratory cycle. For the standoff case, since a

time-synchronized MR-image series was also acquired, a natural choice seemed the de-

formation fields estimated by the optical flow algorithm (Zachiu et al. 2015) on the MR-

images. This was motivated by the fact that the optical flow algorithm was previously

validated for MR-based motion tracking by several independent studies in both ex-vivo

and in-vivo scenarios (Ostergaard et al. 2008, Castillo et al. 2009, Brock 2010, Kadoya

et al. 2014). Furthermore, the good MR-based tracking capabilities of the optical flow

algorithm was further confirmed in the current study during the phantom tracking ex-

periment (see section 3.2.1). Another aspect that needs to be taken into consideration

when evaluating the in-vivo tracking errors of the proposed method is that the imaging

(and implicitly tracking) was performed in 2D. While the imaging planes were optimized

such that they are in good correspondence with the principal axis of respiratory dis-

placements, out-of-plane motion still remains a possibility. In case the latter becomes

significant, its effects on the image content may be interpreted by the algorithm as in-

plane motion, leading to estimation errors. In such instances 3D US-tracking may be

necessary (which has not been investigated in the scope of this study) or a method that

includes through-plane motion detection capabilities could be employed, as described in

(Ta et al. 2014).

The algorithm performance may also depend on the local validity of the smoothness

assumption made by the second term of the functional in Eq. 1. For abdominal organs

in particular, such a constraint is generally justified, since their composing tissues are

incompressible and elastic. Thus, from a physical point-of-view, the displacement of the

organs under discussion is indeed spatially smooth. Problematic are, however, the inter-

faces between the moving organs and the quasi-static abdominal/thoracic wall, where

sliding/shearing motion may occur. Since this implies a local violation of the smooth-

ness assumption, such areas are prone to motion estimation errors. More specifically, the

displacements estimated for the mobile structures will get spatially propagated towards

the static ones. Such a phenomenon was observed, for example, in the results associated

to the in-vivo data displayed in Fig. 5. Due to the propagation of the displacements

estimated for the liver, false motion was estimated for the quasi-static peritoneal wall.

Area-wise, this effect extended ∼2-3 pixels into the wall. A similar scenario can arise

due to ghost image (aliasing) artifacts caused by acoustic multiple reflection. The latter

can lead to some objects/structures appearing at several locations in the US image:

once at their true spatial location and the rest, due to the additional reflections, at

false locations, overlapping with the real structures that are situated at those particular

sites. Such an effect is visible, for example, in Fig. 3(b), where a ghost of the HIFU

transducer membrane partially overlaps with the tracked structure. The issue is that, in

general, the ghost image of an object may or may not move relative to the real structure
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that it overlaps with. Thus, a smoothness assumption on the estimated displacements

may not be valid. In the aforementioned example from Fig. 3(b), the reflection of

the transducer membrane was static relative to the tracked structure. The constraint

to provide a smooth deformation in the overlap region between the static membrane

reflection and the moving structure, lead to a local decrease in the magnitude of the

estimated motion vectors, especially for large displacements. This phenomenon may

explain the systematic bias at the negative peaks of the green curve in Fig. 4. While in

the scope of this study, neither sliding motion nor ghosting artifacts notably hampered

the estimated displacements, as a source of mis-registration, they should be carefully

monitored when tracking is performed via the EVolution method.

A feature that makes the EVolution algorithm an attractive tracking solution is that it

requires the input of only two parameters: α and Γ (see Eq. 1). Moreover, as shown

in Fig. 9, registration errors remain close to their global minimum for a wide range of

α and Γ combinations. This is the case especially for the standoff experiments. Note,

however, that the accuracy rapidly decreases as α and Γ approach 0.1 and 3 × 3, re-

spectively. On the other hand, the impact on accuracy is less important as α and Γ

increase towards their maximum. Therefore, in practice it is favorable to overestimate

the values of α and Γ.

An important factor for motion tracking in general is the computational time required

by the employed algorithm. In particular for interventional guidance of mini- or non-

invasive procedures, the real-time performance of such an algorithm is paramount. With

respect to this, two fundamental aspects have to be considered and differentiated: la-

tency and throughput. In the scope of this study, latency is defined as the computational

time required by the algorithm to register one pair of images. Registration methods that

provide a dense deformation field between two images, are known to have high compu-

tational demands, making an implementation with real-time capabilities a challenging

task (De Luca et al. 2015b). However, an implementation with short associated latencies

for the EVolution algorithm is facilitated by the method’s pixel-wise numerical scheme,

which can be massively parallelized. As stated in section 3.4 this resulted in an average

latency of 50 ms per registration, for images of size 256× 256. Whether this is sufficient

for real-time guidance depends on the particularities of the application. For example,

for percutaneous interventions performed by a clinician using a handheld US device,

the latency should reside below the average human reaction time. Since the latter is

∼ 200 ms (Woods et al. 2015), the evaluated tracking method fulfills this constraint

with a considerable margin. It is, however, important to keep in mind that this latency

may vary, depending on the extent of the deformation between the images, image size

and the computational capabilities of the available hardware. Image throughput, on

the other hand, refers to the number of images per unit time that a system is capable

of processing. The implementation performed in the current study allowed for an im-

age throughput of ∼ 20 images per second, which is suitable for most state-of-the-art

B-mode US imagers. The throughput can, however, be increased if necessary. For ex-

ample, if two or more graphic cards of the same model as used in the presented work
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are included in the system, the image throughput can be scaled and adapted to imaging

systems with high frame-rates (such as, for example, plane-wave US imagers (Montaldo

et al. 2009)).

From a more practical side, the current work also proposes a scheme for addressing the

interference between the US imaging and the HIFU signals. As illustrated in Fig. 7(b),

if no interference avoidance measures are taken, a 50 W sonication may already lead

to saturation artifacts that render the US images unusable for tracking. The proposed

solution consists in a temporal multiplexing of the US imager and the HIFU transducer.

As shown in Fig. 7(c), this removes the interference artifacts to an extent that they

are no longer observable. A concern that arises with such a technique is that, since the

HIFU transducer is turned off every time an US image is acquired, the thermal damage

may be insufficient to have a therapeutic effect. This was, however, not the case in

the current study since it was demonstrated that lethal thermal damage can still be

achieved in the focal area (see Fig. 8). Nevertheless, such an approach, while efficient,

it increases the time required to achieve this effect. This aspect can be addressed by

employing more technically advanced solutions, which allow the continuous operation

of the HIFU transducer and US imager. The principle behind such approaches involves

encoding and/or filtering the composite signal received by the US imager, such that the

HIFU therapeutic signal is strongly attenuated prior to image reconstruction (Jeong

et al. 2009, Jeong et al. 2010, Jeong et al. 2012, Jeong et al. 2013, Takagi et al. 2016).

Such techniques improve the duty cycle of the therapeutic energy delivery, leading to

shorter sonication/therapy times compared to a temporal multiplexing solution. Nev-

ertheless, in the scope of the current work, temporal synchronization between the two

systems was deemed to be an acceptable solution, with more efficient approaches for

interference avoidance being the topic of future studies.

The main focus of the current study was motion estimation. However, in particular

for the hybrid MR-USg-HIFU system, a solution for motion compensation with respect

to the estimated displacements would also be of interest. Motion compensation can

be achieved, for example, by delivering the therapeutic energy in a gated manner. In

effect, the HIFU transducer would be activated only when the targeted tissue is inside

a pre-defined range of locations. Whether the tissue is situated in this range would be

provided by the displacements estimated by the EVolution algorithm on the US im-

ages. Another solution for motion compensation would be electronic steering of the

HIFU beam. In this sense, an approach similar to the one described by Ries et al (Ries

et al. 2010) could be used, with steering being performed according to the motion vec-

tors estimated by EVolution on the US image series.

5. Conclusion

A solution is proposed for target tracking in B-mode US sequences, capable of

providing real-time guidance for US-guided percutaneous clinical interventions in
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mobile/deformable organs. The method is based on the recently proposed EVolution

registration algorithm, a dynamic contour tracking method mathematically formulated

in a variational setting. EVolution is a hybrid registration method which, as the

current study demonstrates, showcases the advantages provided by both intensity-based

and feature-based methods. It was also shown to be robust against their individual

drawbacks. Similar to intensity-based registration methods, EVolution estimates a dense

deformation between two images and does not require the selection/detection of image

features. However, while intensity-based methods providing a dense deformation field

usually imply high computational demands, in the current study it was shown that

the EVolution algorithm has an image throughput and latency which are compatible

with real-time B-mode US-guidance. Moreover, EVolution was shown to be capable of

estimating rather large motion amplitudes of more than 10 mm and, by construction,

is robust against transient structures, qualities which are specific to feature-based

registration methods. However, since EVolution does not involve the selection/detection

of a set of features, the registration process is not severely hampered by a low number

of distinctive features in the images and/or the loss of features from one image to the

next due to noise, image artifacts or through plane motion. In addition, even though

B-mode US images are subject to low SNR, artifacts, poor contrast, and orientation-

dependent appearance, which renders the usage of gradient-based registration methods

challenging, results have demonstrated that the EVolution algorithm is resilient against

such effects, having on average an accuracy of ∼1.5 mm and submillimeter precision.
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