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Modeling two-phase flow of immiscible fluids in porous media:

Buckley-Leverett theory with explicit coupling terms

Sylvain Pasquier, Michel Quintard, and Yohan Davit*
Institut de Mécanique des Fluides de Toulouse, Université de Toulouse,

CNRS, INPT, UPS, 31013 Toulouse, France

Continuum models that describe two-phase flow of immiscible fluids in porous media
often treat momentum exchange between the two phases by simply generalizing the
single-phase Darcy law and introducing saturation-dependent permeabilities. Here we
study models of creeping flows that include an explicit coupling between both phases
via the addition of cross terms in the generalized Darcy law. Using an extension of the 
Buckley-Leverett theory, we analyze the impact of these cross terms on saturation profiles
and pressure drops for different couples of fluids and closure relations of the effective 
parameters. We show that these cross terms in the macroscale models may significantly
impact the flow compared to results obtained with the generalized Darcy laws without cross
terms. Analytical solutions, validated against experimental data, suggest that the effect of
this coupling on the dynamics of saturation fronts and the steady-state profiles is very 
sensitive to gravitational effects, the ratio of viscosity between the two phases, and the 
permeability. Our results indicate that the effects of momentum exchange on two-phase
flow may increase with the permeability of the porous medium when the influence of the
fluid-fluid interfaces become similar to that of the solid-fluid interfaces.

DOI: 10.1103/PhysRevFluids.2.104101

I. INTRODUCTION

Modeling two-phase flows of immiscible fluids in porous media is important in many scientific 
and industrial areas, including petroleum engineering and hydrogeology [1,2], chemical engineering, 
and nuclear safety [3,4]. The classical mathematical descriptions of momentum transport at the 
continuum scale are simple extensions of Darcy’s law for single-phase flow. The most widespread 
model corresponds to the generalized Darcy law [5], where the relative influence of one phase on 
the other one is captured by a relative permeability, which is usually treated as a function of the 
saturations [6]. In most of these representations, the coupling between the two phases is done by 
simply correcting effective parameters of models initially developed for single-phase flow.
While generalized Darcy law models are currently being used in engineering practice, research 

of the past several decades has lead to more elaborate models capable of dealing with complex and 
dynamic pore-scale physics [7–16]. Among these models, there has been recently a renewed interest 
in those that include an explicit coupling for the description of mass and momentum exchanges 
between the phases [3,17]. Cross terms that couple the equations for momentum transport of each 
phase can be obtained theoretically, either by considering the case of the annular viscous two-phase 
flow in tubes, for which a simple analytical solution analogous to that of Poiseuille can be derived 
[18,19], or from upscaling techniques such as the method of volume averaging [16] (more details 
are in Sec. II A) or homogenization theory [7].
How important are these cross terms? We anticipate that this will strongly depend upon the contact 

area between the two fluid phases, which in turn is controlled by effects such as the capillary action, 
wettability, or structure of the porous medium. If the area of the fluid-fluid interface is comparable 
to the area of fluid-solid interfaces, the coupling terms may be important, whereas if the area of the



fluid-solid interface is much larger than that of the fluid-fluid interface, exchanges may be minimal. 
The hypothesis that we explore in this paper is that the size of the pores can control the influence 
of the fluid-fluid and fluid-solid interfaces and therefore exchanges between the two phases. In 
particular, our idea is that there is a positive correlation between the size of the pores and the effects 
of the cross terms on momentum transport. This hypothesis is based on a variety of results from the 
literature that we detail below.
On the one hand, studies such as [20] show that coupling effects are relatively small for water (wet-

ting) and mercury (nonwetting) flowing through packed sand (permeability of about 34 × 10−12 m2). 
Zarcone and Lenormand hypothesize that the wetting and nonwetting phases flow through different 
pore networks, most likely because of capillarity, and therefore minimize the interfacial area between 
the two fluids. The consequence is that solid-fluid interactions dominate over fluid-fluid interactions. 
While this is a controversial hypothesis (see, e.g., [18,19,21–23]), there is also circumstantial evi-
dence that coupling effects are small in low-permeability media. For instance, these terms are always 
neglected in reservoir modeling of water-oil flow through rocks with relatively low permeabilities; 
typically, permeabilities of the rocks are about 10−12 m2 or less in petroleum engineering.
On the other hand, studies such as [12,18,24,25] indicate that a strong friction between the two 

phases can occur when the interface area and the permeability are large. Such a strong interaction 
between phases has also been observed in many chemical engineering or nuclear engineering 
applications involving regular packed beds or structured packings with large permeabilities 
(permeabilities of about 10−8−10−6 m2). For instance, models of co- and countercurrent flows 
in trickle beds or structured packings often consist of conservations laws corrected with additional 
friction terms [26] describing phase interactions. This is also the case for boiling-water–steam flows 
in nuclear debris beds, for which various heuristic models have been developed [27–30]. Experiments 
for such systems show that many observations cannot be reproduced by the classical models without 
cross terms [3,17,29].
In this paper our goal is to analyze the relative importance of coupling terms in continuum-scale 

models of two-phase flows in porous media. To do so, we first develop a generic model for two-phase 
flow of immiscible fluids in porous media with an explicit exchange of momentum between both 
phases (Sec. II A). We then use the Buckley-Leverett theory (Sec. II B), which is extended to account 
for the cross terms, to calculate the saturation profiles and their dynamics in a one-dimensional setting 
(Sec. III). Considering simulations and experimental data from the literature on imbibition (Sec. III) 
and drainage (Sec. III) for water-air and water-oil interactions, we evaluate the relative influence of 
the cross terms and their physical relevance depending on the system considered.

II. METHODS

Here we first present a continuum model to describe two-phase flow of immiscible fluids in porous 
media. We then go on to provide a brief description of the Buckley-Leverett theory (Sec. II B), the 
configurations studied (Sec. II C), and a list of the different closure relations used (Sec. II D).

A. Models and assumptions

1. Model with cross terms

Continuum models for the creeping flow of two immiscible fluids, phases i and j , involving cross 
terms for momentum exchanges were initially postulated by Raats in [31] and Baveye and Sposito in 
[32], often following arguments based on the concepts of irreversible thermodynamics [12,33,34]. 
Using the volume-averaging theory, Whitaker in [16] derived a model with closure problems for the 
effective parameters. In this work we will use these expressions from volume averaging as a basis 
to construct our model. Similar coupled laws were also derived by Auriault in [7] using the method 
of homogenization and by Marle in [34] using concepts of irreversible thermodynamics.



The mass conservation equation for phases i and j reads

ε
∂

∂t

(

Si

Sj

)

+ ∇ ·

(

Ui

Uj

)

=

(

0
0

)

, (1)

with Ui and Uj the superficial velocities and ε the porosity of the porous medium. For simplicity,
we do not take into account residual saturations, which could be easily treated by changing the

saturation variables to the reduced saturations S⋆
i =

Si−Smini

Smaxi −Smini

and S⋆
j =

Sj −Sminj

Smaxj −Sminj

.

The momentum transport equations read [16]

Ui = −
Kii

µi

· (∇Pi − ρig)+ Kij · Uj , (2a)

Uj = −
Kjj

µj

· (∇Pj − ρj g)+ Kji · Ui, (2b)

where ∇Pi and ∇Pj are the pressure gradients, ρi (ρj ) and µi (µj ) are the density and viscosity
of phase i (j ), and g is the gravitational acceleration. In addition, Kii and Kjj are second-order
permeability tensors andKij andKji are second-order viscous coupling tensors. Equations (2a) and
(2b) are the equations that differ from the generalized Darcy law in that we have cross termsKij · Uj

and Kji · Ui describing momentum exchange between both phases. Lasseux et al. showed that this
model can be further extended to account for inertial effects by including additional drag terms [35],
but we limit our analysis to creeping flow in this paper. In fact, in such cases, the velocity-dependent
terms are not compatible with the Buckley-Leverett theory.
The derivation of these models requires several important assumptions. One of these is that the

interface between the immiscible fluids remains locally quasistatic, i.e., that the flow at the pore-scale
relaxes quickly compared to characteristic time scales of the macroscale process. Another important
assumption is that the capillary and Bond numbers, which respectively compare the viscous and
gravity effects to surface tension, aremuch smaller than unity. Alternativemodels have been proposed
to account for dynamic effects (see, for example, [36,37] for the use of pseudofunctions, [11,13,14]
for other forms of laws accounting for dynamic effects induced by heterogeneities, multizones, or
[10] for the use of the theory of irreversible thermodynamics). However, it is probable that less
restrictive assumptions in the upscaling may still yield equations similar to Eqs. (2a) and (2b) for
momentum transport, with the same effective parameters but capturing additional physical effects.
Further, the expression in Eqs. (2) is used, in a variety of different forms, in engineering applications,
where it is successful in describing many different systems [38]. We therefore base our model on
the system of equations (1), (2a), and (2b), with simplifications that are described in the next
section.

2. Simplifications

The objective of this paper is to emphasize the contribution of the additional terms compared
to the behavior of the classical model. Many different initial-boundary-value problems could be
used as test cases. However, we will limit our investigation to one-dimensional situations commonly
encountered in the laboratory experiments that have been used to study flows and measure transport
parameters in such systems. Simplifications that correspond to these most common situations are as
follows.

(i) Isotropy. For simplicity, we consider that the tensorial permeabilities Kii and Kjj can be
written as

Kii = K0kri
I, Kjj = K0krj

I, (3)

where I is the identity tensor, K0 is the intrinsic permeability of the medium, and kri and krj are 
the relative permeabilities of phases i and j , respectively. This form is based on the assumptions 
that the porous structure is isotropic and that there is no anisotropy generated by the two-phase 
flow



itself [39]. Similarly, we write

Kij = Kij I, Kji = KjiI.

(ii) Dimensions. We limit our analysis to a one-dimensional system.
(iii) Consistency of the relative permeabilities. We assume that

kri
(Si = 1) = 1, krj

(Si = 1) = 0, (4)

kri
(Si = 0) = 0, krj

(Si = 0) = 1, (5)

Kji(Si = 1) = 0, Kij (Sj = 1) = 0, (6)

which are necessary assumptions to obtain Darcy’s law in the limit of single-phase flow.
(iv) Local pressure equilibrium. Assuming that capillary effects are negligible at the macroscale,

we write Pi = Pj ≡ P and ∂Pi

∂x
=

∂Pj

∂x
≡ ∂P

∂x
. This assumption holds for flows within highly

permeable media, where viscous and inertial effects dominate over the capillary pressures. This will
be correct for pores much larger than the capillary length. For air-water flow at standard temperature
and pressure, an order of magnitude estimation is therefore that the pores are significantly larger
than the millimeter, i.e., that the permeability is larger than about 10−9m2. This is consistent with
the fact that, as discussed in Introduction, the coupling terms are likely to play a more significant
role for highly permeable media.

3. Mass balance

With these assumptions, the mass balance equations now read

ε

(

∂Si

∂t

∂Sj

∂t

)

+

(

∂Ui

∂x

∂Uj

∂x

)

=

(

0

0

)

. (7)

4. Momentum balance with cross terms

Momentum balance equations with cross terms can be written as

Ui = −
Kii

µi

(

∂P

∂x
− ρig

)

+ KijUj , (8)

Uj = −
Kjj

µj

(

∂P

∂x
− ρjg

)

+ KjiUi, (9)

with gravity collinear and oriented with the basis vector ex so that g · ex = g. An alternative
formulation, initially derived by Lasseux et al. [40], can be obtained by combining Eqs. (8) and (9),

(

Ui

Uj

)

+ K
⋆

(

∂P
∂x

− ρig

∂P
∂x

− ρjg

)

= 0. (10)

The matrix K⋆ is symmetric and reads

K
⋆ =





K⋆
ii

µi

K⋆
ij

µj

K⋆
ji

µi

K⋆
jj

µj



 =
1

1− KijKji





Kii

µi

Kjj Kij

µj

KiiKji

µi

Kjj

µj



. (11)



5. Momentum balance without cross terms (generalized Darcy laws)

Momentum balance equations without cross terms are simply obtained by setting Kij = 0 and 
Kji = 0 in the previous model, so we have

Ui = −
Kii

µi

(

∂P

∂x
− ρig

)

, (12)

Uj = −
Kjj

µj

(

∂P

∂x
− ρjg

)

. (13)

B. Buckley-Leverett theory

With these simplifications, equations can be grouped together into a single nonlinear hyperbolic
equation suitable for an analysis based on the Buckley-Leverett theory.

1. Formulation

The Buckley-Leverett theory [41] has been widely used in the literature to analyze the structure
of two-phase flows through both homogeneous and heterogeneous media [41–46]. It is also used as
a reference to validate numerical solvers [47–50] and to evaluate their accuracy in capturing shocks.
Here we consider a one-dimensional domain, with the initial condition Sj = 1 and phase i injected
at constant flow rate Ui(0,t) for t > 0. The Buckley-Leverett problem characterizes the propagation
of the fluid front in the domain and can be obtained by combining Eqs. (7)–(9). Introducing the total
velocity U = Ui + Uj , one obtains the velocity of phase i as

Ui =
mi + Kijmj

mi + mj + Kjimi + Kijmj

U +
mimj

mi + mj + Kjimi + Kijmj

(ρi − ρj )g, (14)

where mi = Kii

µi
and mj =

Kjj

µj
are the mobility parameters. This yields

ε
∂Si

∂t
+

∂Fi

∂x
= 0, (15a)

Si(x,0) = 0 [Sj (x,0) = 1], (15b)

Ui(0,t) = Fi[Si(0,t)] = U, t > 0, (15c)

where Fi(Si) is the flux function (also called fractional flow in the Buckley-Leverett theory), which
reads

Fi(Si) = Ui =
mi

mi + mj

U

(

f1 +
µi

µj

Ngkrj
(Si)f2

)

. (16)

Here Ng =
K0(ρi−ρj )g

Uµi
is the gravity number, krj

(Si) is the relative permeability for the phase j , and
f1 and f2 are functions that characterize the impact of the coupling coefficients Kij and Kji in the
momentum balance equations,

f1 =
1+ Kij

mj

mi

1+
Kjimi+Kij mj

mi+mj

, f2 =
1

1+
Kjimi+Kij mj

mi+mj

. (17)

2. Unique solution for the conservation law

Equation (15a) is a scalar one-dimensional conservation law whose solutions might involve 
discontinuities. Solving this problem is meaningful only in a weak sense, allowing for discontinuous 
functions to be solutions. Further, obtaining a unique and physically realistic result requires additional
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FIG. 1. Construction of the saturation fronts. (a) and (d) Plots of the flux function Fi , the concave hull F̂i ,
and its derivative F̂ ′

i (see the Appendix). (b) and (e) Corresponding profile of the front Si along x. (c) and (f)
Characteristic curves of the system in the x-t plane. The first (leftmost vertical) line corresponds to Fi(Si) = U

having a unique solution. The second line corresponds to Fi(Si) = U having multiple solutions.

admissibility and entropic conditions. Those are well discussed in the literature [41,46,51–53] and
a little summary of methods for constructing solutions is provided in the Appendix.
We present in Fig. 1 the two configurations encountered in this study. In the former case, the

inlet condition Fi(SL) = U = Ui(0,t) admits SL = 1 as a unique solution (indices L and R for left
and right). The solution Si(x,t) of the Riemann problem admits two shocks between SL and S2 and
between S1 and SR and a rarefaction wave between S1 and S2. The unique solution Si(x,t), shown
in Fig. 1(b), reads

Si(x,t) =







SL for x < F̂ ′
i (S1)t

Si(x,t) = (F̂ ′
i )

−1
(

x
t

)

for F̂ ′
i (S2) < x

t
< F̂ ′

i (S1)
SR for x > F̂ ′

i (S2)t,
(18)

with the concave hull F̂i introduced in the Appendix. In the latter case, which is encountered when
gravity effects dominate viscous effects, the inlet condition (15c) admits more than one solution. 
Only one of these solutions has a positive propagation velocity, so the shocks propagate in the same 
direction as the inlet velocity. Other possible solutions have a shock with a negative propagation 
velocity, a case that has been previously studied in [53]. The main difference between the case in 
[53] and the configurations here are the boundary and initial conditions. In the case in [53], a fraction 
of the medium is initially fully saturated with one phase and the rest is fully saturated with the other 
phase. Therefore, the values of the saturations are known everywhere, yielding fronts propagating 
in opposite directions. In our case, the porous medium is initially saturated only with one phase and 
we impose a velocity U at the inlet, which is the case corresponding to the experimental data that we
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FIG. 2. Illustrations of the two configurations considered: (a) configuration 1, drainage, and (b) configura-
tion 2, imbibition.

use. Given these boundary and initial conditions, we consider that shocks cannot propagate contrary
to the inlet velocity and that the only physically realistic solution Si(x,t) admits one unique shock
between SR and SL (see the illustration in Fig. 1), which is expressed as

Si(x,t) = SL for x < F̂
′
i (SL)t. (19)

As we will see later on, the results obtained with this choice are in very good agreement with
experimental data, confirming that this is the correct case for the experimental data considered in
this paper.

C. Boundary, initial conditions, and fluids

We consider two boundary-value problems corresponding to two classical configurations
encountered in porous media. The first configuration corresponds to the experiments of Chikhi et al.
in [3], which consists of an air-water system in a particle bed, a configuration known to emphasize
the impact of the coupling terms as discussed in [17]. It corresponds to a drainage process, since
the nonwetting phase (air) is displacing the wetting phase (water) out of the column. The second
configuration describes an imbibition process, where a wetting phase is introduced into a porous
medium initially filled with a nonwetting phase. This problem corresponds to the standard use of
the Buckley-Leverett theory, for application to oil recovery using water. The two configurations are
illustrated in Fig. 2. The fluid properties (density and viscosity) of air, water, and oil are given in
Table I.

D. Closures for the effective parameters

We consider two classes of closures for the effective parameters: one obtained from Clavier et al.
[17] (constructed from experimental data [3]) and one based on the analytical solution of an annular
two-phase viscous flow within a capillary tube. These closures are also compared in Sec. III to the
one obtained by Rothman in [25], Zarcone and Lenormand in [20], and Kalaydjian in [18].

TABLE I. Fluid properties.

density ρ (kg/m3) viscosity µ (Pa s)

air 1 1.8× 10−5

water 103 10−3

oil 8× 102 10−1



i j

FIG. 3. Velocity field in a cross section of a capillary tube illustrating the annular two-phase viscous flow.

1. Configuration 1: Closure from [17], based on experimental data

The first closure relations used in this paper have been recently obtained [17] from the
experimental database presented in [3] (CALIDE experiment). The experiments, which focus on
water-air flow in a column filled with coarse particles, were part of a large work studying water-steam
flows in a debris bed in the context of a severe accident in a nuclear reactor. Air and water are injected
from below, with a controlled flow rate, in a vertical column initially saturated with water until a
steady state is obtained [sketch in Fig. 2(a)]. The phase saturations were then measured using
capacitance probes and the pressure drop was obtained via a differential measure of the pressure.
These experiments offer a very valuable database of saturations and pressure drops over a wide
range of flow rates. From these data, the authors also derive closures for the effective parameters of
the model (Sec. II A). The term Kww of the water phase is assumed to be

Kww = K0S
3
w, (20a)

which also corresponds to a Brooks-Corey correlation. The effective parameters Kaa and Kwa are
then derived from the experimental data as

Kaa = K0(1− Sw)
4, (20b)

Kwa = β
µa

µw

S2w

(1− Sw)
, (20c)

where β is a factor that weights the amplitude of the cross term and is directly related to the particle
size. The term Kaw is finally determined using the relation between the nondiagonal coefficients in
Eq. (11),

Kaw =
µw

µa

KaaKwa

Kww

= β
(1− Sw)3

Sw

. (20d)

2. Configuration 2: Analytical solution of the annular viscous flow

The second closure relations are derived from the analytical solution of an annular two-phase
viscous flow (phases i and j ) within a capillary tube [54,55] (see Fig. 3 for an illustration)

Kii = S2i − 2Si(1− Si)− 2(1− Si)
2ln(1− Si)− 4rµ

[Si + (1− Si)ln(1− Si)]2

1− 2rµln(1− Si)
, (21a)

Kjj = (1− Si)
2 − 2rµ(1− Si)

2ln(1− Si)− 4rµ

(1− Si)2[Si + (1− Si)ln(1− Si)]2

S2i − 2Si(1− Si)− 2(1− Si)2ln(1− Si)
,

(21b)
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FIG. 4. Comparison of exact [Kww

K0
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wa , from Eqs. (22)] effective properties for the two-phase annular flow, with (a) intrinsic
permeabilities and (b) cross terms.

Kij = 2rµ

Si + (1− Si)ln(1− Si)

1− 2rµln(1− Si)
, (21c)

Kji = 2(1− Si)
Si + (1− Si)ln(1− Si)

S2i − 2Si(1− Si)− 2(1− Si)2ln(1− Si)
, (21d)

where i is the wetting phase, j is the nonwetting phase, and rµ =
µj

µi
is the viscosity ratio. Clavier

[54] suggest simplified expressions in the limit where rµ ≪ 1,

K
approx
ii = K0S

3
i , K

approx
jj = K0(1− Si)

2, (22a)

K
approx
ji =

1− Si

Si

, K
approx
ij = rµ

S2i

1− Si

. (22b)

HereK
approx
ii andK

approx
jj correspond to the Brooks-Corey correlations [56] that are used extensively

in the literature for two-phase flows in porous media. We see in Fig. 4 that the simplified expressions
approximate very well the exact solution for the air-water system when rµ ≪ 1 (rµ = 0.018).

III. RESULTS

A. Drainage: Water-air flow in a particle bed

We proceed to the computation of the boundary-value problem presented in Fig. 2(a), which is
the case of drainage of a water column with air. The analysis is based on the experimental closures
presented in Sec. II D 1. Results at steady state are presented for both models and experimental data
in Fig. 5. We see that the model with cross terms provides a much more accurate representation
of the pressure drop and the liquid saturation for 1

Ng
. 0.01. In particular, it captures correctly the

variation of the pressure drop that is due to the momentum transfer from the air to the water, when
the model without cross terms can only balance ∂P

∂x
with ρwg for any flow rate. The dimensionless

pressure drop 1
ρwg

∂P
∂x
is indeed computed at steady state from Eq. (8) as

1

ρwg

∂P

∂x
= 1+

µwUaKwaK
−1
ww

ρwg
. (23)



10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

1/Ng

Sw

Without cross terms
With cross terms

Refs. [3,17]

(a)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

1/Ng

∂P/∂x

ρwg

(b)

FIG. 5. Comparison of steady-state profiles with (solid lines) and without (dashed lines) cross terms to
experimental data from [3,17] with (a) water saturation and (b) the dimensionless pressure gradient as a
function of 1

Ng
. The colors distinguish different regimes ofNg , with a shock (black), a rarefaction wave (blue),

or both (green) (see also Fig. 6).

Consistent with the experiment of Tutu et al. in [29], these results confirm that the generalized Darcy
law fails to recover the flow properties for such systems. As discussed previously, our hypothesis
is that the high permeability of the medium favors momentum transfers between the two phases.
For 1

Ng
∼ 0.01 (Red ∼ 30), even the model with cross terms deviates from experimental results,

an effect that is likely due to inertial effects [3,17] that start to become significant as the flow rate is
increased.
We show in Fig. 5, using different colors, that the nature of the propagation front can change

depending onNg . The propagation fronts of water Sw are presented for each of the different regimes
in Fig. 6 in the presence and absence of cross terms. The construction of the shocks is outlined
only for the model including cross terms. This is the front Sa (air phase) that is computed using
the Buckley-Leverett theory, since we consider the injection of the air in the column (drainage).
However, for consistency with other cases in the paper, we always consider the profile of the wetting
phase in the transient regime (Sw here). Figures 6(a) and 6(b) correspond to a gravity-dominated
regime (high gravity number 1

Ng
= 2× 10−3) where air propagates as a single front and where the

impact of the cross terms is moderate. For lower values ofNg ( 1Ng
= 2× 10−2) [Figs. 6(c) and 6(d)],

the model with cross terms yields a rarefaction wave. For 1
Ng

= 4× 10−2, in Figs. 6(e) and 6(f), the
two models generate very different front profiles, with a single rarefaction wave for the model with
cross terms. At steady state, however, this range of gravity numbers is not necessarily relevant as it
corresponds to flow rates for which inertial effects are expected to be significant.

B. Imbibition: Air-water flow in highly permeable media

Here we proceed to the computation of the boundary-value problem presented in Fig. 2(b), with
water injected within a medium initially saturated with air. The gas phase is initially at rest while
water is injected at a constant flow rate and we vary the inlet flow rate from very low inlet velocities
(high gravity numberNg) to relatively high inlet velocities (lowNg).We adopt the simplified annular
viscous flow closures for the effective parameters (see Sec. II D 2).
We analyze the flow properties at steady state. Figure 7 shows the profiles of water saturation

Sw and dimensionless pressure gradient 1
ρag

∂P
∂x
as a function of the inverse of the gravity number,

1
Ng
. As observed in the case of drainage, the generalized Darcy law without cross terms leads to a
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FIG. 6. Profiles of the water saturation Sw with (solid lines) and without (dashed lines) cross terms for
different gravity numbers Ng (right) and the corresponding flux functions Fw nondimensionalized by the total
velocity U (left): (a) and (b) 1

Ng
= 2× 10−3, (c) and (d) 1

Ng
= 2× 10−2, and (e) and (f) 1

Ng
= 4× 10−2. The

profiles are given at the time corresponding to the front reaching half of the domain, i.e., t = 0.5L
F̂ ′

w (Sw |front)
, using

the model without cross terms, with L the domain length and F̂ ′
w(Sw|front) the water front speed [see Eq. (A4)].

pressure drop that is balanced by ρag regardless of the flow rate. The model with cross terms, on the
other hand, generates significant variations of the pressure drop, from ∂P

∂x
= ρag at high Ng (low

flow rates) to ∂P
∂x

= ρwg at low Ng (high flow rates). Overall, the effect of the cross terms is also
to retain water within the medium at moderate gravity number ( 1

Ng
& 0.5), which corresponds to
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FIG. 7. Comparison of steady-state profiles with and without cross terms as a function of 1
Ng
with (a) water

saturation and (b) the dimensionless pressure gradient. The colors distinguish different regimes of Ng , with a
shock (black), a rarefaction wave (blue), or both (green) (see also Fig. 8).

flow rates where water invades almost entirely the medium. For higher gravity numbers ( 1
Ng

. 0.5),
the impact of the cross terms upon the saturation is limited, suggesting that cross terms are of little
importance for large values of Ng .
This result only applies to the one-dimensional Buckley-Leverett configuration with cocurrent

flow presented here. There are other situations where cross terms may be important even in the
limit of large values ofNg . For instance, in structured packings used for separation processes, a thin
liquid film is strongly sheared by a countercurrent gas phase and often displays surface instabilities.
The fact that both phases flow countercurrently (KwaUa 6= 0) combined with the development of
instabilities (larger values ofKwa) may greatly increase the impact of cross terms, potentially leading
to strong liquid retention [57]. Our results then suggest that the quantitative analysis of the retention
phenomenon requires an accurate estimation of the coupling terms, something often overlooked in
the literature.
In Fig. 7 we see that the nature of the fronts in the dynamic regime can change depending on the

intensity of the flow rate with different colors indicating different regimes. This is detailed in Fig. 8
in the presence and absence of cross terms for different values ofNg . The water profile is plotted at
a given time for each case, along with the corresponding flux functions Fw depending on the water
saturation Sw. As before, the construction of the shocks is outlined only for the model including cross
terms, along with a sketch of the characteristic curves in the x-t plane. Figure 8 shows that there is an
increasing effect of the cross terms with 1

Ng
, on both the dynamics and steady state. In Figs. 8(a) and

8(b) we see that for 1
Ng
small ( 1

Ng
= 10−1), the regime is dominated by gravity and the water phase

propagates as a single front. In this regime cross terms weakly impact the dynamics of the flow and
the steady state (Fig. 7). For lower gravity numbers ( 1

Ng
& 0.5), as plotted in Figs. 8(c)–8(h), the

cross terms significantly impact the profiles of the fronts. The propagation of the saturation front is
slowed down because of the transfer of momentum from water to the air. Further, the model with
cross terms yields a rarefaction wave for 1

Ng
= 0.65 and 1

Ng
= 0.83 [Figs. 8(c) and 8(d) and Figs. 8(e)

and 8(f), respectively], while the model without cross terms leads to a single front for a wider range
of Ng . Finally, in Figs. 8(g) and 8(h), which correspond to

1
Ng

= 1.1, the model with cross terms
yields a single shock that propagates through the entire medium, while the model without cross
terms recovers the traditional Buckley-Leverett solution.
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FIG. 8. Profiles of the water saturation Sw for different gravity numbers Ng (right) and the corresponding
flux functionsFw nondimensionalized by the total velocityU (left): (a) and (b) 1

Ng
= 0.1, (c) and (d) 1

Ng
= 0.65,

(e) and (f) 1
Ng

= 0.83, and (g) and (h) 1
Ng

= 1.1. The profiles are given at the time corresponding to the front

reaching half of the domain, i.e., t = 0.5L
F̂ ′

w (Sw |front)
, using the model without cross terms, with L the domain length

and F̂ ′
w(Sw|front) the water front speed [see Eq. (A4)]. The dashed lines correspond to the model without cross

terms and the solid lines to the model with cross terms. Insets highlight the construction of the shocks for the 
case with cross terms, with indications on the position of the shocks and plots of the characteristic curves in the 
x-t plane.
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C. Imbibition: Oil-water flow in low-permeability media

We now consider the constant injection of water in a porous medium of low permeability initially
saturated with oil, which is a case of importance in petroleum engineering. As discussed in the
Introduction, we expect the fluid-solid interface to play a much important role in this case, especially
when fluid phases flow in distinct pore networks and momentum exchange between the two fluid
phases is negligible. Can we include this effect in the formulation with the cross-term coefficients
Kwo and Kow?
In order to do so, we hypothesize that the separation into different flow paths and the relative

influence of fluids-solid and fluid-fluid interfaces can be represented by a scalar coefficientβ ∈ [0,1],
weighting the cross terms

Kwo(β) = βKwo, Kow(β) = βKow. (24)

HereKwo(β) andKow(β) are cross terms from the annular viscous closures that are simply weighted
by β. As before, the K coefficients are based on the analytical solution of the annular two-phase
flow (21). However, we do not use the simplified expressions (µj

µi
≪ 1), since µo

µw
= 100 in the case

of oil and water.
We compare in Fig. 9 the profiles of

K⋆
ji

K0
= 1

rµ

K⋆
ij

K0
as functions of Si for different values of β to

experimental measurements from [18,20]. Kalaydjian showed experimentally and analytically, using

multiple couples of fluids, that the maximum value of the dimensionless cross terms
K⋆

ji

K0
= 1

rµ

K⋆
ij

K0

obtained for capillary tubes with a square section is∼ 0.2. Zarcone and Lenormand [20] performed
measurements of the cross terms for mercury and water flows in a sand pack. They found that
the magnitude of the cross terms is much less important in their case than in experiments using
capillary tubes with a square section. They measured that the dimensionless cross terms are at most
∼ 4× 10−3, which is well below ∼ 0.2. As discussed in the Introduction, their primary hypothesis
is that this weaker influence stems from the smaller interfacial area between the two phases.
These experimental results are plotted in Fig. 9, along with our weighted representation of the 

coupling terms. Importantly, we see that changing the value of β allows us to recover both results 
for the sand and capillaries. For the sand we have β ∼ 0.1, which confirms that the momentum 
exchange is smaller in low-permeability media than in capillaries. Numerical results from Rothman 
in [25], consisting of two-phase flow calculations in a pore network of large permeability, are also

-
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FIG. 10. Comparison of steady-state profiles for different values of the coefficientβ with (a)water saturation
and (b) the dimensionless pressure gradient at steady state as a function of 1

Ng
.

plotted for comparison. This case is intermediate between the sand pack and the capillaries, with a
maximum value of the cross terms, ∼ 0.17, that is slightly below the one obtained for capillaries.
These results are captured by using a weighting value β ∼ 0.96. We conclude that only one scalar
coefficient captures the trend of the coupling coefficients for different media. However, a great deal
of work remains to be done to derive proper constitutive relations for each effective parameter and
each case. This means that a better understanding of the link between the pore-scale physics and the
macroscale behavior is needed, maybe through pore-scale simulations of the two-phase flows and
new experimental designs.
Based on these observations, we simulate the injection of water in a low-permeability medium

(K0 = 10−11 m2) initially filled with oil. The influence of the cross terms on the flow properties
(multiple values of β) is presented in Fig. 10 at steady state as a function of the gravity number.
The pressure drop and the quantity of oil that is recovered are highly affected by the value of β,
especially for moderate values of Ng ( 1Ng

& 0.01). This is confirmed in the dynamic regime for
1
Ng

= 0.1, in Fig. 11, where the profiles are considerably modified by the value of β. For β ≪ 1,
the profile consists in a single gravity shock with a moderate displacement of the oil, whereas
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FIG. 11. Comparison of dynamic profiles for different values of the coefficient β with (a) the flux functions
Fw nondimensionalized with the total velocity U at 

N

1 = 0.1 and (b) the corresponding profiles of 
watersaturation Sw at a given time.



for β = 1, water displaces the oil phase entirely. This result for β = 1 is unrealistic and seems 
to indicate that the capillary tube solution overestimates the coupling effects in low-permeability 
media. This is also consistent with the experimental results from Zarcone and Lenormand, whose 
measurements correspond to β ∼ 0.1. We therefore hypothesize that the permeability of the porous 
structure is key in evaluating the impact of the cross terms, as it controls the relative influence of 
the fluid-solid and fluid-fluid interfaces. For low-permeability media, the fluid-solid interface may 
dominate momentum transport, possibly due to a separation of flow paths for the two fluids, which 
may limit momentum exchanges. In contrast, highly permeable media may yield a relatively smaller 
influence of the fluid-solid interface and favor film, bubble, or annular flows that generate more 
exchanges.

IV. CONCLUSION

In this paper we studied the influence of momentum coupling effects for two-phase creeping flows 
of immiscible fluids in porous media. Our analysis is based on the Buckley-Leverett theory in a 
one-dimensional setting, which is extended to account for cross terms in the models. We considered 
two boundary-value problems corresponding to two classical configurations encountered in porous 
media applications (drainage and imbibition). We studied different couples of fluids and different 
closure relations for the effective parameters and compared our results to experimental data.
Our main result is that the cross terms can significantly affect the flux functions, the dynamics 

of saturation fronts, and the steady states, in ways that are confirmed experimentally and therefore 
physically realistic. This is important because these cross terms are generally assumed to be negligible 
in the momentum balance. Our hypothesis is that, for the low-permeability media considered in many 
studies, the fluid-solid interface dominates momentum transport, therefore limiting the influence of 
fluid-fluid exchanges. Depending on the wettability, capillary action, and pore-size distribution, 
low-permeability media also favor the appearance of preferential flow paths for the phases and 
therefore further limit momentum exchange by reducing the fluid-fluid interfacial area. In contrast, 
highly permeable media may yield large fluid-fluid interfaces relative to the fluid-solid ones, therefore 
maximizing exchanges. This is particularly obvious when comparing the experimental results from 
the literature to our theoretical results.
To get one step further in the description of such systems, we need experiments that measure 

simultaneously the flow at the pore scale and the macroscale for a broad range of permeabilities. 
Further, we need to go beyond the creeping flow limit that proved to be limiting in describing 
experiments from [3]. Similar models, including additional drag terms accounting for inertial effects, 
can be used for this purpose [35]. The analysis of such models may be of importance in many 
applications involving flows at high Reynolds numbers, for instance, in chemical exchangers or 
debris beds.

APPENDIX: UNIQUE SOLUTION OF THE CONSERVATION LAW

The solution Si (x,t) of the two-phase system is determined by considering the Riemann problem 
that is associated with Eqs. (15). It reads

ε
∂Si

∂t
+

∂Fi

∂x
= 0, (A1a)

SL = Si(0,t), (A1b)

SR = Si(x,0), (A1c)

with SL > SR .
The inlet value SL is not known a priori, but verifies the equation of the inlet flow rate Fi (SL) = 

U (0,t) = Ui (0,t) [Eq. (15c)]. Given the conditions presented in Sec. II A 2, SL = 1 is always a



solution of this equation, but other values can also be solutions when gravity effects dominate over 
viscous effects (Ng > 1) [52].
The unique admissible solution of the system (A1) is determined by constructing the concave

hull [51,52] F̂i , which is defined on the interval [SR,SL] as

F̂i = inf
h∈C
(h), (A2)

with C the ensemble of concave functions such that h ∈ C is equivalent to

h(Si) > Fi(Si), ∀Si ∈ [SR,SL]. (A3)

By construction, we obtain a number of intermediate points {Sk}
n+1
0 such that SR < S1 < Sk < Sn <

SL, with k ∈ [0,n] and where the n + 1 points correspond to the intersection points between F̂i and
Fi [52]. On each of the intervals [Sk,Sk+1], F̂i either coincides with Fi or connects linearly F̂i(Sk)
to F̂i(Sk+1). In the former case, the solution between Sk and Sk+1 consists in a rarefaction wave,
while in the second case the solution is a shock that propagates with the speed

F̂
′
i (Sk+1) =

Fi(Sk+1)− Fi(Sk)

Sk+1 − Sk

, k ∈ [0,n]. (A4)

This relation is the Rankine-Hugoniot condition. The solution must also verify the Oleinik entropy
constraint, which reads

Fi(Si)− Fi(Sk+1)

Si − Sk+1
> F̂

′
i (Sk+1) >

Fi(Si)− Fi(Sk)

Si − Sk

, ∀S ∈ [Sk,Sk+1]. (A5)

The characteristic curves of the system in the x-t plane verify

dx

dt
= F̂

′
i (Si), ∀Si ∈ [SR,SL], (A6)

leading to equations for the characteristic curves [see Fig. 1(c)]

x = F̂
′
i (Si)t + r, ∀Si ∈ [SR,SL], (A7)

where r parametrizes the position of x at t = 0.
If the inlet condition (15c) admits more than one solution [as illustrated in Figs. 1(d)–1(f)],

which is encountered when gravity effects dominate viscous effects, we select the minimum of the
solutions of Eq. (15c), Fi(Si) = U (0,t) = Ui(0,t), which corresponds to a positive shock speed. In
the case illustrated in Fig. 1(e), this corresponds to a unique shock between SL and SR given by the
Rankine-Hugoniot condition

F̂
′
i (SL) =

Fi(SL)− Fi(SR)

SL − SR

. (A8)
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