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A SEMI-PARAMETRIC ESTIMATION FOR

MAX-MIXTURE SPATIAL PROCESS

M. AHMED, V. MAUME-DESCHAMPS, P.RIBEREAU, AND C.VIAL

Abstract. We proposed a semi-parametric estimation procedure in or-
der to estimate the parameters of a max-mixture model and also of
a max-stable model (inverse max-stable model) as an alternative to
composite likelihood. A good estimation by the proposed estimator
required the dependence measure to detect all dependence structures in
the model, especially when dealing with the max-mixture model. We
overcame this challenge by using the F-madogram. The semi-parametric
estimation was then based on a quasi least square method, by minimiz-
ing the square difference between the theoretical F-madogram and an
empirical one. We evaluated the performance of this estimator through
a simulation study. It was shown that on an average, the estimation is
performed well, although in some cases, it encountered some difficulties.
We apply our estimation procedure to model the daily rainfalls over the
East Australia.

1. Introduction

In climate changes, one of the main characteristic of the event is its spa-
tial dependence. The dependencies may be strong even for large distances
as the heat waves or they may be strong at short distances and weak at
larger distances, as the cevenol events. In thees events many dependence
structures may arise, for example, asymptotic dependence, asymptotic inde-
pendence, or both [36]. These dependence structures could be (receptively)
max-stable, inverse max-stable and max-mixture spatial processes.

The estimation of the parameters of these processes remains a difficulty.
The usual way to estimate parameters in spatial contexts is to maximize
the composite likelihood. For example, in [27], [14] and many others, the
composite likelihood maximization is used to estimate the parameters of
max-stable processes. In [5] and [36], it is used to estimate the parameters
of max-mixture processes. Nevertheless, the estimation does not perform
well in some cases; moreover, it seems to have difficulties estimating the
inverted max-stable part.
For the motivation above, we propose a semi-parametric estimation proce-
dure as an alternative to composite likelihood maximization for max-mixture
and also for max-stable (resp. inverse max-stable) processes. Our procedure
is a least square method on the F -madogram; that is, we minimize the dif-
ference between the theoretical F -madogram and the empirical one. Some
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of literature deals with semi-parametric estimation in modeling spatial ex-
tremes. For example, [26] and [1] provided semi-parametric estimators of ex-
tremal indexes. In [8], another semi-parametric procedure to estimate model
parameters is introduced. It is based on fitting the theoretical extremogram
with the empirical one by non-linear least square for the isotropic space-
time Browen-Resnick max-stable process. The semi-parametric procedure
proposed in this study is based on this article.

In semi-parametric procedure (LS-madogram), we begin by recalling the
definition of the F -madogram and calculate it for max-mixture spatial pro-
cesses. Then, we prove that LS-madogram leads to consistent estimation of
the parameters, provided that they are identified by the F -madogram. A
simulation study is conducted in order to evaluate the estimation perfor-
mance and to compare LS-madogram estimation with the maximization of
the composite likelihood. It shows, in general, that the estimation performs
well, although it encounters some difficulties, which are discussed.

Section 2 is dedicated to the main tools which used in this study; it con-
tains some of spatial dependence measures and also three different extreme
spatial processes with different dependence structures (asymptotic depen-
dence/independence and a mixture of them) are presented in this section.
In Section 3, we calculate an expression for the F -madogram of max-mixture
models. Section 4 is devoted to two estimation procedures of the parame-
ters of max-mixture processes; Composite likelihood and LS-madogram. A
simulation study is conducted, which allows us to evaluate the performance
of the estimation procedure (Section 5). Section 6 is devoted in modelling
rainfall real data in East Australia. Finally, concluding remarks are dis-
cussed in Section 7.

2. Main tools used in the study

Throughout this study, the spatial process X := {X(s), s ∈ S}, S ∈ Rd is
assumed to be strongly stationary and isotopic.

2.1. Dependence measures. Important properties of a spatial process are
described by its spatial dependence structure and lots of measures are de-
fined in the literature to better understand the dependence in real spatial
data.
At first, the upper tail dependence coefficient χ measures the associa-
tion degree between the processes at two locations and becomes a function
depending on the distance between the two sites; see[6,30]. It is defined for
a stationary spatial process X on S ⊂ R2 with margin F

(2.1) χ(h) = lim
u→1−

P
(
F (X(s+ h)) > u|F (X(s)) > u

)
.

The process is said AI (resp. AD) if for all h ∈ S χ(h) = 0 (resp. χ(h) 6= 0).
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For any h the coefficient χ(h) can alternatively be expressed as the limit
when u→ 1− of the function defined on S× [0, 1] into [0, 1], by

(2.2) χ(h, u) = 2−
logP

(
F (X(s)) < u,F (X(t)) < u

)
logP

(
F (X(s)) < u

) , for h ∈ S, u ∈ [0, 1[.

Such that, χ(h) = limu→−1 χ(h, u).

For asymptotic independent processes, the behaviour of the conditional
probability with respect to u suggests that the asymptotic independence
could not be detected as it appears for u very near to 1. Thus, it suggests
that the function χ is more useful to study asymptotic dependence than
asymptotic independence. This is why the authors in [11], introduced an al-
ternative dependance coefficient called lower tail dependence coefficient
χ. This quantity measures the strength of asymptotic independence of a pro-
cess. The function χ defined from S into ]− 1, 1[ and for any (s, s+ h) ∈ S2

(2.3) χ(h, u) =
2 logP

(
F (X(s)) > u

)
logP

(
F (X(s)) > u,F (X(s+ h)) > u

) − 1, 0 ≤ u ≤ 1

such that, χ(h) = limu→1 χ(h, u).
If χ(h) = 1 for all h, the spatial process is asymptotically dependent.

Otherwise, the process is said to be asymptotically independent. Further-
more, if χ ∈]0, 1[ ( resp. ] − 1, 0[) the two locations s and s + h (for any
s) are asymptotically positively associated (resp. asymptotically negatively
associated).

Another important measure of dependence was introduced by [9, 29] is
the extremal coefficient between two locations s and s+h for any s ∈ S and
s+ h ∈ S, and for any x ∈ R defined by

θF (h, x) =
log(P (X(s) < x,X(s+ h) < x))

log(P (X(s) < x))
.

This parameter is related to the upper tail dependence parameter; indeed
if limx→xF θF (h, x) = θ(h) exists, we have the following relation [6].

χ(h) = 2− θF (h),

where xF = sup{x|F (x) < 1}. Then, P (X(s) < x,X(s + h) < x)) may be

approximated by F (x)θF (h) for x large.
This coefficient is particularly useful when dealing with asymptotic de-

pendence, but useless in case of asymptotic independence. To overcome this
problem, [23] proposed a model allowing to gather all the different cases
of dependence depending on the value of a parameter in another words,
smoothly linking asymptotic dependence and independence. Such that, for
X with unit Fréchet margin and for all (s, s+ h) ∈ S2 the pairwise survivor
function

(2.4) P
(
X(s) > x,X(s+ h) > x

)
= Lh(x)x−1/η(h), as x→∞

satisfy. Where Lh is a slowly varying function and η(h) ∈ (0, 1] is the tail
dependence coefficient. This coefficient determines the decay rate of the
bivariate tail probability for large x. The interest of this simple modelisa-
tion, which appears to be quite general, is that the coefficient η(h) provides
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a measure of the extremal dependence of X(s) and X(x + h). Such that,
L(x) 6→ 0 (resp. 0 < η(h) < 1 and L(x) 6→ 0), corresponds to asymptotic
dependence (resp. asymptotic independence); see [6, 23]. Finally, it is im-
portant to see the relations between η and χ. If equation (2.4) is satisfied,
then χ(h)→ 2η(h)− 1.

Another classical tool often used in geostatistics is the variogram. But
for spatial processes with Fréchet, the quantity of dependence strength will
not be exist in variogram, because the marginal laws, and thus, have no
order 2 moments. We shall use the F -madogram introduced in [12] which
is defined for any spatial process X with univariate margin Fand for all
(s, t) ∈ S2

(2.5) νF (s− t) =
1

2
E|F (X(s))− F (X(t))|.

2.2. Spatial extreme models.

2.3. Max-stable model. Max-stable processes are the extension of the
multivariate extreme value theory to the infinite dimensional setting [8].
Let T := (T (s), s ∈ S) be a stochastic process. If there exist two sequences
of continuous functions (an(·) > 0, n ∈ N) and (bn(·) ∈ R, n ∈ N) such that
for all n ∈ N and n i.i.d. X1, . . . , Xn and X a process, such that

(2.6) max
i=1,...,n

Xi − bn
an

d→ X, n→∞,

then X := {X(s), s ∈ S} is a max-stable process [17]. When for all n ∈ N,
an = 1 and bn = 0, the margin distribution of the process X is unit Fréchet,
that is for any s ∈ S and x > 0,

F (x) := P (X(s) ≤ x) = exp[−1/x].

[16] proved that a max-stable process X can be constructed by using a
random process and a Poisson process. This representation is named the
spectral representation. Let X be a max-stable process on S. Then
there exists {ξi, i ≥ 1} i.i.d Poisson point process on (0,∞), with intensity
dξ/ξ2 and a sequence {Wi, i ≥ 1} of i.i.d. copies of a positive process
W = (W (s), s ∈ S), such that E[W (s)] = 1 for all s ∈ S such that

(2.7) X =d max
i≥1

ξiWi.

and

(2.8) P
(
X(s1) ≤ x1, ..., X(sk) ≤ xk

)
= exp{−V (x1, ..., xk)},

where the function

(2.9) V (x1, ..., xk) = E
[

max
`=1,...,k

(
W (s`)

x`

)]
.

is homogenous of order −1 and is named the exponent measure. One of the
interests of the exponent measure is its interpretation in terms of depen-
dence. In fact, the homogeneity of the exponent measure V implies

(2.10) max{1/x1, ..., 1/xk} ≤ V (x1, ..., xk) ≤ {1/x1 + ...+ 1/xk}.
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See [7], section 8.2.2. In the inequalities (2.10), the lower (resp. upper)
bound corresponds to complete dependence (resp. independence).

For simple max-stable process, the extremal coefficient function Θ,
for any pairs of sites (s, s+h) ∈ S2 is the function Θ defined on S (or in R+

in isotropic case) with values in [1, 2] by

(2.11) P
(
X(s) ≤ x,X(s+ h) ≤ x

)
= exp{−Θ(h)/x}, x > 0

where,

(2.12) Θ(h) = E
[

max{W (s),W (s+ h)}
]

= V (1, 1) ∈ [1, 2].

If for any h ∈ S, Θ(h) = 1 (resp. Θ(h) = 2), then we have complete
dependence (resp. complete independence). The case 1 < Θ(h) < 2, for
all h ∈ S corresponds to asymptotic dependence. Remark that, in simple
max-stable process, the coefficients Θ and θF coincide.

Furthermore, it is easy to see the relationship between Θ and χ; see [36]
for any h ∈ S

(2.13) Θ(h) = 2− χ(h).

In the max-stable case, [12] gives the relation for all h ∈ S,

(2.14) Θ(h) =
1 + 2νF (h)

1− 2νF (h)
,

which appears to be helpful to estimate the extremal coefficient Θ. The
max-stable process X with pairwise distribution function is given by the
following equation, for all (s, s+ h) ∈ S2,

(2.15) P
(
X(s) ≤ x1, X(s+ h) ≤ x2

)
= exp{−Vh(x1, x2)},

In this study, we provide three examples of well-known max-stable models
represented by different exponent measures V .

Smith Model (Gaussian extreme value model) [31] with unit Fréchet
margin and exponent measure

(2.16) Vh(x1, x2) =
1

x1
Φ

(
τ(h)

2
+

1

τ(h)
log

x2

x1

)
+

1

x2
Φ

(
τ(h)

2
+

1

τ(h)
log

x1

x2

)
;

τ(h) =
√
hTΣ−1h and Φ(·) the standard normal cumulative distribution

function. For isotropic case τ(h) =
√

1
σ‖h‖2.

The pairwise extremal coefficient equals

(2.17) Θ(h) = 2Φ

(
τ(h

2

)
.

Brown-Resnik Model [22] with unit Fréchet margin and exponent mea-
sure
(2.18)

Vh(x1, x2) =
1

x1
Φ

(√
2γ(h)

2
+

1√
2γ(h)

log
x2

x1

)
+

1

x2
Φ

(√
2γ(h)

2
+

1√
2γ(h)

log
x1

x2

)
;
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2γ(h) is a variogram and Φ(·) the standard normal cumulative distribution
function. The pairwise extremal coefficient given by

(2.19) Θ(h) = 2Φ

(√
2γ(h)

2

)
.

Truncated extremal Gaussian Model (TEG) [28] with unit Fréchet
margin and exponent measure

(2.20)

Vh(x1, x2) =

(
1

x1
+

1

x2

)[
1− α(h)

2

(
1−

√
1− 2(ρ(h) + 1)

x1x2

(x1 + x2)2

)]
.

The extremal coefficient is given by

(2.21) Θ(h) = 2− α(h)

{
1−

(
1− ρ(h)

2

)1/2
}

where α(h) = E{|B ∩ (h+ B)|}/E[|B|],

where B is a random set which can consider it a disk with fixed radius r. in
order to α(h) = {1− h/2r}+; See [15]. In such a case, χ(h) = 0,∀h ≥ 2r.

2.4. Inverse Max-stable processes. If we choose a threshold too low, we
may miss the dependence structure. In other words, in theoretical study, the
limiting distribution of extremes tends to be independent but in practice,
this limit could never be achieved (see [15,32]).

[36] proposed a class of asymptotically independent processes obtained by
inverting max-stable processes. These processes are called inverse max-
stable processes; they satisfy the survivor function (2.4). Let X ′ :=
{X ′(s), s ∈ S} be a max-stable process with unit Fréchet margin, such that
for all s ∈ S ⊂ R2

(2.22) X ′(s) = µ−1 max
i≥1

W+
i (s)/ξi, s ∈ S

where ξi is a Poisson point process on (0,∞) with intensity dξ and Wi(s) are
i.i.d. copies of a continuous process W independent of {ξi}. Let g : (0,∞) 7→
(0,∞) be defined by g(x) = −1/ log{1−e−1/x}. Set X(s) = g(X ′(s)). Then,
X := {X(s), s ∈ S} is an asymptotic independent spatial process with unit
Fréchet margin. The d-dimensional joint survivor function is

P
(
X(s1) > x1, ..., X(sd) > xd

)
= exp

{
−V
(
g(x1), ..., g(xd)

)}
(2.23)

where V is the exponent measure of the process X ′ defined in equation
(2.9). The tail dependent coefficient is given by η(h) = 1/Θ(h), where Θ(h)
is the extremal coefficient of the max-stable process X ′. Moreover, we have
χ̃(h) = 2/Θ(h)− 1.

2.5. Max-mixture model. In spatial contexts, specifically in an environ-
mental domain, many scenarios of dependence could arise and AD and AI
might cohabite. The work by [36] provides a flexible model called max-
mixture.
Let X := {X(s), s ∈ S} be a max-stable process with extremal coefficient
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Θ(h) and bivariate distribution function FX , and let Y := {Y (s), s ∈ S} be
an asymptotically independent spatial process whose coefficient tail depen-
dence η(h) is well defined, has the bivariate distribution function FY and
satisfies the asymptotic relation (2.4). Assume that X and Y are indepen-
dent, and that each of them has Fréchet margin. Let a ∈ [0, 1] and

(2.24) Z(s) = max{aX(s), (1− a)Y (s)}, s ∈ S,
then Z is a max-mixture process has unit Fréchet marginals and pairwise
survivor function
(2.25)

P
(
Z(s) > z,Z(t) > z

)
∼ a{2−Θ(h)}

z
+

(1− a)1/η(h)

z1/η(h)
+O(z−2), z →∞.

Assume there exists finite h∗ = inf{h : Θ(h) 6= 0}; then,

(2.26) χ(h) = a(2−Θ(h))

and

(2.27) χ(h) = 1[h∗<h](h) + (2η(h)− 1)1[h∗≥h).

Rk. If there exists finite h∗ = inf{h : Θ(h) 6= 0}, then Z is asymptotically
dependent up to distance h∗ and asymptotically independent for larger dis-
tances. Only asymptotic dependence or asymptotical independence in Z is
achieved by the bounds a = 0 and a = 1, respectively.

[5] used this kind of models to allow asymptotical dependence and inde-
pendence to be present at a short and intermediate distance respectively;
furthermore, the process is independent at a long distance. This structure
has been made by combining the truncated Gaussian extremal max-stable
process with an asymptotically independent process.

3. F -madogram for max-mixture spatial process

In extreme value theory and therefore for spatial extremes, one of the
main concerns is to find a dependence measure that can quantify the depen-
dences between locations. The χ and χ dependence measures are designed to
quantify asymptotic dependence and asymptotic independence respectively.
Max-mixture processes have been introduced in order to provide both be-
haviors. We are then faced with the question of finding an adapted tool
which would give information on more than one dependence structure; See
equations (2.26) and (2.27).

In [12], the F -madogram has been introduced for max-stable processes.
There exists several definitions of madograms. For example, in [25], the λ-
madogram is considered in order to take into account the dependence infor-
mation from the exponent measure Vh(u, v) when u 6= v. This λ-madogram
has been extended in [19] to evaluate the dependence between two obser-
vations located in two disjoint regions in R2. [20] adopted an F -madogram
suitable for asymptotic independence instead of asymptotic dependence only.
Finally, [3] used F-madogram as a test statistic for asymptotic independence
bivariate maxima.
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Below, we calculate νF (h) for a max-mixture process. It appears that con-
trary to χ and χ, it combines the parameters coming from the AD and the
AI parts.

Proposition 1. Let Z be a max-mixture process, with mixing coefficient
a ∈ [0, 1]. Let X be its max-stable part with extremal coefficient Θ(h). Let
Y be its inverse max-stable part with tail dependence coefficient η(h). Then,
the F -madogram of Z is

(3.1) νF (h) =

a(Θ(h)− 1)

a(Θ(h)− 1) + 2
− aΘ(h)− 1

2aΘ(h) + 2
− 1/η(h)

aΘ(h) + (1− a)/η(h) + 1
β

(
aΘ(h) + 1

(1− a)
, 1/η(h)

)
,

where β is beta function.

Proof. We have

(3.2) νF (h) =
1

2
E|F (Z(s))− F (Z(s+ h))|.

The equality |a− b|/2 = max(a, b)− (a+ b)/2 leads to

(3.3) νF (h) = E
[

max
(
F (Z(s)), F (Z(s+ h))

)]
− E

[
F (Z(s))

]
.

Let M(h) = max
(
F (Z(s)), F (Z(s+ h))

)
, we have:

(3.4) P
(
M(h) ≤ u

)
= P

(
Z(s) ≤ F−1(u), Z(s+ h) ≤ F−1(u)

)
.

From assumptions of the max-mixture spatial process Z, the corresponding
probability distribution function is
(3.5)

P
(
Z(s) ≤ z1, Z(s+h) ≤ z2

)
= e−aV

h
X(z1,z2)

[
e

−(1−a)
z1 +e

−(1−a)
z2 −1+e−V

h
Y (g(z1),g(z2))

]
,

where VX (resp.VY ) corresponding to the exponent measures of X (resp. Y )

and g(z) = −1/ log(1− e
−(1−a)

z ). That leads to

P
(
M(h) ≤ u

)
= uaΘ(h)

[
2u(1−a) − 1 +

(
1− u(1−a)

)1/η(h)]
, u ∈ [0, 1].

We deduce that

E[M(h)] =

∫ 1

0
ufM (h)(u)du

=
2a(Θ(h)− 1) + 2

a(Θ(h)− 1) + 2
− aΘ(h)

aΘ(h) + 1
−

β

(
aΘ(h)+1

(1−a) , 1/η(h)

)
η(h)(1− a)

[
aΘ(h)+1

(1−a) + (1/η(h))

] .

(3.6)

where fM(h) is the density of M(h). Recall that E(F (Z(s))) = 1
2 because

F (Z(s)) ∼ U([0, 1]) and return to equation (3.3) to get equation (3.1). �

It is easy to deduce from the PQD (positive quadrant dependence) of Z
that νF (h) = 0 (resp. νF (h) = 1/6) when Z(s) and Z(s + h) are perfectly
dependent (resp. independent). In the particular cases where a = 1 or
a = 0, Proposition 1 reduces to known results for max-stable processes (see
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[12]) and inverse max-stable processes (see [20]). Such that the F -madogram
for a max-stable spatial process is given by

(3.7) 2νF (h) =
Θ(h)− 1

Θ(h) + 1
.

and the F -madogram of an asymptotically independent spatial process is
given by

(3.8) 2νF (h) =
1− η(h)

1 + η(h)

In order to have a comprehensive view of the behavior of νF (h), we have plot-
ted in Figure 1. below h  νF (h). We have considered two max-mixture
models MM1 and MM2 described as the following: MM1 max-mixture
between a TEG max-stable process X; and an inverse Smith max-stable
process Y ; MM2 max-mixture between X in MM1; and inverse TEG max-
stable process Y .
In this Figure and for the two models MM1 and MM2, νF (h) has two sill one
corresponding to X and the second corresponding to Y . This is completely
in accordance with the nested variogram concept as presented in [35]. In
data analysis, these two levels of the sill gives the researcher a hint about
whether there is more than one spatial dependence structure in the data.

As consequence F -madogram expresses with all the model parameters is
useful for the parameter estimation. On the contrary, when one considers
the tail dependence function χ(h), it only envolves the parameters from the
max-stable part. The lower tail dependence function χ(h) only envolves the
parameters from the inverse max-stable part.

4. Model inference

This section is devoted to the parametric inference for max-mixture pro-
cesses. We begin with the presentation of the maximum composite likelihood
estimation, then we present the least squares madogram.

4.1. Parametric Estimation using Composite Likelihood. Consider
(Zk(s1), . . . , Zk(sD)), k = 1, . . . , N , be N independent copies of a spatial
process (Z(s))s∈S, observed at D locations s1, . . . , sD. Composite likelihood
inference is appropriate approach in estimating the parameter models of a
spatial process X;[24,33]. Asmpototic properties of this estimator has been
proved in [13]. This approach has been applied successfully to spatial max-
stable processes by [14] and [27] and is also used to identify the parameters
of data exceedances over a large threshold, for example, [4] and [32].

Our interest in this study lies in max-mixture models; two studies [5] and
[36] highlight on these models; therefore, we will take the composite likeli-
hood proposed by [5] as the control for evaluating the performance of the
proposed non-linear least square estimator, which will be introduced in the
next section.
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Figure 1. h νF (h) for the max-mixture processes models
MM1 and MM2. In MM1, X has correlation function ρ(h) =
exp(−h/θX), rX = 0.25 and fixed radius θX = 0.2 and Y
has Σ = σY Id, σY = 0.6. In MM2, X as the same setting in
MM1 and Y has ρY (h) = exp(−h/θY ), θY = 0.8 and fixed
radius rY = 1.35. For the two models, we set a = 0.5.

If the pairwise density of Z can be computed and its parameter ψ is identi-
fiable, then it is possible to estimate ψ by maximizing the pairwise weighted
log likelihood. For simplicity, we denote Zki for Zk(si). Let

ψ̂L = max
ψ
P(ψ),

where

(4.1) P(ψ) =
N∑
k=1

D−1∑
i=1

D∑
j>i

wij log L (Zki , Z
k
j ;ψ) =:

N∑
k=1

Pk(ψ).

where L is the likelihood of the pair (Zki , Z
k
j ) and wi,j ≥ 0 is the weight that

specifies the contribution for each pair. In [4], it is suggested to take wi,j = 0
for any pair separated by distance over a specific value δ and wi,j = 1 oth-
erwise.

In [10], it is suggested to consider a censor approach of the likelihood, taking
into account a threshold. This approach has been adopted in this study. Let
G(·, ·) be a pairwise distribution function and consider the thresholds u1 and
u2; the likelihood contribution is

L (z1, z2;ψ) =

{
∂2

12G(z1, z2;ψ) if z1 > u1, z2 > u2,

G(z1, z2;ψ) if z1 ≤ u1, z2 ≤ u2,

where ∂i is the differentiation with respect to the variable zi. In [36], the
censored likelihood is used in order to improve the estimation of the param-
eters related to asymptotic independence. This censored approach was also
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applied by [5] for the estimation of parameters of max-mixture processes.
In this paper, the replications Z1, . . . , ZN of Z are assumed to be α-mixing
rather than independent. We denote generically by ψ the parameters of the
model. In [5], it is proved, under some smoothness assumptions on the com-

posite likelihood, that the composite maximum likelihood estimator ψ̂L for
max-mixture processes is asymptotically normal as N goes to infinity with
asymptotic variance

G (ψ) = J (ψ)[K(ψ)]−1J (ψ),

where J (ψ) = E[−∇2P(ψ)], K(ψ) = var(∇P(ψ)). The matrix G (ψ) is
called the Godambe information matrix (see [5] and theorem 3.4.7 in [21]).

An estimator Ĵ of J (ψ) is obtained from the Hessian matrix computed in
the optimization algorithm. The variability matrix K(ψ) has to be estimated
too. In our context, we have independent replications of Z and N is large
compared with respect to the dimension of ψ. Then, we can use the outer
product of the estimation of ψ̂. Let

K̂(ψ) = N−1
N∑
k=1

∇Pk(ψ̂)∇Pk(ψ̂)′

or by Monte Carlo simulation with explicit formula of Pk(ψ) (see section 5.
in [33]). In the case of samples of Z satisfying the α-mixing property, the
estimation of K(ψ) can be done using a subsampling technique introduced
by [18]; this was used in [5]. Finally, model selection can be done by using
the composite likelihood information criterion [34]:

CLIC = −2

[
P(ψ̂)− tr(Ĵ −1K̂)

]
.

Considering several max-stable models, the one that has the smallest CLIC
will be chosen. In [32], the criterion CLIC∗ = (D − 1)−1CLIC is proposed.
It is close to Akaike information criterion (AIC).

4.2. Semi-parametric estimation using NLS of F-madogram. In this
section, we shall define the non-linear least square estimation procedure of
the parameters set ψ corresponding to the max-mixture model Z using the
F -madogram. This procedure can be considered as an alternative method
to the composite likelihood method.
Consider Zt, t = 1, . . . , T as copies of an isotropic max-mixture process Z
with unit Fréchet marginal laws (F denotes the distribution function of a
unit Fréchet law). It may be independent copies for example, if the data
is recorded yearly (see [25]) or we shall consider that (Zt)t=1,... satisfies an
α-mixing property ([5]). Let H be a finite subset of S, J(x, y) = 1

2 |x − y|
and Yh,t = J

(
F (Zt(s)), F (Zt(s + h))

)
, t = 1, .., T and h ∈ H. Therefore,

for t = 1, . . . , T , the vectors (Yh,t)h∈H have the same law and are considered
either independent or α-mixing (in t). The main motivation for using the
F-madogram in estimation is that it contains the dependence structure in-
formation for a fixed h of Yh,t (see section 3.2 in [3]).
In what follows, we make the assumption that the vectors (Yh,t)h∈H are i.i.d.

Note that from the definition of the F -madogram, we have E[Yt,h] = νF (h, ψ)
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where νF (h, ψ) is the F -madogram of Z with parameters ψ defined in (3.1).
If Z has an unknown true parameter ψ0 on a compact set Ψ ⊂ Rd, we rewrite

(4.2) Yh,t = νF (h, ψ0) + εh,t.

The vectors (εh,t)h∈H are i.i.d errors with E[εh,t] = 0 and Var(εh,t) = σ2
h > 0

is finite and unknown.
Let

(4.3) L(ψ) =
∑
h∈H

1

T

∑
t=1,...,T

(
Yt,h − νF (h, ψ)

)2
Any vector ψ̂T in Ψ which minimizes L(ψ) will be called a least square
estimate of ψ0.

(4.4) ψ̂T ∈ argmin
ψ∈Ψ

L(ψ).

Theorem 2. Assume that Ψ ⊂ Rd is compact and that ψ 7→ νF (h, ψ) is
continuous for all h ∈ H. We assume that the vectors (Yh,t)h∈H are i.i.d.

Let (ψ̂T )T∈N be least square estimators of ψ0; then, any limit point (as T

goes to infinity) ψ of (ψ̂T )T∈N satisfies ν(h, ψ) = ν(h, ψ0) for all h ∈ H.

remark 1. Of course, if ψ  (ν(h, ψ))h∈H is injective, then theorem 2
implies that the least square estimation is consistent, i.e. ψT → ψ0 a.s.
as T goes to infinity. In the examples considered below, it seems that the
injectivity is satisfied provided |H| ≥ d, but we were unable to prove it.

Proof. We follow the proof of Theorem II.5.1 in [2]. From (4.2), we have,
for all ψ ∈ Ψ

L(ψ) =
∑
h∈H

1

T

∑
t=1,...,T

(
νF (h, ψ0) + εh,t − νF (h, ψ)

)2
=
∑
h∈H

(
νF (h, ψ0)− νF (h, ψ)

)2
+

2

T

∑
h∈H

(
νF (h, ψ0)− νF (h, ψ)

) ∑
t=1,...,T

εh,t

+
∑
h∈H

1

T

∑
t=1,...,T

ε2
h,t.

From the law of large numbers, we have

1

T

∑
h∈H

∑
t=1,...,T

ε2
h,t →

∑
h∈H

σ2
h a.s. as T →∞

and for any h ∈ H,

1

T

∑
t=1,...,T

εh,t → 0 a.s.

Therefore,

L(ψ)→
∑
h∈H

σ2
h +

∑
h∈H

(
νF (h, ψ0)− νF (h, ψ)

)2
a.s. as T →∞.
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Take a sequence (ψ̂T )T∈N of least square estimators, taking if necessary a
subsequence, we may assume that it converges to some ψ∗ ∈ Ψ. Using the
continuity of ψ  νF (h, ψ), we have

L(ψ̂T )→
∑
h∈H

σ2
h +

∑
h∈H

(
νF (h, ψ0)− νF (h, ψ∗)

)2
a.s. as T →∞.

Since ψ̂T is a least square estimator, L(ψ̂T ) ≤ L(ψ0) →
∑
h∈H

σ2
h. It follows

that ∑
h∈H

(
νF (h, ψ0)− νF (h, ψ∗)

)2
= 0

and thus ν(h, ψ∗) = ν(h, ψ0) for all h ∈ H. �

The asymptotic normality of the least square estimators should also be
obtained by following, e.g., [8] and using the asymptotic normality of the F -
madogram obtained in [12]. Nevertheless, the calculation of the asymptotic
variance will require to calculate the covariances between νF (h1, ψ) and
νF (h2, ψ), which is not straightforward.

5. Simulation study

This section is devoted to some simulations in order to evaluate the per-
formance of the least square estimator and to compare it with the maximum
composite likelihood estimator. Recall that ψ̂T denotes the least square es-
timator of the parameter vector ψ and ψ̂L denotes the composite likelihood
estimator.

5.1. Outline the estimation experiment. In order to evaluate the per-
formance of the non-linear least square estimator ψ̂T as defined in (3.1), we
have generated data from the model MM1 above with the same setting. The
estimator ψ̂T has been compared with true one ψ0 and also with parameters
estimated by composite likelihood estimator ψ̂L proposed in [5] for the same
data. We considered 50 sites randomly and uniformly distributed in the
square A = [0, 1]2 with the same setting .
We have generated T = 1000 i.i.d observations for each site. These ex-
periments replicated J = 100 time. We have considered several mixing
parameters: a := {0, 0.25, 0.5, 0.75, 1}. For the composite likelihood esti-

mator ψ̂L, we used the censored procedure with the threshold u = 0.9 of
empirical quantile of data at each site. The fitting of ψ̂L was done using the
code which was used in [5] with some modifications.

5.2. Results on the parameters estimate. The following boxplots rep-
resent the error of estimated parameters, that is (ψ̂T − ψ0) and (ψ̂L − ψ0).
Figure 2. display the performance of estimators for model MM1. Generally,
the estimators above worked well, although the variability in some estimates
were relatively large, especially for the asymptotic independence parameters.
It also shows some bias in the estimation of asymptotic independence model
parameters.
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It is well known that asymptotic independence is difficult to estimate, be-
cause the dependence between the process locations may decay very slowly
when the distance increases (see [15]). Therefore, the estimation accuracy
of the parameters is very sensitive, especially when dealing with more than
one dependence structures. On one other hand, the fitting of α(h) which
appears in TEG models in (2.20), is delicate and might quite get different
estimates efficiency results with different data [14]. Furthermore, the depen-
dence measures does not have all dependence information [12].

To compare the estimation efficiency between the estimators ψ̂T and ψ̂L, the
root mean square error (RMSE) was calculated for each estimated parameter

based on the J = 100 experiments [37,38]: ψ̂j denotes the estimation (either
least square or composite likelihood estimation) on the jth experiment.

(5.1) RMSE =

[
J−1

J∑
j=1

(ψ̂j − ψ)2

]1/2

,

The barplot in Figure 3 display the RMSE for each parameter of MM1
model. We see on these barplots that when a is close to 0 (a = 0; 0.25),

the estimator ψ̂T over-performs the estimator ψ̂L and vice versa when a ∈
{0.75, 1}. For a = 0.5 the performance of the two estimators seems relatively
equivalent.

5.3. Asymptotic normality. Since finding the asymptotic normality of
the estimator ψT is difficult, we will test it by a simulation. From the
large-sample convergence properties of the estimators, we can see if the dis-
tribution of the errors between the arbitrarily estimates ψ̂T and the true
one ψ0 close to normal distribution. In Figure 4, the graphs represent the
distributions of the errors of each estimate parameters of MM1 model for
a := {0, 0, 25, 0.75, 1}. We adopted the same J = 100 experiments which
calculated in finding (RMSE).
We can see in this Figure all the densities of the errors of the parameters
seems have shape close to the shape of normal distribution around zero. In
another word, the parameters have the consistency and asymptotic normal-
ity with mean 0 and exist variance.

6. Real data example

In this sections, we analyzed real data and fitting it to some models con-
sidered in this study by composite likelihood and LS-madograme procedures.

6.1. Data analyze. We analyzed daily rainfall on along of east coast of
Australia. We selected 39 locations randomly from such region and the
daily measured as the total of 24-hours begin from 9 am in the period (April-
September) for 35 years from 1982-2016. The data available at Australian
Bureau of Meteorology (http://www.bom.gov.au/climate/data/).

To explore the possibility of anisotropy of the spatial dependence, we
used the same test in [5]. We divided all data set according to directional
sectors (−π/8, π/8], (π/8, 3π/8], (3π/8, 5π/8] and (5π/8, 7π/8], where 0 in-
dicate to north direction. The dependence measures which used in the test
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Figure 2. Boxplots display (ψ̂−ψ) of estimated parameters

vector ψ̂ = (â, r̂X , θ̂X , σ̂Y )T for the MM1 model by the two

estimators ψ̂T and ψ̂L. The figures in the first row and from
left to right concern the estimator ψ̂T for a ∈ {0, 0.2, 0.75, 1},
the second row concerns ψ̂L. We have set, rX = 0.25, θX =
0.20 and σY = 0.6 over a square A = [0, 1]2.

Figure 3. Barplots display the RMSE of ψ̂ for each esti-
mated parameters ψ̂ = (â, r̂X , θ̂X , σ̂Y )T for MM1 and the

corresponding two estimators ψ̂T and ψ̂L. The bars in the
first row and from left to right represent the RMSE of the
estimator ψ̂T when a := {0, 0.2, 0.75, 1}, respectively and the

same for the second row for ψ̂L. We set rX = 0.25, θX = 0.20
and σY = 0.6 over a square A = [0, 1]2.

is the empirical F-madogram ν̂F (h). The directional loss smoothing of such
empirical measure in the Figure 5. (A), shows that no evidence of anisotropy.
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Figure 4. Graphs display the densities of the errors be-
tween ψ̂T and ψ0 for each estimated parameters in the set
ψ = (a, rX , θX , σY )T of MM1 model. These parameters rep-
resented by the graphes from the first column to last one re-
spectively. The graphs from first row and last one represent
the densities of the estimator ψ̂T when a := {0, 0.2, 0.75, 1},
respectively. We set rX = 0.25, θX = 0.20 and σY = 0.6 over
a square A = [0, 1]2.

To comprehension of general behaviour (with respect to dependence struc-
ture) of the data set, we evaluated ν̂F (h) for all estimated data set. It seems
from the loss smoothing behavior in Figure 5. (B) of such evaluation that the
asymptotic dependence between the locations to be present up to distance
500 km and asymptotic independence could be present in the remaining dis-
tance.

6.2. Data fitting. Our interest in this section is to chose reasonable model
can present the data. We considered 7 models described below, for each
model, the the parameters estimated by LS-madograme and composite like-
lihood. The selection criteria for LS-madogram estimator ψ̂T computed as
the following:

AIC := logL(ψ̂) + (2k(k + 1)/(N − k − 1)),

where k is the number of parameters in a model and N is the number of
the observations. Such that, N = T × H, H is the number of a pairwise
between the sites. With respect to censored composite likelihood estimators
we adopted the CLIC selection criteria. The two criteria selected the model
MM1 as the best model represent the data.
The models:

MM1: max-mixture between asymptotic dependence process repre-
sented by TEG max-stable process X with exponential correlation
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Figure 5. Empirical evaluation of ν̂F (h). The Grey cir-
cles represented the empirical value of between all pairwise.
The lines in (A) represent the smoothed value of the em-
pirical of ν̂F (h) according to directional sectors (−π/8, π/8],
(π/8, 3π/8], (3π/8, 5π/8] and (5π/8, 7π/8]. The line in (B)
represent the smoothed value of the empirical of ν̂F (h) for
all directions.

function ρ(h) = exp{−(h/θX)}, θx > 0 and BX is a disk of fixed
and unknown radius rX and asymptotic independence represented
inverse Brown-Resnik max-stable process Y with variogram 2γ(h) =
2σ2(1− exp{−(h/θY )}), θY , σ > 0. When σ2 is the sill of the vari-
ogram.

MM2: max-mixture between X in MM1 and inverse inverse Smith
max-stable process Y with τ(h) = h/

√
σY .

M1: A TEG max-stable process X specified in MM1.
M2: A Brown-Resni max-stable process X specified in MM1.
M3: A inverse Brown-Resnik max-stable process Y specified in MM1.
M4: A Smith max-stable process X specified in M2.
M5: A inverse Smith max-stable process Y specified in M2.

For all models considered, the margin distribution assumed to be unit Fréchet.
Therefore require transform the data set to Fréchet. Most of papers for ex-
ample [5] and [36] used parametric transformation, they fitted GEV param-
eters for each location separately and then transform the data to Fréchet.
In this study, we adopted non-parametric transformation by estimate the
margins empirically. For censored composite likelihood procedures, we set
u = 0.9 and δ =∞. With respect to AIC and CLIC , we assumed that the
data is α-mixing.
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Table 1. Summary of the fitted models. the distance scale is
kilometres. Composite likelihood procedure indicated by CL
and LS-madogram procedure indicated by LS with selection
criteria SC are CLIC and AIC, respectively.

Model a θX rX θY σY SC

MM1 CL 0.262 1217.3 1364.5 3102.4 3.457 6807406
LS 0.259 1285.7 1390.0 5794.8 2.013 1.917034

MM2 CL 0.248 31.16 70.15 998.84 7924609
LS 0.185 35.51 48.14 871.19 1.917234

θX rX CLIC
M1 CL 931 307.86 7926261

LS 1270 255.64 1.945177

θX σX θY σY CLIC
M2 CL 931.02 3.078663 7926261

LS 361.36 1.90816 1.96165
M3 CL 1644.76 2.702282 7918643

LS 1383.08 1.394928 1.924574
M4 CL 85.34 8016633

LS 193.43 1.988753
M5 CL 256.39 7988838

LS 334.60 1.929235

7. Conclusions

We have provided F-madogram νF (h) for the max-mixture process that
can detect more than one dependence structure in a model (i.e. asymptotic
dependence and asymptotic independence). The F-madogram presents the
advantage of having both extremal coefficient Θ(h) of the max-stable process
and η(h) of the inverse max-stable in its expression. When a = 1, νF (h) is
the F-madogram corresponding to a max-stable process introduced by [12]
and so switches to Θ(h); when a = 0, νF (h) represents the F-madogram of
an inverse max-stable and switches to η(h). We defined a semi-parametric
estimation procedure using F-madogram νF (h) as an alternative to compos-
ite likelihood. The simulation study showed that the estimation procedure
based on νF (h) performs better than the composite likelihood procedure
when the model is near to asymptotic independence. We applied these esti-
mator procedures to real data example.
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