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S U M M A R Y
When pH and alkalinity increase, calcite frequently precipitates and hence modifies the petro-
physical properties of porous media. The complex conductivity method can be used to directly
monitor calcite precipitation in porous media because it is sensitive to the evolution of the
mineralogy, pore structure and its connectivity. We have developed a mechanistic grain po-
larization model considering the electrochemical polarization of the Stern and diffuse layers
surrounding calcite particles. Our complex conductivity model depends on the surface charge
density of the Stern layer and on the electrical potential at the onset of the diffuse layer, which
are computed using a basic Stern model of the calcite/water interface. The complex conductiv-
ity measurements of Wu et al. on a column packed with glass beads where calcite precipitation
occurs are reproduced by our surface complexation and complex conductivity models. The
evolution of the size and shape of calcite particles during the calcite precipitation experiment
is estimated by our complex conductivity model. At the early stage of the calcite precipitation
experiment, modelled particles sizes increase and calcite particles flatten with time because
calcite crystals nucleate at the surface of glass beads and grow into larger calcite grains. At the
later stage of the calcite precipitation experiment, modelled sizes and cementation exponents
of calcite particles decrease with time because large calcite grains aggregate over multiple
glass beads and only small calcite crystals polarize.

Key words: Electrical properties; Hydrogeophysics; Microstructure; Permeability and
porosity.

1 I N T RO D U C T I O N

Calcite is one of the most abundant minerals in the Earth’s
crust and frequently precipitates when pH and alkalinity increase
(Vancappellen et al. 1993; Stipp 1999). Calcite precipitation modi-
fies the rock porosity, and can have either benefits or side effects for
the mechanical and transport properties of porous media. Calcite
precipitation in porous media has broad applications in geotechni-
cal engineering for soil strengthening (DeJong et al. 2006, 2010;
Whiffin et al. 2007) and in environmental studies for the seques-
tration of heavy metals (Sturchio et al. 1997; Cheng et al. 1999),
radionuclides (Fujita et al. 2004; Mitchell & Ferris 2005), and CO2

in geological formations (Pruess et al. 2003; Xu et al. 2003). How-
ever, calcite precipitation can also have undesirable effects such as
the decrease of the permeability of reactive barriers for the remedi-
ation of aquifers (Wilkin et al. 2003; Scheibe et al. 2006; Jeen et al.
2007).

Calcite precipitation in porous media can be observed in situ by
conventional monitoring approaches using geochemical analyses of

borehole samples (Scheibe et al. 2006; Li et al. 2009, 2011). Geo-
chemical borehole data give accurate measurements of the water
chemical composition associated with calcite precipitation but they
are time consuming, not continuous in time, invasive and spatially
limited to the location of the boreholes. The complex conductivity
method can be used to non-intrusively monitor calcite precipitation
in porous media because of its sensitivity to the evolution of the
mineralogy, pore structure and connectivity (Wu et al. 2010, 2011;
Zhang et al. 2012). This geoelectrical method investigates both
conduction (i.e. electromigration of the charge carriers) and polar-
ization (i.e. the reversible storage of electrical charges) of porous
materials (Kemna et al. 2012). Polarization of oxides and carbon-
ates minerals such as calcite is related to the polarization of the
electrical double layer (EDL) surrounding the particles under an
external alternating current or electrical field (Chelidze & Gueguen
1999; Jougnot et al. 2010; Revil & Florsch 2010). When a sinu-
soidal current at a range of frequencies is applied to the charged
porous medium and the resulting difference of electrical potential
is measured, complex conductivity is referred to as spectral induced
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polarization (SIP) (Collet 1990; Weller & Borner 1996; Luo &
Zhang 1998; Huisman et al. 2015).

At low frequencies (typically <1 kHz), there are two major phe-
nomena controlling electrical charge transport in porous media con-
taining no metallic particles: the complex conductivity of the bulk
pore water associated with the electromigration of charge carri-
ers in the interconnected, liquid-filled pore space and the complex
interfacial or surface conductivity associated with the conduction
and polarization processes in the EDL (Dukhin & Shilov 1974;
Vinegar & Waxman 1984; Delima & Sharma 1992; Lesmes &
Morgan 2001; Leroy et al. 2008; Revil 2012). Conduction in bulk
water strongly depends on the water chemical composition, the pore
volume occupied by the liquid and the topology of the pore space
(i.e. related to transport properties, Revil et al. 2005; Jougnot et al.
2009). While the real part of complex conductivity is sensitive to
electromigration processes in the pore space and at the mineral
surface, its imaginary part is sensitive to polarization processes at
the mineral surface (Weller et al. 2013; Okay et al. 2014). The
magnitude of the imaginary conductivity is controlled by the elec-
trochemical properties and the surface area of the mineral/water
interface (Vaudelet et al. 2011; Bucker & Hordt 2013; Okay et al.
2014). The frequency behaviour of the imaginary conductivity is
controlled by relaxation of ions in the EDL, which depends on the
size, shape, surface roughness of the particles or pores, and on the
ionic surface mobility at the mineral/water interface (Leroy et al.
2008; Bucker & Hordt 2013).

Wu et al. (2010) performed complex conductivity measurements
and modelling of calcite precipitation on a column packed with
glass beads. The evolution of calcite precipitation in porous media
was clearly observed from their imaginary conductivity data. The
empirical Cole–Cole model (Cole & Cole 1941; Pelton et al. 1978)
was used by Wu et al. (2010) to interpret the complex conductivity
signature of calcite precipitation on glass beads in terms of mean
relaxation time and chargeability (capacity of the porous medium to
store electric charges). At the early stage of the calcite precipitation
experiment, Wu et al. (2010) observed that the mean relaxation
time and chargeability increase with time, and, after nine days of
the experiment, they observed that the mean relaxation time and
chargeability decrease with time. Wu et al. (2010) considered that
discrete micrometric calcite particles polarize and grow during the
early stage of calcite precipitation and that large millimetric calcite
aggregates do not polarize sufficiently over multiple glass beads, that
is only remaining and new discrete calcite particles polarize after
nine days of experiment. However, the lack of physical processes
in the Cole–Cole model to interpret the complex conductivity data
restricts the understanding of the effects of calcite precipitation on
the evolution of the mineralogy, pore structure and connectivity in
the glass beads column. For instance, the Cole–Cole model gives no
information on the evolution of the size and shape of calcite particles
during their precipitation. Furthermore, the Cole–Cole model gives
no information about the phenomena at the mineral/water interface
responsible for the SIP response, such as the surface concentration
and diffusivity of the ions in the EDL.

Leroy et al. (2008) proposed a grain polarization model account-
ing for the surface site density of adsorbed counter-ions in the Stern
layer at the mineral/water interface to describe the complex conduc-
tivity response of glass beads at different salinities. Their complex
conductivity model considers the electrochemical polarization of
the Stern layer following Schwarz theory (Schwarz 1962) and was
combined with a triple layer model (TLM) of the silica/water inter-
face. The differential effective medium theory (DEM; Bruggeman
1935; Hanai 1968; Sen et al. 1981) was used by Leroy et al. (2008)

Figure 1. Sketch of our complex conductivity model of the porous medium.
Parameters σ ∗

w and σ ∗
s are the complex bulk water and surface conductiv-

ity of solid, respectively. Calcite particles are mostly rhombohedral, but
considering them spherical is a good first approximation.

to compute the complex conductivity of the porous sample consider-
ing bulk water complex conductivity, complex surface conductivity
of the glass beads, porosity and grain shape. Their complex con-
ductivity model successfully reproduced the measured phase shift
(between injected current and measured electrical potential differ-
ence) of glass beads as function of frequency. Leroy et al. (2008)
showed that two distinct peaks in the imaginary conductivity suc-
cessfully capture the relaxation times associated with grain size
distribution and surface roughness. However, the grain polarization
model of Leroy et al. (2008) was restricted to monovalent elec-
trolytes and did not consider the effects of the diffuse layer on the
Stern layer polarization.

The induced polarization of calcite precipitates needs to be fur-
ther clarified using a mechanistic complex conductivity model ac-
counting for the EDL properties, the particle size distribution and
shape. In this study, a mechanistic model for the induced polariza-
tion of calcite is proposed, which depends on the surface charge
density and ion mobility in the Stern layer, electrical potential at
the onset of the diffuse layer, particle size distribution and shape.
Our SIP model is combined with a basic Stern model (BSM) of
the calcite/water interface (Li et al. 2016). After a short review of
the grain polarization model of Leroy et al. (2008), the complex
conductivity model is generalized to the polarization of different
monovalent and multivalent counter-ions in the Stern and diffuse
layers according to Lyklema et al. (1983). Then, the predictions of
the model are compared to the imaginary conductivity data of Wu
et al. (2010), and the evolution of the particles sizes and shapes
during calcite precipitation on glass beads is estimated accordingly.

2 T H E O R E T I C A L B A C KG RO U N D

2.1 Complex conductivity model of the porous medium

We consider a porous medium containing particles, that is glass
beads (of millimetric size) and calcite crystals (of micrometric
size), and pore water. A sketch of our complex conductivity model
is presented in Fig. 1. The differential effective medium theory
(Bruggeman 1935; Hanai 1968; Sen et al. 1981) is used to compute
the complex conductivity of the porous medium according to the
complex conductivity of the particles and water. In the DEM theory,
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solid particles are embedded in a self-similar way in the pore water.
First, a particle is added to the liquid and the influence of the par-
ticle upon the conductivity of the medium is calculated. Then, the
particle/liquid mixture is used to coat a second particle and the in-
fluence of the second particle upon the conductivity of the medium
is calculated, and so on following an iterative procedure until the
desired porosity is reached. The DEM theory assumes that the pore
space of granular media is interconnected. It works well to describe
the electrical properties of uncompacted and uncemented granular
media with small contiguity between the grains (Revil 2000). The
complex conductivity of the porous medium σ ∗ is calculated using
the following equations (Revil & Cathles 1999):

σ ∗ = σ ∗
w

F

(
1 − σ ∗

s /σ ∗
w

1 − σ ∗
s /σ ∗

)m

, (1)

F = φ−m, (2)

where σ ∗
w is the complex conductivity of the bulk water (in S m−1),

σ ∗
s is the complex surface conductivity and m is the cementation

exponent of the particles (m = 1.5 for spheres, Sen et al. 1981). The
parameter F is the electrical formation factor of the porous medium
and φ is the interconnected porosity corresponding to the volume
of the connected pores divided by the total volume of the porous
medium.

The complex conductivity of the bulk water σ ∗
w is calculated

considering conduction and dielectric displacement currents and is
given by (Schwarz 1962):

σ ∗
w = σw + iωεw, (3)

where σw is the DC (direct current) bulk water conductivity, ω is the
angular frequency of the applied sinusoidal current (in rad s−1, ω =
2π f with f being the frequency in hertz or s−1), i is the imaginary
number (i2 = −1), and εw is the dielectric permittivity of water (in
F m−1). Water dielectric permittivity is written as εw = εrε0, where
εr is the relative dielectric permittivity of water (εr

∼= 78.3 for bulk
water at a pressure of 1 bar and a temperature T of 298 K) and ε0 is
the dielectric permittivity of vacuum (ε0

∼= 8.854 × 10−12 F m−1)
(Lide 1990).

The complex surface conductivity of the particles of differ-
ent sizes σ ∗

s is calculated considering the superposition principle
(Lesmes & Morgan 2001). It is computed using a volumetric mix-
ing formula assuming that the electrochemical conductions and
polarizations of particles of different sizes all add in parallel, that
is that the complex conductivity response of particles of same size
is weighted by the relative volume of the solid that is occupied by
these particles. The resulting complex surface conductivity of the
particles depends on the particle size distribution (PSD) f (di ), with
di the particle diameter (in m), and is given by (Lesmes & Morgan
2001; Leroy et al. 2008):

σ ∗
s =

Q∑
i=1

f (di )σ
∗
s (di , ω), (4)

where Q is the number of different diameters. The normalization of
the PSD implies:

Q∑
i=1

f (di ) = 1, (5)

which means that f (di ) is in fact a weight coefficient depending
entirely on the PSD.

In the following section, the complex surface conductivity of one
particle, σ ∗

s (di , ω), is described using a mechanistic model of con-

duction and induced polarization. The model is mechanistic because
it is based on the electrochemical properties of the EDL around par-
ticles. This complex conductivity model considers ion electromi-
gration (conduction) in the diffuse layer, which is assumed to form
a dielectric medium around particles, and ion electromigration and
back-diffusion, that is polarization of the discontinuous Stern layers
around particles. Polarization of the Stern layer is compensated by
diffuse layer polarization to ensure electroneutrality of the particle
in water.

2.2 Complex conductivity model of the particle

2.2.1 Surface conductivity models of Lyklema et al. (1983)
and Leroy et al. (2008)

The complex surface conductivity of the particle is computed using
the complex conductivity model of Leroy et al. (2008) generalized
to the polarization of the Stern and diffuse layer containing mono-
valent and multivalent ions using the approach of Lyklema et al.
(1983) (Appendices A and B). The complex surface conductivity
model of Leroy et al. (2008) is based on the Schurr theory (Schurr
1964), which combines Schwarz theory (Schwarz 1962) for the AC
(alternating current) conductivity (polarization) and O’Konski the-
ory (O’Konski 1960) for the DC conductivity (electromigration).
Following Schwarz theory, Leroy et al. (2008) considered that the
surface density of one type of monovalent counter-ion in the Stern
layer is responsible for particle polarization, whereas Lyklema et al.
(1983) considered directly the effects of the total surface charge
density of the Stern and diffuse layer on particle polarization, hence
extending Schwarz theory to the polarization of the Stern and diffuse
layer containing monovalent and multivalent ions.

Leroy et al. (2008) therefore assumed that movement of ions in
the Stern layer around particles controls the observed phase shift be-
tween injected sinusoidal current and measured electrical potential
difference when SIP experiments are performed on porous media
containing no metallic particles. The Stern layer is a compact layer
of counter-ions at the mineral/water interface compensating the sur-
face charge of the mineral (Stern 1924; Leroy & Revil 2004). Leroy
et al. (2008) considered the electrochemical polarization of the dis-
continuous Stern layers around the particles, that is in their model
counter-ions in the Stern layer were assumed to electromigrate along
the particle surface (under the applied alternating electrical field)
and to diffuse back in the opposite direction to re-establish their ini-
tial homogenous distribution as long as the frequency is low (Fig. 2).
Therefore, a relaxation time or characteristic frequency (inverse of
the relaxation time) can be associated with the shape and size of the
particle and with the tangential diffusion coefficient of the counter-
ions in the Stern layer. Typically, large micrometric particles or
small nanometric particles with a high degree of surface roughness
induce high relaxation times and small characteristic frequencies
(typically < kHz) (Chelidze & Gueguen 1999; Lesmes & Morgan
2001). These ion movements in the Stern layer were also assumed
to control not only the frequency behaviour but also the magnitude
of the polarization process, that is high surface density of mobile
charges in the Stern layer induces high particle polarization.

The diffuse layer is made of counter-ions and co-ions, is located
further away from the mineral surface compared to the Stern layer,
and electrostatically compensates the surface charge of the mineral
not compensated by the Stern layer (Gouy 1910; Chapman 1913).
The diffuse layer is not as compacted as the Stern layer, generally
thicker than the Stern layer, and its thickness decreases significantly
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Figure 2. Sketch of the complex conductivity model of Leroy et al. (2008)
for particles of different sizes surrounded by discontinuous Stern layers and
overlapping diffuse layers in a saline aqueous solution. Only the discontin-
uous Stern layer is assumed to polarize around particles. The bulk water
and continuous diffuse layer only contribute to electromigration fluxes je±
and hence do not polarize. Bulk water and diffuse layer exchange ions via
normal ions fluxes jNe± and tangential ions fluxes jSe± occur in the diffuse
layer. Tangential electromigration and counter-balancing diffusion fluxes,
jSe+ and jSd+ , respectively, occur in the Stern layer. No exchange of ions is
considered between the Stern and diffuse layers (modified, from Okay et al.
2014).

Figure 3. Sketch of the polarized Stern and diffuse layers in the case of a
weak diffuse layer (a) and a strong diffuse layer (b) (modified, from Lyklema
et al. 1983). Counter-ions in the Stern layer electromigrate and diffuse back
over a shorter distance when diffuse layer becomes stronger.

when ionic strength of surrounding water increases (Hunter 1981).
Leroy et al. (2008) considered that the diffuse layer is continuous at
the scale of the porous medium and hence does not polarize because
particles are in contact with each other (Leroy & Revil 2009; Okay
et al. 2014; Fig. 2). Leroy et al. (2008) also assumed that only
electromigration currents in the diffuse layer and bulk water control
the DC conductivity of the porous medium. However, according to
Lyklema et al. (1983), the Stern layer is almost completely screened
by the diffuse layer and hence the polarization of the diffuse layer
cannot be ignored. The diffuse layer has to polarize to compensate
the polarized Stern layer in order to ensure electroneutrality of the
solid/water interface. Lyklema et al. (1983) considered the effects
of the tangential oscillations of the diffuse layer on the polarization
of bound counter-ions in the Stern layer. These authors considered
that the polarized diffuse layer decreases the relaxation time of the
polarized Stern layer (Fig. 3). Grosse & Foster (1987) considered ion
diffusion effects in the bulk electrolyte surrounding the polarized
counter-ions layer and also emphasized that ion diffusion outside
the Stern layer decreases the relaxation time of bound counter-ions
in the Stern layer.

2.2.2 The new surface conductivity model

The complex surface conductivity of a charged spherical particle
of diameter d immersed in an aqueous electrolyte is calculated
considering conduction and dielectric displacement currents and is
given by (O’Konski 1960):

σ ∗
s = σs + iωεs, (6)

σs = 4

d
�s, (7)

εs = αρsε0, (8)

where σs is the complex surface conductivity of the particle cal-
culated according to Ohm’s law (excluding dielectric displacement
currents), εs is the dielectric permittivity, �s is the specific surface
conductivity (in S), and ρs is the volumetric density (in kg m−3) of
the particles. Eq. (8) is an empirical equation linking the dielectric
permittivity of the mineral to its volumetric density and is taken
from the study of Olhoeft (1981) (α = 0.00191 m3 kg−1 in the ab-
sence of lossy materials, such as magnetic or metallic minerals, and
Fe Ti sulfides oxides such as ilmenite). It should be noted that cal-
cite particles are assumed to be spherical in eq. (7), but the shape of
calcite crystals is in reality mostly rhombohedral (Kile et al. 2000).
Nevertheless, we assume that the spherical particles assumption for
the complex surface conductivity of calcite particles is a fairly good
first-order approximation.

The specific surface conductivity of the particle is calculated
considering the specific surface conductivity of the Stern layer (a
complex quantity) added to the DC specific surface conductivity (a
real quantity) (superposition principle), and is described using the
following equations (Appendices A and B):

�s = �b
s

(
iωτb

1 + iωτb

)
+ �DC

s , (9)

τb = 1

2π fb
= a2

2Db M
= d2

8Db M
= d2 |q|

8kB T βb M
, (10)

where �b
s and �DC

s are, respectively, the contribution of the Stern
layer (subscript ‘b’ for the beta-plane corresponding to the Stern
plane) and the DC contribution of the EDL to the specific surface
conductivity of the particle, M is a parameter (dimensionless) char-
acterizing the effects of the diffuse layer polarization on the Stern
layer polarization (M ≥ 1) (Lyklema et al. 1983; Niu et al. 2016),
and τb is the mean relaxation time (in s) of the counter-ions in the
Stern layer. The parameter fb is the critical or characteristic fre-
quency (in Hz) corresponding to the electrochemical polarization
of the Stern layer, Db is the surface diffusion coefficient of the
counter-ions in the Stern layer (in m2 s−1) and a is the radius of
the particle (in m). The surface diffusion coefficient of the counter-
ions in the Stern layer is expressed as a function of the surface
mobility of the counter-ions in the Stern layer βb (in m2 s−1 V−1)
using the Nernst–Einstein equation Db = kB T βb/|q| where kB is
the Boltzmann constant (of value ∼1.381 × 10−23 J K−1), T is the
temperature (in K), and q is the ionic charge in the Stern layer
(in C).

We consider that only the diffuse layer contributes to the DC sur-
face conductivity of calcite particles because, following Schwarz
(1962), all ions in the polarized Stern layer are assumed to diffuse
back to recover their initial distribution (at thermodynamic equilib-
rium) and to not exchange with ions in the diffuse layer and bulk
aqueous electrolyte. In the following text, we will therefore consider
that �d

s = �DC
s with �d

s the DC contribution of the diffuse layer
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to the specific surface conductivity. Even if the diffuse layer com-
pensates the Stern layer polarization and necessarily polarizes, we
do not consider a diffuse layer polarization mechanism as defined
for instance in Dukhin & Shilov (1974) or in Fixman (Pacios et al.
2016) theories involving volume polarization effects inside and out-
side the diffuse layer (Delgado et al. 1998). Therefore, we assume
that the Stern layer contributes to surface polarization currents and
the diffuse layer to surface conduction currents. Therefore, in our
new complex conductivity model, only the Stern layer contributes
to the imaginary part of the complex conductivity, the quadrature
conductivity of the sample. The diffuse layer decreases the relax-
ation time of the polarized Stern layer and contributes to the real
part of the complex conductivity, the in-phase conductivity of the
sample.

Following Lyklema et al. (1983) for the polarization of the Stern
layer (see Appendices A and B) and Revil & Glover (1997) for ions
electromigration in the diffuse layer, the contributions of the Stern
and diffuse layers to the specific surface conductivity of calcite are
written as:

�b
s = ±βb Qb, (11)

�d
s =

N∑
i=1

ezi Bd
i �d

i , (12)

where

Bd
i = βd

i + 2εwkB T

ηwezi

∼= βw
i + 2εwkB T

ηwezi
(13)

denotes an effective ion mobility in the diffuse layer (in m2 s−1 V−1),
and where ‘+’ stands for cations and ‘−’ stands for anions in the
Stern layer, Qb is the surface charge density of the Stern layer (in
C m−2), N is the number of different ions in the diffuse layer, e is
the elementary charge (of value ∼1.602 × 10−19 C), zi is the ion
valence, and �d

i is the surface site density of ions i in the diffuse layer
(in sites m−2). The parameter βd

i is the ion mobility in the diffuse
layer due to electromigration (in m2 s−1 V−1) and ηw is the dynamic
viscosity of bulk water (in Pa s), ηw

∼= 0.8903 × 10−3 Pa s for pure
water at T = 298 K (Lide 1990). The ions effective mobility in the
diffuse layer, Bd

i , considers electromigration (first term of eq. 13)
and electro-osmosis (second term of eq. 13) (Bikerman 1940; Revil
& Glover 1997; Heuser et al. 2012; Leroy et al. 2015). Because
the diffuse layer is far (several Å) from the mineral surface and
contains mostly counter-ions slowing down slightly counter-ions
electromigration compared to co-ions (Bernard et al. 1992), we
assume that the ion mobility in the diffuse layer is similar to the
ion mobility in the bulk water, that is βd

i ≈ βw
i (Lyklema & Minor

1998; Leroy et al. 2008; Leroy & Revil 2009).
It should be noted that the original Schwarz complex conduc-

tivity model (Schwarz 1962) considers a monovalent counter-ion
of charge e at the solid/water interface. We follow the approach of
Lyklema et al. (1983) to extend the Schwarz (1962) polarization
model to different counter-ions adsorbed in the Stern layer (rep-
resented by the surface charge density Qb) by assuming that the
different counter-ions in the Stern layer have the same tangential
mobility (Appendix A). The tangential ionic mobility in the Stern
layer has never been measured and hence remains unknown and
dependent on the model to interpret electrical conductivity mea-
surements. Nevertheless, the knowledge of the surface adsorption
properties of the ions can help to get information about tangential
ionic mobility. Ions adsorbed as inner-sphere surface complexes
lose part of their hydration shell and can be adsorbed at the close
proximity of the mineral surface (Sverjensky 2005; Hiemstra &

Van Riemsdijk 2006). The tangential mobility of these ions can
hence be considerably smaller in the Stern layer than in bulk water.
Ions adsorbed as outer-sphere surface complexes keep their hy-
dration shell and can be adsorbed further away from the mineral
surface compared to inner-sphere surface complexes (Sverjensky
2005; Hiemstra & Van Riemsdijk 2006). The tangential mobility
of these ions in the Stern layer can hence be comparable to their
mobility in bulk water.

By combining eqs (6)–(9) and (11)–(13), the complex surface
conductivity of a spherical particle of diameter d can be expressed
as a function of the size of the particle, electrochemical properties
of the mineral/water interface, angular frequency and volumetric
density of the particle:

σ ∗
s (d, ω)= 4

d

[
±βb Qb

(
iωτb

1 + iωτb

)
+

N∑
i=1

ezi Bd
i �d

i

]
+iωαρsε0.

(14)

The low-frequency (DC) and high-frequency surface conductiv-
ity can be deduced from eq. (14) in the limits ω → 0 and ω → ∞,
respectively. We obtain (Leroy et al. 2008):

σ 0
s = 4

d
�d

s = 4

d

N∑
i=1

ezi Bd
i �d

i , (15)

σ∞
s = 4

d

(
�b

s + �d
s

) = 4

d

[
±βb Qb +

N∑
i=1

ezi Bd
i �d

i

]
, (16)

which shows that only the diffuse layer contributes to the DC surface
conductivity whereas both the Stern and diffuse layer contribute to
the surface conductivity at high frequency.

2.2.3 Parameters inferred from the surface complexation model

The parameter M characterizing the decrease of the relaxation time
of the Stern layer by the diffuse layer, is calculated using (Lyklema
et al. 1983):

M = 1 + q Qb

kB T Cd
, (17)

where Cd is the differential capacitance of the diffuse layer (in
C m−2 V−1), which can be computed as a function of the ions
concentrations in bulk water Cw

i (in mol L−1) and electrical potential
at the beginning of the diffuse layer ϕd according to the following
equation (Appendix B):

Cd = −∂ Qd

∂ϕd
=

√
εw

2kB T

N∑
i=1

qi 1000NACw
i exp

(
−qiϕd

kB T

)
√

N∑
i=1

1000NACw
i

[
exp

(
−qiϕd

kB T

)
− 1

] ,

(18)

where Qd is the surface charge density of the diffuse layer, qi =
±ezi is the ion charge (‘+’ stands for cations and ‘−’ stands for
anions).

The parameters relative to the electrochemical properties of the
mineral/water interface Qb, ϕd and �d

i are computed using a BSM of
the mineral/water interface (Leroy & Revil 2004, 2009; Leroy et al.
2008; Vaudelet et al. 2011). The results of the BSM computations
are showed in Section 3. The surface charge density of adsorbed ions
in the Stern layer, Qb, and the electrical potential at the beginning
of the diffuse layer, ϕd , are directly computed by the BSM.
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Table 1. Nomenclature of the macroscopic material properties.

Symbol Meaning Unit

σ ∗ Complex conductivity of the porous medium S m−1

σ ∗
s Complex conductivity of the particles S m−1

σ ∗
w Complex conductivity of bulk water S m−1

σs Surface conductivity of the particle S m−1

εs Surface dielectric permittivity of the particle F m−1

ω Angular frequency rad s−1

f Frequency Hz
ρs Volumetric density of the particle kg m−3

σw Conductivity of the bulk water S m−1

εw Dielectric permittivity of the bulk water F m−1

εr Relative dielectric permittivity of the bulk water Dimensionless
ε0 Dielectric permittivity of the vacuum F m−1

φ Porosity of the granular medium Dimensionless
m Cementation exponent of the particles Dimensionless
F Electrical formation factor of the porous medium Dimensionless
d Particle diameter m
a Particle radius m
f (di ) Particle size distribution Dimensionless

The surface site density of adsorbed ions in the diffuse layer �d
i

is given by (Hunter 1981; Lyklema 1991; Leroy et al. 2012):

�d
i = Cw

i

∫ x=2κ−1

x=0

[
e− qi ϕ(x)

kB T − 1

]
dx, (19)

ϕ(x) = ϕd e−κx , (20)

κ =
√

2e21000NA I

εwkB T
, (21)

I = 0.5
N∑

i=1

zi
2Cw

i , (22)

where x is the distance of the ion from the beginning of the diffuse
layer (d-plane) (in m), κ−1 is the Debye length (in m), ϕ(x) is the
electrical potential in the diffuse layer, and I is the ionic strength (in
mol L−1). Eq. (20) holds for small electrical potentials at the onset
of the diffuse layer of magnitude <kbT/e but remains accurate for
larger electrical potentials (Hunter 1981; Lyklema 1991; Revil &
Glover 1997; Leroy et al. 2011). As we are interested to interpret
the complex conductivity experiment of Wu et al. (2010) involving
pore water containing saline water (I ∼= 0.03 mol L−1) where the
diffuse layer is compressed and zeta potential is low, eq. (20) can be
applied in our case to describe the electrical potential distribution
in the diffuse layer. The zeta potential is defined as the electrical
potential at the onset of the diffuse layer.

The parameters of the complex conductivity model are summa-
rized in Tables 1 and 2. In the next section, a BSM of the cal-
cite/water interface is presented to compute the surface charge den-
sity of the Stern layer Qb and the electrical potential at the beginning
of the diffuse layer ϕd .

2.3 BSM of the calcite/water interface

The BSM developed recently by Heberling et al. (2014) is used
to describe the electrochemical properties of the Stern and diffuse
layers of the calcite/water interface. The BSM considers that the
Stern plane, that is the beta-plane, coincides with the d-plane cor-
responding to the onset of the diffuse layer, that is ϕb = ϕd (Fig. 4).
In our study, only the surface complexation reactions at the (1 0 4)
calcite surface, which is the dominating crystallographic plane on

Table 2. Nomenclature of the parameters at the scale of the electrical double
layer.

Symbol Meaning Unit

ϕ Electric potential in the diffuse layer V
ϕb Electric potential at the Stern layer V
ϕd Electric potential at the beginning of the

diffuse layer
V

e Elementary charge of the electron C
NA Avogadro number mol−1

zi Ion valence Dimensionless
qi Ion charge in the diffuse layer C
q Averaged ions charge in the Stern layer C
Cw

i Ion concentration in the bulk water mol dm−3

kB Boltzmann constant J K−1

T Temperature K
I Ionic strength mol dm−3

κ Inverse of the Debye length m−1

�d
i Surface site density of adsorbed ions in the

diffuse layer
m−2

Qb Surface charge density of adsorbed ions in
the Stern layer

C m−2

Qd Surface charge density of adsorbed ions in
the diffuse layer

C m−2

Cd Differential capacitance of the diffuse layer C m−2 V−1

βw
i Ion mobility in the bulk pore water m2 s−1 V−1

Bd
i Ion effective mobility in the diffuse layer m2 s−1 V−1

βb Averaged ion mobility in the Stern layer m2 s−1 V−1

Db Averaged ion diffusivity in the Stern layer m2 s−1

ηw Dynamic viscosity of bulk water Pa s
�s Total specific surface conductivity of the

particle
S

�b
s Specific surface conductivity of the Stern

layer
S

�d
s Specific surface conductivity of the diffuse

layer
S

τb Relaxation time of the polarization of the
Stern layer

s

fb Critical frequency of the polarization of the
Stern layer

Hz

M Diffuse layer polarization effects on Stern
layer polarization

Dimensionless

most types of calcite, are considered. The total surface site density
of calcium and carbonate surface sites on the calcite (1 0 4) face
was estimated to be equal to 4.95 sites per nm−2 for each type of
site using crystallographic studies (Wolthers et al. 2008; Heberling
et al. 2011, 2014). According to Heberling et al. (2014) protonation
only occurs for the calcium surface sites; calcite surface functional
groups are hence controlled by the >CaOH0.5

2 , >CaOH−0.5 and
>CO−0.5

3 surface sites.
The calcite surface is defined by the position of the surface Ca2+

ions (Vancappellen et al. 1993) and the 0-plane, where adsorption
of protons occurs, is considered to be located a few Angströms
(between 1.2 Å, Wolthers et al. 2008 and 2.3 Å, Heberling et al.
2014) from the calcite surface (Fig. 4). According to Heberling et al.
(2011), the Stern plane, that is the beta-plane, is located beyond the
two hydration water layers at a distance of 4−6 Å from the calcite
surface. Therefore, counter-ions in the Stern layer are assumed to
be mostly adsorbed as outer-sphere surface complexes at a distance
of a few Angströms from the 0-plane (Stipp 1999). Furthermore,
Heberling et al. (2014) assumed that the surface charge of their
calcite samples is negative as a whole in their investigated pH range
[5.5 10.5]. The surface charge of calcite was also observed to be
negative in this pH range (Eriksson et al. 2007). Therefore, for the
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Figure 4. The basic Stern model used by Heberling et al. (2014) to describe
the calcite/water interface (calcite (1 0 4) surface) when calcite is in contact
with a NaCl and CaCl2 aqueous solution at equilibrium with a pCO2. The
parameters ϕ and Q are the electrical potential and surface charge density,
respectively, at the 0-plane, b-plane (Stern plane) and d-plane (onset of
the diffuse layer). According to the basic Stern model, the onset of the
diffuse layer coincides with the Stern plane, that is ϕb = ϕd . OHP is the
Outer Helmholtz plane. The parameter C1 is the capacitance to model the
electrical potential behaviour between the 0-plane and b-plane.

pH conditions of the complex conductivity experiment of Wu et al.
(2010) (basic pH), the calcite surface charge is compensated by
hydrated cations in higher concentrations in the Stern layer than
hydrated anions.

A geochemical code written in Matlab was developed to compute
the surface complexation model of Heberling et al. (2014) (Li et al.
2016). The details of the calculation procedure are written in Li
et al. (2016). The program combines aqueous complexation, surface
complexation equilibria, surface charge density and mass balance
conditions (Vancappellen et al. 1993; Hiemstra & VanRiemsdijk
1996). The set of equations obtained is solved iteratively by the

classical Newton–Raphson technique (Press et al. 1989). Table 3
summarizes, in matrix form, the set of equations relative to the
calculation of surface and solution speciation for fixed values of pH
and partial pressure of CO2 (pCO2). The value of the capacitance
C1 between the 0-plane and beta-plane is equal to 1.24 F m−2 (Li
et al. 2016).

In Section 3, our combined complex conductivity and surface
complexation models will be used to interpret SIP experiments
carried out by Wu et al. (2010) on glass beads pack where calcite
precipitated at the glass beads surface. A sensitivity analysis of the
petrophysical and interfacial parameters of our models will also be
performed in Section 3.

3 C O M PA R I S O N W I T H E X P E R I M E N TA L
DATA

3.1 Complex conductivity measurements
of Wu et al. (2010)

Wu et al. (2010) monitored calcite precipitation in glass beads pack
using complex conductivity measurements in the frequency range
[0.1–10000 Hz] under controlled laboratory conditions. The porous
medium consisted of smooth glass beads of mean diameter of 3 mm
packed in a transparent plexiglass column 8.4 cm long and 2.54 cm
wide. The measured porosity was equal to 30 per cent. Wu et al.
(2010) mixed two aqueous electrolytes, one containing CaCl2 at a
concentration of 26.2 millimol L−1 (mM) (water electrical conduc-
tivity of 0.635 S m−1), and the other containing Na2CO3 at a con-
centration of 29 mM (water electrical conductivity of 0.567 S m−1)
at a fixed pH value comprised between 9 and 10 to favour calcite
precipitation in glass beads column [Ca2+ + CO2−

3 ⇔ CaCO3(s)].
The saline CaCl2 solution was injected through the bottom of the
column to establish an equilibrated baseline state. Following this,
a second stream of Na2CO3 solution was introduced into the col-
umn from the injection port at the middle section to initiate calcite
precipitation. The ionic concentrations were diluted once inside the
column due to the equal volume mixing of these two solutions
(initial ionic concentrations divided by two). The flow rate of both
solutions was kept at 36 µL min−1 for the duration of the experi-
ment, which continued for 12 days past injection of Na2CO3. In the

Table 3. Stoichiometric matrix of aqueous and surface reactions at the calcite/water interface. The parameters ϕ and K are the electrical
potentials at the different planes and the equilibrium constants of the reactions, respectively (adapted from the database Phreeqc.dat of
the geochemical software Phreeqc (Parkhurst & Appelo 2013) and from Heberling et al. 2014).

Product species H+ Cl− Na+ Ca2+ HCO−
3 >CaOH−0.5 > CO−0.5

3 e
−eϕ0
kB T e

−eϕβ
kB T log10 K

CO−2
3 −1 0 0 0 1 0 0 0 0 −10.33

H2CO3 1 0 0 0 1 0 0 0 0 6.35

CaHCO+
3 0 0 0 1 1 0 0 0 0 1.11

CaCO3(aq) −1 0 0 1 1 0 0 0 0 −7.10

CaOH+ −1 0 0 1 0 0 0 0 0 −12.78

> CaOH+0.5
2 1 0 0 0 0 1 0 1 0 0.50

> CaOH+0.5
2 ···Cl− 1 1 0 0 0 1 0 1 −1 0.45

> CaOH−0.5···Na+ 0 0 1 0 0 1 0 0 1 0.56

> CaOH−0.5···Ca2+ 0 0 0 1 0 1 0 0 2 1.68

> CaOH+0.5
2 ···HCO−

3 1 0 0 0 1 1 0 1 −1 0.54

> CaOH+0.5
2 ···CO2−

3 0 0 0 0 1 1 0 1 −2 −6.57

>CO3H+0.5 1 0 0 0 0 0 1 1 0 −20.00

> CO−0.5
3 ···Na+ 0 0 1 0 0 0 1 0 1 0.56

> CO−0.5
3 ···Ca2+ 0 0 0 1 0 0 1 0 2 1.68

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/209/1/123/2893452 by guest on 26 M

arch 2021



130 P. Leroy et al.

complex conductivity experiment of Wu et al. (2010), sodium ion is
the dominating cation in solution because Cw

Na+ = 29 mM whereas
Cw

Ca2+< 2 mM after the first stage of calcite precipitation (two days
after the beginning of the experiment).

The complex conductivity in the column was monitored by Wu
et al. (2010) using a four Ag/AgCl electrodes system with a Wenner-
α configuration (the two measuring potential electrodes are located
between the two injecting current electrodes) and a NI 4461 board
for the data acquisition (National Instruments). Using the injected
calcium ion concentration, the measured calcium ion concentration
in the effluent, and the flow rate, Wu et al. (2010) estimated a con-
stant precipitation rate of 0.6 mM CaCO3 per day. Furthermore,
Wu et al. (2010) used a Cole–Cole model to interpret their com-
plex conductivity measurements and fitted a mean relaxation time
τ and chargeability mn (mn = (σ∞ − σ0)/σ∞ Weller et al. 2013) as
a function of time (in days). They also performed complementary
photographic and scanning electron microscopy imaging. Wu et al.
(2010) observed two distinct phases of calcite precipitation onto
the glass beads. During the first phase of the calcite precipitation
experiment (9 days after the beginning of the experiment), Wu et al.
(2010) observed a decreasing mean characteristic frequency and
increasing quadrature conductivity with time, and they estimated
an increasing mean relaxation time and chargeability with time.
During the second phase of the calcite precipitation experiment (9–
12 days after the beginning of the experiment), Wu et al. (2010)
observed an opposite behaviour of the measured quadrature con-
ductivity, that is an increasing mean characteristic frequency and
decreasing quadrature conductivity with time, and they estimated
a decreasing mean relaxation time and chargeability with time.
They observed an earlier phase of calcite precipitation character-
ized by well distributed and discrete calcite particles growing with
time around individual glass beads (limited deposition in the pore
spaces) and a later phase of calcite precipitation characterized by
calcite aggregates starting to fill the pore spaces between glass beads
coated by calcite.

Nevertheless, Wu et al. (2010) used complementary photographic
and scanning electron microscopy imaging techniques to get infor-
mation on the evolution of the size and shape of precipitated calcite
particles. Their Cole–Cole model gives limited information on the
evolution of the textural and interfacial properties of their glass
beads pack. Furthermore, Wu et al. (2010) suggested that the fixed
layer polarization mechanism can explain their observations but
they did not use a mechanistic model of Stern layer polarization
to explain their SIP data. In the following section, we will use our
mechanistic Stern layer polarization model to get information on
the evolution of the size and shape of precipitating calcite particles
and to describe the electrochemical properties of the calcite/water
interface responsible for the measured spectral induced polariza-
tion response. It should be noted that the SIP measurements of
Wu et al. (2010) may present significant uncertainties in the high
frequency range [1000−10 000 Hz] because measured voltage was
not corrected of impedances for potential electrodes (Huisman et al.
2015).

3.2 Complex conductivity modelling

3.2.1 Modelling strategy

The grain polarization model based on the electrochemical po-
larization of the Stern layer of calcite is used to model induced
polarization of calcite precipitation on glass beads. The complex
conductivity model was shown to be insensitive to the complex

surface conductivity of millimetric glass beads because their size
is considerably larger than the size of micrometric calcite particles
(surface conductivity decreases when size of the particle increases,
eq. 7). Furthermore, before calcite precipitation (at day 0 of the
experiment), comparably small polarization of the porous sample
was observed during the complex conductivity experiment of Wu
et al. (2010). Frequency evolution of measured imaginary conduc-
tivity (sensitive to polarization) of glass beads pack was seen to
be negligible at day 0 (see their fig. 4a). In addition, the contribu-
tion of glass beads to the DC surface conductivity of glass beads
pack can also be neglected. Indeed, the electrical formation factor
of smooth glass beads of mean diameter 3 mm (the parameter F in
eq. 1) was estimated to be equal to 6.08 using a measured porosity
φ value of 0.3 and a cementation exponent m equal to 1.5 cor-
responding to spherical particles (Sen et al. 1981) (F = φ−m , eq.
2). Using F = 6.08, the measured DC conductivity of bulk water
(σw

∼= 635 mS m−1; Wu et al. 2010) and of the glass beads pack
before calcite precipitation (σ ∼= 110 mS m−1; Wu et al. 2010),
we found that the surface conductivity of glass beads can be ne-
glected compared to the water conductivity, as expected by Wu
et al. (2010). Therefore, only the surface conductivity of calcite par-
ticles is considered for the calculation of σ ∗

s in eq. (1). Furthermore,
only the cementation exponent of calcite particles is considered
in our conductivity modelling. Nevertheless, glass beads control
the porosity of the porous medium that is used in our conductiv-
ity modelling through the use of the electrical formation factor
(eq. 1).

The surface charge density of the Stern layer, Qb, and the elec-
trical potential at the onset of the diffuse layer of the calcite/water
interface, ϕd , were computed as a function of the known chemical
composition of the pore water using our BSM. The surface site
densities of the ions in the diffuse layer, �d

i , were computed using
eqs (19)–(22). The differential capacitance of the diffuse layer, Cd ,
was computed as a function of ϕd using eq. (18). The M parameter
was calculated according to Cd and Qb using eq. (17). During the
complex conductivity experiment of Wu et al. (2010), the chemical
composition of bulk water was roughly constant between day 2 and
day 12 after the beginning of the experiment when polarization is
observed. Therefore, the values of the electrochemical properties
of the calcite/water interface were taken constant in our modelling.
These values are reported in Table 4.

The value of the M parameter characterizing the effects of the po-
larized diffuse layer on the Stern layer polarization is equal to 30.7
(eq. 17). This value is significantly higher than the M values reported
in Niu et al. (2016), being comprised between 1 and 3. Neverthe-
less, Niu et al. (2016) did not use a surface complexation model of
the calcite/water interface to compute M. In addition, for a given
relaxation time τb, a higher M value induces a smaller diffusion
coefficient in the Stern layer Db and/or larger particles size d ac-
cording to eq. (10). These parameters values are more realistic than
the parameters values deduced from M = 1. Furthermore, it should
be noted that even if the computed surface site densities of ions
in the diffuse layer are low compared to the computed surface site
densities of adsorbed ions in the Stern layer (Table 4), the effects
of diffuse layer polarization on Stern layer polarization cannot be
ignored. The double layer as a whole is always approximately elec-
troneutral and the deviation of the charge of the polarized diffuse
layer exactly cancels the deviation of the charge of the polarized
Stern layer (eq. B8; Lyklema et al. 1983).

The complex surface conductivity of calcite particles of size d,
σ ∗

s (d), was calculated according to the electrochemical properties
of the calcite/water interface using eqs (10), (13) and (14). The
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Table 4. Modelled electrochemical properties of the calcite/water interface.

Parameters Values

Na+ concentration in bulk water (mM) 29.00
Ca2+ concentration in bulk water (mM) 1.20
Cl− concentration in bulk water (mM) 29.00
CO2−

3 concentration in bulk water (mM) 0.09
HCO−

3 concentration in bulk water (mM) 1.20
pH 9.00

Surface charge density of the Stern layer Qb (C m−2) 0.56
Surface site density of adsorbed Na+ in the Stern layer (1017 sites m−2) 17.30
Surface site density of adsorbed Ca2+ in the Stern layer (1017 sites m−2) 8.91

Surface charge density of the diffuse layer Qd (C m−2) 0.012
Surface site density of adsorbed Na+ in the diffuse layer (1017 sites m−2) 0.383
Surface site density of adsorbed Ca2+ in the diffuse layer (1017 sites m−2) 0.032
Surface site density of adsorbed Cl− in the diffuse layer (1017 sites m−2) 0.189
Surface site density of adsorbed CO2−

3 in the diffuse layer (1017 sites m−2) 0.0005
Surface site density of adsorbed HCO−

3 in the diffuse layer (1017 sites m−2) 0.033

Electrical potential at the beginning of the diffuse layer ϕd (mV) −29.00
Differential capacitance of the diffuse layer Cd (C m−2 V−1) 0.69
Diffuse layer polarization effects on Stern layer polarization M 30.70

volumetric density of calcite, ρs , is equal to 2710 kg m−3 (Wolthers
et al. 2012). In eq. (10), the tangential mobility of the counter-
ions in the Stern layer of the calcite/water interface, βb, remains
unknown (Ricci et al. 2013). Cations are assumed to be mostly
adsorbed in the Stern layer of calcite as outer-sphere surface com-
plexes because, similarly to the silica/water interface (Sverjensky
2001; Vaudelet et al. 2011; Leroy et al. 2013), the large hydration
layer at the calcite surface repels hydrated cations from the surface
(Stipp 1999; Heberling et al. 2011, 2014). Nevertheless, as pointed
out by Wolthers et al. (2008) and Ricci et al. (2013), some Na+ and
Ca2+ counter-ions may also be adsorbed as inner-sphere surface
complexes. It results that Na+ and Ca2+ counter-ions may be less
mobile in the Stern layer than in bulk water and, following the re-
cent molecular dynamics simulations and atomic force microscopy
(AFM) measurements of Ricci et al. (2013), we choose a mobility
ratio of 0.1 between ions adsorbed in the Stern layer and ions in
bulk water. We took a value of 5.7 × 10−9 m2 s−1 V−1 for the ion
mobility in the Stern layer. This value is the mobility ratio times
the arithmetic average of the ion mobility of Na+ and Ca2+ in di-
lute water for a temperature of 298 K (25 ◦C) (βw

Na+ = 5.18 × 10−8

and βw

Ca2+ = 6.18 × 10−8 m2 s−1 V−1, Parkhurst & Appelo 2013).
The values of the ions mobilities in bulk water are presented in
Table 5. In eq. (14), the effective ion mobility in the diffuse layer,
Bd

i , was calculated according to the ion mobility in bulk water and
considering electro-osmosis (eq. 13).

The complex surface conductivity of one calcite particle of diam-
eter di , σ ∗

s (di ), was weighted by its relative volume in the solid, that
is by the discretized particle size distribution f (di ). The complex
surface conductivity of calcite particles of different sizes, σ ∗

s , was
computed by adding the weighted contributions of the calcite parti-
cles of different diameters (eqs 4 and 5). Furthermore, the complex
conductivity of bulk water σ ∗

w was computed as a function of the
measured water conductivity and frequency according to eq. (3).

Table 6. Parameters of our complex conductivity model.

Parameters Values

Ion mobility in the Stern layer, βb (m2 s−1 V−1) 5.7 × 10−9

Initial cementation exponent of the particles, m 1.35
Initial glass beads porosity, φ 0.30
Bulk pore water conductivity, σw (S m−1) 0.356

The water conductivity of the glass beads pack was measured by
Wu et al. (2010) as a function of time (days) after the beginning
of the experiment and was seen to be roughly constant after 2 days
of experiment (σw

∼= 356 mS m−1; Wu et al. 2010). The resulting
complex surface conductivity of calcite particles of different sizes
σ ∗

s and the modelled complex conductivity of the bulk water σ ∗
w

(eq. 3) were introduced in the DEM model to compute the complex
conductivity of the glass beads pack (eqs 1 and 2). The cementation
exponent of the calcite particles and the porosity of the glass beads
pack were taken initially as m = 1.35 and φ = 0.3, respectively.
The cementation exponent of dispersed calcite crystals is typically
between 1.3 and 1.5 (Guichet et al. 2006; Li et al. 2016). The pa-
rameter values of the complex conductivity model are summarized
in Table 6. The porosity of the glass beads pack estimated according
to Wu et al. (2010) is calculated considering the measured initial
porosity of the glass beads pack and the volume of precipitated cal-
cite estimated by Wu et al. (2010). Wu et al. (2010) reported 0.6 mM
of calcite precipitated per day, which corresponds to a volume of
precipitated calcite of 0.023 cm3 per day using a molar mass of 100
g for CaCO3 and a calcite volumetric density of 2.71 g cm−3. As the
total volume of the sample in the experiment of Wu et al. (2010) is
equal to 42.5 cm3, the porosity is expected to decrease by 0.05 per
cent each day.

The quadrature conductivity measurements of Wu et al. (2010)
were inverted using the Matlab code developed by Florsch et al.

Table 5. Ionic mobilities in bulk water (in 10−8 m2 s−1 V−1; temperature T = 298 K) from the Phreeqc database
phreeqc.dat (Parkhurst & Appelo 2013).

Ion Na+ H+ Cl− OH− HCO−
3 Ca2+ CO2−

3

βw
i 5.18 36.25 7.90 20.52 4.60 6.18 7.44
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Figure 5. Effects of porosity of glass beads pack φ (a), cementation exponent m (b), surface charge density of the Stern layer Qb (in C m−2) (c) and diffusion
coefficient Db (in 10−10 m2 s−1) (d) on the modelled imaginary conductivity. The computations of the complex conductivity model are represented by the
lines and the symbols represent the imaginary conductivity measurements of Wu et al. (2010).

(2014) to obtain the discretized relaxation time f (τi ) and particle
size distribution f (di ) (Revil & Florsch 2010; Florsch et al. 2014;
Niu et al. 2016). Florsch et al. (2014) used generalized relaxation
basis functions (such as the generalized Cole–Cole function) and
the L-curve approach to optimize the damping parameter required
to get smooth and realistic inverse solutions (read Florsch et al.
2014 for further information relative to the inversion procedure).
The particle sizes were computed from the surface mobility of the
counter-ions in the Stern layer, the computed M parameter and
the inverted relaxation times (di = √

8kB T βb Mτi/|q|, eq. 10). It
should be therefore noted that the inverted particle size distribution
f (d) is dependent on the value chosen for M and the ion mobility
in the Stern layer βb. Finally, only the cementation exponent m of
calcite particles was adjusted by the gradient method as a function
of the days after the beginning of the experiment to match the
real and imaginary conductivity measurements of Wu et al. (2010)
(σ ∗ = σ ′ + iσ ′′ with σ ′ the real part and σ ′′ the imaginary part of
the complex conductivity).

3.2.2 Sensitivity analysis and results of the modelling

A preliminary sensitivity analysis of the effects of petrophysical and
interfacial parameters on the modelled imaginary conductivity was
carried out. Different values of the porosity φ of glass beads pack,
cementation exponent m of calcite particles, surface charge density
of the Stern layer Qb and tangential diffusion coefficient of counter-
ions in the Stern layer βb were tested (Fig. 5). Compared to the
other parameters, the modelled imaginary conductivity is not very
sensitive to the porosity of glass beads pack. The modelled imag-
inary conductivity only slightly decreases when porosity increases

due to the smaller calcite quantity (Fig. 5a), whereas it increases
sharply when cementation exponent, surface charge density of the
Stern layer or ions diffusion coefficient in the Stern layer increases
(Figs 5b–d). It should be noted that the characteristic frequencies
shift towards lower frequencies when ions diffusion coefficient in
the Stern layer increases because of the relationship between the
relaxation time and the ions diffusion coefficient in the Stern layer,
that is for the same inverted relaxation time, the size of the calcite
particles must increase if ions diffusion coefficient in the Stern layer
increases (τb = a2/2Db M , eq. 10).

As calcite crystals continuously precipitate in glass beads pack,
there may be some fluctuations of the surface charge density of the
Stern layer of calcite crystals, which may be caused by the surface
sites on the different surfaces of growing calcite crystals, even if
calcite crystals are in contact with a stable electrolyte (Leroy &
Revil 2004; Leroy et al. 2006). However, in our models, the surface
charge density of the Stern layer was not adjusted to match the
imaginary conductivity data. Instead, the cementation exponent m
describing the shape of calcite particles is the adjusted parameter.
A further experimental study is necessary to distinguish the surface
charge effects from the textural parameters on the SIP response of
calcite crystal growth in porous medium.

The evolution of the modelled imaginary conductivity as a func-
tion of frequency and time (in days) is in very good agreement
with the measurements of Wu et al. (2010; Fig. 6). The evolution
of the modeled particle size distribution during the calcite precipi-
tation experiment is presented at Fig. 7. The smallest particles size
information is missing due to lack of the complex conductivity mea-
surements at high frequency (>10 kHz). Before clogging (referred
to phase 1 in Wu et al. 2010; at day 9), the modelled particles size
increases as experiment continues. It is consistent with the visual
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Figure 6. Imaginary conductivity spectra of calcite precipitation on glass
beads as a function of time in days (after the beginning of the experiment)
before the pore clogging by the calcite precipitates (a) and during the pore
clogging by the calcite precipitates (b). Imaginary conductivities inferred
from the complex conductivity model are represented by the lines and the
symbols represent the imaginary conductivity measurements of Wu et al.
(2010).

observations from scanning electron microscopy (SEM) images in
the experiment (Wu et al. 2010). The calcite particles increase ap-
proximately from less than 5 to 20 µm (100 µm maximum), as
reported by Wu et al. (2010). The adjusted cementation exponent
and the formation factor increase with time during the first phase
of calcite precipitation experiment, from 1.35 (day 2) to 1.9 (day 9)
and 5 (day 2) to 13 (day 9), respectively (Fig. 8). The increase of the
cementation exponent of calcite particles with time corresponds to
the flattening of calcite particles, that is individual calcite crystals
aggregate into larger but flatter calcite grains because calcite crys-
tals grow laterally and come in contact with each other. Wu et al.
(2010) observed flattened and aggregated calcite particles at the end
of their calcite precipitation experiment (Fig. 8).

In the differential effective medium theory applied to granu-
lar porous media, the cementation exponent increases from 1.5
(spheres) to 4 (highly oblate particles) when the aspect ratio of the
particle increases (Mendelson & Cohen 1982). As calcite particles
flatten during their precipitation on the glass beads surface, their as-
pect ratio increases and then their cementation exponent increases
from 1.35 to 1.9 in our study. A value of 2 for the cementation
exponent of the particles corresponds to the cementation exponent

Figure 7. Evolution of the computed particle size distribution of calcite
particles during calcite precipitation experiment obtained from the relaxation
time distribution (RTD) code (Florsch et al. 2014).

value of sandstones (Revil et al. 1998). Calcite crystals are assumed
to initially have a cementation exponent of 1.35 because they are
rhombohedral and not spherical (Guichet et al. 2006). Cementa-
tion exponents of granular porous media lie in the range [1.2−4]
(Mendelson & Cohen 1982).

As the calcite precipitation experiment continued over 9 days,
the clogging in the pore space between glass beads starts to occur
in the sample holder because glass beads are entirely coated by
calcite precipitates. Wu et al. (2010) observed using scanning elec-
tron microscopy that pores started to be occupied by precipitated
calcite at the bottom of their sample holder at the end of their
precipitation experiment (during the last 3 days of the experiment,
fig. 6g of Wu et al. 2010). At the second stage of the calcite pre-
cipitation experiment, the cementation exponent of calcite particles
and the formation factor of glass beads pack decrease with time as
shown in Fig. 8, from 1.9 to 1.65 and 13 to 10, respectively. The
decrease of the cementation exponent of calcite particles with time
suggests that more dispersed and smaller calcite crystals polarize
as experiment continues. The modelled particle size distribution
obtained from the inverted imaginary conductivity spectra moves
towards smaller particles as experiment continues (Figs 6b and 7b).
Large calcite aggregates spread over multiple glass beads during
the clogging process and they do not play an important role in
the measured complex conductivity spectra because they are too
large to polarize in the investigated frequency range. Only new and

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/209/1/123/2893452 by guest on 26 M

arch 2021



134 P. Leroy et al.

Figure 8. Computed particles cementation exponent (m) and formation factor F changes during the calcite precipitation experiment of Wu et al. (2010). The
cementation exponent and formation factor of the glass beads pack where calcite precipitation occurs have a different trend of changes before and after the
starting of the pore clogging (day 9).

Figure 9. In-phase conductivity of the calcite precipitation experiment of
Wu et al. (2010). In-phase conductivities inferred from the complex con-
ductivity model are represented by the line and the symbols represent the
real conductivity measurements of Wu et al. (2010).

remaining smaller calcite crystals contribute to the complex sur-
face conductivity of glass beads pack at the second stage of the
calcite precipitation experiment. Our complex conductivity model
was also able to reproduce the in-phase conductivity data measured
by Wu et al. (2010) from day 2 to day 12 after the beginning of the
experiment (Fig. 9). The sample conductivity is roughly constant
from day 2 to day 12 because the decreasing in-phase conductiv-
ity due to the increasing formation factor is compensated by the
increasing surface conductivity of calcite particles from day 2 to
day 9 and the decreasing surface conductivity of calcite particles
is compensated by the increasing in-phase conductivity due to the
decreasing formation factor from day 9 to day 12.

Our estimation of the evolution of the size and shape of calcite
particles precipitating on glass beads according to SIP measure-
ments and mechanistic models can be useful to monitor the trans-

port properties such as the permeability of sandstones containing
saline solutions favouring calcite precipitation. Indeed, permeabil-
ity can be estimated according to the particle size and shape (Revil
& Cathles 1999; Revil & Florsch 2010). We also showed that the
Stern layer of calcite controls the measured imaginary conductivity
response of glass beads pack reported in Wu et al. (2010) and that the
diffuse layer polarization cannot be ignored because it significantly
decreases the relaxation time of the Stern layer of calcite.

4 C O N C LU S I O N S

A mechanistic complex conductivity model was developed to inter-
pret complex conductivity measurements of calcite precipitation on
glass beads. The complex conductivity model was combined with a
basic Stern model (BSM) of the calcite/water interface and consid-
ers the electrochemical polarization of the Stern and diffuse layers
surrounding calcite particles. In our conductivity model, the Stern
layer is assumed to control the polarization response of the porous
medium. However, the effects of the diffuse layer on the polariza-
tion of the Stern layer are also considered. The polarized diffuse
layer is assumed to decrease the relaxation time of the polarized
Stern layer. Our complex conductivity model depends on the sur-
face charge density of the Stern layer and on the electrical potential
at the onset of the diffuse layer, which were computed by our BSM
and kept constant during the simulation of the calcite precipitation
experiment. The particle size distribution and cementation expo-
nent describing the shape of calcite particles were inverted from
imaginary conductivity measurements.

Our complex conductivity model reproduces very well the com-
plex conductivity measurements and gives the evolution of the
particle size distribution and shape during the calcite precipita-
tion experiment. These geometrical parameters are of primary im-
portance to monitor the transport properties such as the perme-
ability of sandstones containing saline solutions favouring calcite
precipitation. Adjusted particle size distribution and cementation
exponent were in agreement with the microscopy observations of
the evolution of the pore structure and connectivity during calcite
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precipitation. The kinetics of calcite precipitation on glass beads
are described by considering two different stages of calcite precipi-
tation, one before the pores clogging where modelled particle size
increases with time due to the growth of discrete calcite crystals,
and another during the start of the pores clogging where only the
smaller particles may influence the polarization response. During
the first stage of calcite precipitation, the cementation exponent of
calcite particles increases with time because of the flattening of
precipitating calcite particles. Individual calcite crystals aggregate
into larger but flatter calcite grains because precipitating calcite
crystals grow laterally and come in contact with each other. During
the second stage of calcite precipitation, the cementation exponent
of calcite particles decreases with time because only dispersed and
smaller calcite crystals may polarize. Aggregates of calcite parti-
cles lying over multiple glass beads may not polarize sufficiently in
the investigated frequency range [0.1−10000 Hz] at this stage. Our
combined surface complexation and complex conductivity models
also show that the Stern layer of calcite may control the polarization
response of glass beads covered by calcite particles. Our models
show in addition that the polarization of the diffuse layer decreases
significantly the relaxation time of the polarized Stern layer because
of the high surface charge density of the Stern layer and of the low
differential capacitance of the diffuse layer.

In the future, spectral induced polarization measurements will
be performed on calcite considering the effects of the impedances
of the potential electrodes on the measured voltage. Additional
characterization measurements will also be performed to check
the electrochemical parameters such as the zeta potential and the
geometrical parameters of the complex conductivity model such as
the particle size distribution and the particles shape.
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A P P E N D I X A

In this appendix, we show a method to obtain an analytical solution
of the Schwarz (1962) theory to describe Stern layer polarization
when different types of monovalent and multivalent counter-ions are
adsorbed at the Stern layer, following the calculations of Lyklema
et al. (1983).

A spherical particle of radius a covered by a thin layer of bound
counter-ions and immersed in an aqueous electrolyte is considered.
The particle has a complex electrical conductivity σ ∗

s and dielectric
permittivity εs

∗ and is surrounded by an aqueous electrolyte of
complex electrical conductivity σ ∗

w and dielectric permittivity εw
∗.

At thermodynamic equilibrium (absence of ions fluxes), ions
are assumed homogeneously distributed in the thin layer of bound
counter-ions, which has an initial surface charge density Q0

b (in
C m−2) (Davis et al. 1978). According to the triple layer model
(TLM) of Davis et al. (1978), the surface charge density of the Stern
layer can be computed as a function of the surface site densities of
adsorbed counter-ions and is described by:

Q0
b =

P∑
i=1

qi�
b0
i , (A1)

where P is the number of different counter-ions in the Stern layer,
qi = ±ezi is the ion charge (‘+’ stands for cations and ‘−’ stands for
anions), e is the elementary charge (of value ∼1.602 × 10−19 C), zi is
the ions valence, and �b0

i is the surface site density of bound counter-
ions i (for instance Na+ or Ca2+) at thermodynamic equilibrium (in
sites m−2).

The medium is now submitted to an external alternating electric
field of angular frequency ω (in rad s−1) whose magnitude E (in
V m−1) is given by:

E = E0eiωt , (A2)

where t is the time (in s).
When the alternating electric field is applied to the particle, the

counter-ions distribution is not homogeneous anymore, and the sur-
face charge density and surface site density of adsorbed counter-ions
become Qb and �b

i , respectively. These two parameters are linked
to each other by:

Qb =
P∑

i=1

qi�
b
i . (A3)

The electric field along the surface is of the same order of magnitude
as the external electric field or even smaller, and hence the surface
charge density and counter-ions surface site density deviate only
little from their random distribution, that is:

Qb − Q0
b = Qb  Q0

b, (A4)

�b
i − �b0

i = �
b
i  �b0

i . (A5)

Furthermore, according to eqs (A2), (A4) and (A5), we obtain:

∂ Qb

∂t
= ∂ Qb

∂t
= iωQb, (A6)

�b
i

∼= �b0
i . (A7)

According to Schwarz (1962), under the applied alternating elec-
tric field, counter-ions in the Stern layer first electromigrate along
the particle surface and then diffuse back to restore their initial ho-
mogeneous distribution. These ions surface fluxes in the Stern layer
can be described by the Nernst–Planck equation, which is written
as (Revil & Leroy 2004; Revil & Linde 2006):

ji = je
i + jd

i + jw = −qi u
b
i �

b
i ∇ϕb − ub

i kB T ∇�b
i + �b

i vw, (A8)

where ji is the total surface flux, je
i is the surface electromigration

flux, and jd
i is the surface diffusion flux of ion i (in mol m−2 s−1),

jw is the surface water flux (electro-osmosis), ub
i is the tangential

velocity of ion i per unit force (in m2 s−1 V−1 C−1, ub
i = βb

i /|qi |),
ϕb is the electrical potential at the Stern plane (in V), kB is the
Boltzmann constant (of value ∼1.381 × 10−23 J K−1), and vw is the
local velocity of the pore water (in m s−1).

No water flow is considered in the Stern layer because of the
high viscosity of this layer (Lyklema et al. 1998). This implies
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that vw = 0 m s−1 in the Stern layer. This assumption considerably
simplifies the calculation of the ions surface fluxes in the Stern
layer because only the Nernst–Planck equation must be solved to
describe the ions surface fluxes, that is it is not necessary to solve
simultaneously the Nernst–Planck and Navier–Stokes equations (for
the water flow) to describe the ions and water surface fluxes.

We consider now a spherical coordinate system centred on the
particle, that is with r = 0 at the centre of the particle and with θ = 0
in the direction of E. In absence of water flow (electro-osmosis is
neglected), and in spherical coordinates, eq. (A8) then becomes:

ji = −qi ub
i �

b
i

a

∂ϕb

∂θ
− ub

i kB T

a

∂�b
i

∂θ
. (A9)

The total current density in the bound layer Js (in A m−2) is written
as:

Js =
P∑

i=1

qi ji . (A10)

By combining eqs (A9) and (A10), the total current density resulting
from electrochemical polarization of the Stern layer is written as:

Js = − 1

a

(
P∑

i=1

qi�
b
i qi u

b
i

∂ϕb

∂θ
+

P∑
i=1

qi u
b
i kB T

∂�b
i

∂θ

)
, (A11)

Js = − 1

a

(
P∑

i=1

qi�
b
i

qi Db
i

kB T

∂ϕb

∂θ
+

P∑
i=1

qi Db
i

∂�b
i

∂θ

)
, (A12)

where Db
i = ub

i kB T is the tangential diffusion coefficient of the
counter-ions in the Stern layer (in m2 s−1).

We make now the assumption that all the different counter-ions
in the Stern layer have the same tangential diffusion coefficient
Db. Furthermore, the surface site densities of counter-ions in the
Stern layer only deviate little from their initial distribution, that is
�b

i
∼= �b0

i . Under these two assumptions, eq. (A12) becomes:

Js = − Db

a

(
P∑

i=1

qi�
b0
i

qi

kB T

∂ϕb

∂θ
+

P∑
i=1

qi
∂�b

i

∂θ

)
. (A13)

Seeing eqs (A1) and (A13), it becomes now obvious to relate the
surface current density Js to the surface charge density of the Stern
layer at thermodynamic equilibrium Q0

b by making a third approx-
imation regarding the electromigration flux of counter-ions (first
term of eq. A13). We assume in eq. (A13) that qi = q with q the
averaged electrical charge of the counter-ions in the Stern layer.
Following this assumption and using eqs (A1) and (A4), eq. (A13)
becomes:

Js = − Db

a

(
q Q0

b

kB T

∂ϕb

∂θ
+ ∂ Qb

∂θ

)
, (A14)

which is very close to the eq. (6) of Lyklema et al. (1983).
The Schwarz (1962) charge conservation condition contains no

normal flow and is written (Lyklema et al. 1983):

∇ · Js = −∂ Qb

∂t
. (A15)

By combining eqs (A6), (A14) and (A15), we obtain in the spherical
coordinate system (Lyklema et al. 1983):

iωQb = Db

a2

1

sin θ

∂

∂θ

[
sin θ

(
q Q0

b

kB T

∂ϕb

∂θ
+ ∂ Qb

∂θ

)]
, (A16)

which is similar to eq. (15) of Schwarz (1962) and eq. (19) of
Lyklema et al. (1983). Therefore, eq. (A16) can be solved using the

same boundary conditions than in Schwarz (1962) and its solution
is (Schwarz 1962; Lyklema et al. 1983):

Qb = −q Q0
b/kB T

1 + iωτb
ϕb, (A17)

τb = a2

2Db
, (A18)

where τb is the relaxation time (in s) associated with the elec-
trochemical polarization of the Stern layer. By replacing Qb in
eq. (A14) by its expression as a function of ϕb in eq. (A17), the
surface current density Js can be expressed as a function of the gra-
dient of the electrical potential at the Stern layer and hence surface
electric field. It follows:

Js = − Dbq Q0
b

akB T

iωτb

1 + iωτb

∂ϕb

∂θ
eθ , (A19)

Js = Dbq Q0
b

kB T

iωτb

1 + iωτb
Es . (A20)

The surface current density can also be expressed as a function of
the specific surface conductivity �s (in S) and surface electric field
using

Js = �sEs . (A21)

By combining eqs (A20) and (A21), the specific surface conduc-
tivity due to the polarization of the surface charge density of the
Stern layer is given by:

�s = �b
s

iωτb

1 + iωτb
, (A22)

�b
s = Dbq Q0

b

kB T
. (A23)

In the main text of the manuscript, we choose to write only Qb

for the surface charge density of the Stern layer at thermodynamic
equilibrium to simplify the writing of the manuscript. Furthermore,
the Nernst–Einstein equation can be used to simplify eq. (A23). The
Nernst–Einstein equation is written as:

Db = kB T

|q| βb, (A24)

where βb is the averaged ion mobility in the Stern layer (in
m2 s−1 V−1). By combining eqs (A23) and (A24), we finally obtain
this equation for the specific surface conductivity of the Stern layer:

�b
s = ±βb Qb, (A25)

where ‘+’ stands for positive and ‘−’ stands for negative surface
charge density in the Stern layer, respectively (�b

s is always posi-
tive).

Eq. (A25) shows that the specific surface conductivity of the Stern
layer can be written as a function of the product of the averaged
ion mobility in the Stern layer with the surface charge density of
the Stern layer. Leroy et al. (2008) wrote that the specific surface
conductivity of the Stern layer can be written as a function of
the product of the ion mobility with the ion charge and the ion
surface site density in the Stern layer (eq. 59 of Leroy et al. 2008).
Therefore, our approach allows extending very easily the Stern
layer polarization model of Leroy et al. (2008) to complex aqueous
solutions using the assumption that all the counter-ions in the Stern
layer have approximately the same tangential diffusion coefficient.
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A P P E N D I X B

Schwarz theory does not consider effects of the polarization of
the diffuse layer on the polarization of the Stern layer (Lyklema
et al. 1983; Ye et al. 2015; Niu et al. 2016). According to Lyklema
et al. (1983), the Stern layer is almost completely screened by the
diffuse layer and hence the polarization of the diffuse layer cannot
be ignored.

Lyklema et al. (1983) considered the effects of the tangential
oscillations of the diffuse layer on the polarization of bound ions
in the Stern layer. For that purpose, they identified the electrical
potential drop over the diffuse layer, ϕd , as the electrical potential
drop between r = a where ϕ = ϕb and r = a + κ−1 (κ−1 is the
Debye length, Hunter 1981) where ϕ = ϕe (the subscript ‘e’ stands
for external electrical potential), hence:

ϕd = ϕb − ϕe. (B1)

According to eq. (B1), the tangential electric field in the Stern layer
is written as:
∂ϕb

∂θ
= ∂ϕe

∂θ
+ ∂ϕd

∂θ
, (B2)

∂ϕb

∂θ
= ∂ϕe

∂θ
− 1

Cd

∂ Qd

∂θ
, (B3)

where Cd is the differential capacitance of the diffuse layer (in
C m−2 V−1) defined by (Hunter 1981):

Cd = −∂ Qd

∂ϕd
. (B4)

Similarly to the surface charge density of the Stern layer, Qb, the
surface charge density of the diffuse layer, Qd , can be written as a
function of surface charge density of the diffuse layer at thermo-
dynamic equilibrium, Q0

d , and a small perturbation associated with
diffuse layer polarization, Qd , hence:

Qd − Q0
d = Qd  Q0

d , (B5)

∂ Qd

∂θ
= ∂ Qd

∂θ
. (B6)

The EDL as a whole is always approximately electroneutral at any
θ , hence:

Q0 + Qb + Qd = 0, (B7)

where Q0 is the surface charge density at the ‘0-plane’ located at
the mineral surface (Hunter 1981).

By combining eqs (A4), (B5) and (B7) and considering elec-
troneutrality condition for the EDL at thermodynamic equilibrium,
we obtain:

Qb = −Qd , (B8)

which means that perturbation of the polarized diffuse layer exactly
cancels perturbation of the polarized Stern layer.

By combining eqs (B3), (B6) and (B8), we obtain for the tangen-
tial electric field in the Stern layer:

∂ϕb

∂θ
= ∂ϕe

∂θ
+ 1

Cd

∂ Qb

∂θ
. (B9)

By replacing ∂ϕb/∂θ in eq. (A16) by its expression in eq. (B9), we
obtain:

iωQb = Db

a2

1

sin θ

∂

∂θ

×
{

sin θ

[
q Q0

b

kB T

(
∂ϕe

∂θ
+ 1

Cd

∂ Qb

∂θ

)
+ ∂ Qb

∂θ

]}
, (B10)

iωQb = Db

a2

1

sin θ

∂

∂θ

×
{

sin θ

[
q Q0

b

kB T

∂ϕe

∂θ
+

(
1 + q Q0

b

kB T Cd

)
∂ Qb

∂θ

]}
. (B11)

By assuming that the differential capacitance of the diffuse layer,
Cd , does not dependent on θ , eq. (B11) becomes:

iωQb = Db M

a2

1

sin θ

∂

∂θ

{
sin θ

[
q Q0

b

kB T

1

M

∂ϕe

∂θ
+ ∂ Qb

∂θ

]}
, (B12)

M = 1 + q Q0
b

kB T Cd
. (B13)

Eq. (B12) is similar to eq. (A16), except that Db and ϕb in eq. (A16)
are replaced by Db M and ϕe/M , respectively, in eq. (B12). There-
fore, eq. (B12) can be solved using the same boundary conditions
than in Schwarz (1962) and its solution is (Schwarz 1962; Lyklema
et al. 1983):

Qb = −q Q0
b/kB T

1 + iωτb

ϕe

M
, (B14)

τb = a2

2Db M
, (B15)

where τb is the relaxation time (in s) associated with the electro-
chemical polarization of the Stern layer.

By replacing in eq. (A14) ∂ϕb/∂θ and ∂ Qb/∂θ by their expres-
sions in eqs (B9) and (B14), respectively, the following equation is
obtained for the surface current density:

Js = − Dbq Q0
b

akB T

(
iωτb

1 + iωτb

∂ϕe

∂θ

)
eθ , (B16)

Js = Dbq Q0
b

kB T

(
iωτb

1 + iωτb

)
Es . (B17)

According to eqs (A21)–(A25) and (B17), the specific surface con-
ductivity due to the polarization of the surface charge densities of
the Stern and diffuse layers is given by:

�s = �b
s

iωτb

1 + iωτb
, (B18)

�b
s = ±βb Qb. (B19)

Eqs (B15) and (B18) show that the polarized diffuse layer only
decreases the relaxation time of bound counter-ions in the Stern
layer because M ≥ 1. The parameter M can be calculated from the
differential capacitance of the diffuse layer Cd , which can be com-
puted from the derivative of the surface charge density of the diffuse
layer Qd with respect to the electrical potential at the beginning of
the diffuse layer ϕd (eq. B4).

Assuming that the electrical potential in the diffuse layer only
varies as a function of the distance of the ion from the beginning
of the diffuse layer, the surface charge density of the diffuse layer
is computed according to the volume charge density in the diffuse
layer ρ (in C m−3) using (Hunter 1981):

Qd =
∫ x=∞

x=0
ρ dx, (B20)

where x is the distance of the ion from the beginning of the diffuse
layer (in m). According to the Poisson equation, the volume charge
density in the diffuse layer is written as:

ρ = −εw

d2ϕ

dx2
. (B21)
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By combining eqs (B20) and (B21), and integrating the resulting
equation with respect to x, we obtain:

Qd = εw

dϕ

dx

∣∣∣∣
x=0

. (B22)

The Poisson–Boltzmann equation, which describes the electrical
potential distribution at the solid/water or water/gas interface is
(Hunter 1981; Lyklema 1995; Leroy et al. 2015):

d2ϕ(x)

dx2
= − 1

εw

N∑
i=1

qi 1000NACw
i exp

[
−qiϕ(x)

kB T

]
, (B23)

where N is the number of different types of counter-ions and co-
ions in the diffuse layer and NA is the Avogadro number (of value
∼6.022 × 1023 mol−1).

By multiplying both sides of eq. (B23) by 2dϕ/dx and integrating
the resulting equation with respect to x, we obtain:∫ x=∞

x=0

2dϕ

dx

d2ϕ

dx2
dx = − 2

εw

N∑
i=1

qi 1000NACw
i

×
∫ ϕ=0

ϕ=ϕd

exp

(
− qiϕ

kB T

)
dϕ, (B24)

∫ x=∞

x=0

d

dx

(
dϕ

dx

)2

dx = − 2

εw

N∑
i=1

qi 1000NACw
i

×
∫ ϕ=0

ϕ=ϕd

exp

(
− qiϕ

kB T

)
dϕ, (B25)

dϕ

dx

∣∣∣∣
x=0

= ±
√√√√2kbT

εw

N∑
i=1

1000NACw
i

[
exp

(
−qiϕd

kB T

)
− 1

]
. (B26)

The surface charge density of the diffuse layer is finally calculated
as a function of the electrical potential at the beginning of the diffuse
layer by combining eqs (B22) and (B26), hence:

Qd = ±
√√√√2εwkbT

N∑
i=1

1000NACw
i

[
exp

(
−qiϕd

kB T

)
− 1

]
, (B27)

where ‘+’ stands for negative electrical potentials ϕd and ‘−’ stands
for positive electrical potentials ϕd .

By deriving Qd with respect to ϕd in eq. (B27), we obtain an ex-
pression for the differential capacitance of the diffuse layer (eq. B4),
hence:

Cd = −∂ Qd

∂ϕd
=

√
εw

2kB T

N∑
i=1

qi 1000NACw
i exp

(
−qiϕd

kB T

)
√

N∑
i=1

1000NACw
i

[
exp

(
−qiϕd

kB T

)
− 1

] ,

(B28)

which can be used to compute the M factor entering into eq. (B15)
when different monovalent and multivalent ions are in the diffuse
layer.
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