
HAL Id: hal-01617301
https://hal.science/hal-01617301

Submitted on 30 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A scaling-less Newton-Raphson pipelined
implementation for a fixed-point inverse square root

operator
Erwan Libessart, Matthieu Arzel, Cyril Lahuec, Francesco Andriulli

To cite this version:
Erwan Libessart, Matthieu Arzel, Cyril Lahuec, Francesco Andriulli. A scaling-less Newton-Raphson
pipelined implementation for a fixed-point inverse square root operator. NEWCAS 2017 : 15th IEEE
International New Circuits and Systems Conference, Jun 2017, Strasbourg, France. �10.1109/NEW-
CAS.2017.8010129�. �hal-01617301�

https://hal.science/hal-01617301
https://hal.archives-ouvertes.fr

A scaling-less Newton-Raphson pipelined
implementation for a fixed-point inverse square root

operator
Erwan Libessart∗, Matthieu Arzel∗, Cyril Lahuec∗ and Francesco Andriulli†

∗Electronics Department, †Microwave Department
IMT Atlantique, Brest, France

Email: firstname.lastname@imt-atlantique.fr

Abstract—The inverse square root is a common operation
in digital signal processing architectures, in particular when
matrix inversions are required. The Newton-Raphson algorithm
is usually used, either in floating or in fixed-point formats.
With the former format, the well-known Fast inverse square
root computation is based on a 32-bit integer constant, which
is allowed by the standardized format of the mantissa. For the
fixed-point format, there are many possibilities, which usually
force a design with scaling of the input in order to respect
a pre-determined work range. Having the input in a known
range makes it possible to compute a first approximation with
coefficients stored in memory. In this paper, a novel generic
architecture which does not require scaling is proposed. This
design is totally pipelined, ROM-less and can be directly used
in any architecture. The implementation is optimized to reach
the maximum clock frequency offered by the DSP cells of Xilinx
FPGA. This frequency is higher than the one available by using
memory blocks.

I. INTRODUCTION

Signal processing requires many mathematical operators
to perform various algorithms. These operators often need
to be hard implemented on chip to speed up execution time.
Many are difficult to implement especially those requiring
calculating the inverse such as the inverse of a square root.
This operation is useful for various scientific fields where
matrix inversion is required, such as telecommunications [1]
or EEG systems [2]. A simple method to compute the inverse
square root is to calculate the reciprocal of the input, and
then the square root of the result. Both operations can be
implemented easily with the CORDIC algorithm [3]. There
are some issues with this method, for example necessary
resources or long latency, when the size of the input increases.
A more effective way is the Newton-Raphson method. It
is an iterative algorithm in which the convergence speed is
determined by the precision of the first approximation. In
floating-point format, the well-known Fast inverse square
root is based on a 32-bit integer constant which is used to
determine this approximation [4], [5]. In fixed-point format,
it is mandatory to have the input in a certain working range,
for example [0.25, 1[, [0.5, 1] or [1, 2[[6]–[8]. The use of this
method also requires re-scaling the output. The computation
and the storage of coefficients are often adapted to each
use-case in order to have a high-precision first approximation.
This means that additional work is necessary to integrate

this operator as an IP core in a whole signal processing
architecture.

In this paper, a method for implementing the Newton-
Raphson algorithm without scaling the data is proposed. So a
generic IP core adapted for any design can be proposed. This
is possible thanks to the computation of an inverse square
root’s first approximation, which allows meeting the condition
of convergence, whatever the value of the algorithm’s input.
Moreover, the proposed method does not require any memory
block to store coefficients and can be fully pipelined, which
permits high-frequency computing. Such a design allows to
reach higher frequency than one which uses RAM blocks
because of inherent characteristics of FPGA DSP cells and
memory blocks.
This paper is organized as follows. Section II presents the
Newton-Raphson algorithm and its typical use. The technique
that allows to avoid the scaling in described in Section III.
Then, the implementation of the whole Newton-Raphson algo-
rithm is described in Section IV. Section V presents the results
of the scaling-less Newton-Raphson FPGA implementation.
Finally, Section VI concludes the paper.

II. RELATED WORK

The Newton-Raphson method is an iterative algorithm
which can be used to compute the inverse square root of a
number a in which each iteration doubles the number of bits
of precision. xn, the final estimation of 1√

a
, is obtained after

n iterations of this equation:

xi+1 =
xi

2
(3− ax2

i) (1)

where x0 is the first approximation of 1√
a

, and is another
input of the algorithm. This method is usable for both formats
of representation: fixed-point and floating-point. The usual
approach is to consider that a belongs to a predefined interval
as [1, 2[, which is the range of the floating-point’s mantissa or
[0.5, 1[, [0, 1[[7], [9]. With a belonging to a predetermined
range, it is possible to compute the first approximation with
great precision by using polynomial method. So this first
step requires the use of a memory block in order to store
the different coefficients. With this method, the obtained

precision for the first approximation decreases the number of
necessary Newton-Raphson iterations. This strategy requires
scaling at the input and output of the algorithm. So this
method requires pre- and post-processing in order to manage
the scaling which brings additional resources and constraints,
and consequently additional integration time.

In this work, an alternative method for fixed-point rep-
resentation without any scaling of the data, whatever the
initial value, is proposed. So the scaling-less Newton-Raphson
architecture is ”ready to use” and does not need any additional
element. Moreover, it allows to reach higher frequency than
an architecture which stores coefficients.

III. CHOICE OF THE FIRST APPROXIMATION

The main idea is based on the condition that has to be
respected in order to be sure that the algorithm converges:

0 < a× x2
0 < 3. (2)

The strategy presented here consists in adapting the computa-
tion of x0 to a, whereas in the literature a is adapted to the
method of x0’s computation, by being in a predefined range.
To the authors’ knowledge, no other technique to avoid the
scaling can be found in the literature.
It is important to note that the closer to 1 the product is, the
faster the convergence is. In the following, a is assumed to be
in uQn.n format which means that it is an unsigned number
with n integer bits and n fractional bits. If the input does not fit
this condition, it is simple to concatenate some zeros in order
to have the desired symmetry. The output 1√

a
is represented

in the same format.
Let n be the number of integer bits. a is represented in base

2 as:
a = an−1an−2 . . . a0a−1 . . . a−n. (3)

Then let j be the index of the leading one of a. So a respects
the following inequality:

2j ≤ a < 2j+1. (4)

Then a value for x0 which respects the condition of con-
vergence can be deduced:

x0 = 2−b
(j+1)

2 c. (5)

This implies:
x2
0 = 2−2b

(j+1)
2 c. (6)

If j is odd:
x2
0 = 2−(j+1), (7)

and then:
0.5 ≤ a× x2

0 < 1. (8)

Else if j is even:
x2
0 = 2−j , (9)

and then:
1 ≤ a× x2

0 < 2. (10)

From (8) and (10):

0.5 ≤ a× x2
0 < 2. (11)

Equation (11) implies that x0 determined by (6) allows meet-
ing the condition of convergence. But the precision of this first
approximation can be improved in the case where j is even.
For this case, x0 can be determined as:

x0 = 2−
j
2+1 + 2−

j
2+2. (12)

Then:
x2
0 = 0.5625× 2−j , (13)

and the product with a gives:

0.5625 ≤ a× x2
0 < 1.125, (14)

which is more precise then the result in (10).
Finally, x0, the first approximation of 1√

a
, is given by:

x0 = 2−
j+1
2 if j is odd (15)

x0 = 2−(
j
2+1) + 2−(

j
2+2) if j is even (16)

where j is the index of the leading one of a.
And therefore: 0.5 ≤ a× x2

0 < 1.125.

IV. THE INVERSE SQUARE ROOT ARCHITECTURE

Figure 1 shows the scaling-less Newton-Raphson architec-
ture for the inverse square root operator. The FA block is the
first approximation block described in Section III. This block
is composed of two parts. The first one is an LOD (Leading
One Detector) computation. The method used for the LOD
computation consists in the following steps:

1) Take the bit-reversal of a named BR(a)
2) Calculate the two’s complement of BR(a)
3) Apply a bitwise AND between this two’s complement

and BR(a)
The result of this bitwise operation gives exactly the value

2−(j+1) which is the bit-reversal of LOD(a). The demonstra-
tion of this theory is quite simple. From (4) a is represented
like this:

a = 0 . . . 01aj−1 . . . a−n. (17)

So BR(a) is equal to:

BR(a) = a−n . . . aj−110 . . . 0. (18)

And for its two’s complement TC(BR(a)):

TC(BR(a)) = a−n . . . aj−110 . . . 0. (19)

And then the bitwise AND operation gives the bit-reversal of
LOD(a) as below.

a−n . . . aj−110 . . . 0 & a−n . . . aj−110 . . . 0 = 2−(j+1).
(20)

With this method, the critical path is located in the two’s
complement computation. In order to reduce this path, this

(a)

(b)

Fig. 1. Architecture for the inverse square root operator (a) First approximation (b) Newton-Raphson iterations

step is realized in two clock cycles. As a reminder, the two’s
complement of BR(a) is given by:

TC(BR(a)) = a−n a−n+1 . . . an−2 an−1 + 1. (21)

This binary addition is split in two half additions. During
the first cycle, the operation which is done is:

ADDfirsthalf = c a0 . . . an−2 an−1 + 1, (22)

where c is the binary carry for this addition. The other bits of
BR(a) are simply delayed.

During the second clock cycle, the other half addition is
computed:

ADDsecondhalf = a−n . . . a−1 + c. (23)

Both half results are then concatenated in order to have the
required TC(BR(a)).

This method for the LOD computation does not depend on
the size of the input so it is possible to implement it in a
generic way with a Hardware Description Language (HDL).

The Approximation block in Figure 1 has two functions.
First, it transmits a

2 to the first Newton-Raphson block. Then,
the LOD(a) is used to compute the first approximation
defined by (15) and (16). As a reminder, LOD(a) is a uQn.n
data which copies only the leading one bit of a. The equations
can be interpreted as, for all index i:

if LOD(a)2i−1 = 1 then x0−i = 1, (24)

if LOD(a)2i = 1 then x0−(i+1) = 1 and x0−(i+2) = 1.
(25)

(24) and (25) gives the logical equation to generate x0,
which is implemented in the Approx block presented in Figure
1:

x0i = LOD(a)−2i−1 + LOD(a)−2i−2 + LOD(a)−2i−4.
(26)

So each bit of x0 is generated by a 3-input OR. This operation
is only computed for the bits of x0 indexed between −n−32 and
n−1
2 . The FA block transmits the value of a

2 and delivers x0

in 2n bits in three clock cycles. Its implementation is totally
generic and can be adapted to any input sizes.

A Newton-Raphson iteration block (NRi) in Figure 1 com-
putes the ith evaluation xi (1). Each of these blocks contains 3
multipliers and is totally pipelined. Bus reductions are required
during the process. In fact, the different arithmetic operations
generate useless bits for the required precision so these can
be ignored. All the blocks are identical, except for the last
one, which has not to transmit the value of a. The ouput of
the operator is in uQn.n format, so it provides an accuracy
of 2−n.

V. IMPLEMENTATION RESULTS

This section is composed of two parts. First, the operator
presented in this paper is compared to the solution of [8] on
a Virtex-6 target. Then, the results will be discussed in terms
of maximum available frequency.

A. Comparison on Virtex-6 FPGA

Table I presents the implementation results of the solution
presented in this paper in comparison with [8]. Those
results are a 16-bit inverse square root. In [8], the format
used is signed Q1.14. So the effective computation is on
15 bits. This predefined format allows to compute a first
approximation based on memory and address generator.

Only one Newton-Raphson iteration is required thanks to
the precision provided by this memory. The architecture
presented in Figure 1 requires 3 iterations. This explains
that it requires slightly more LUTs, registers and DSP cells
and it needs more clock cycles. In [8]’s work, the critical
path is located in the first approximation part and limits
the maximum frequency at 351.9 MHz. Comparatively, the
architecture presented in Figure 1 allows to reach a maximum
frequency of 638.6 MHz. So the proposed operator in this
paper requires more resources but delivers the benefits of
being size generic, reaching higher computation frequency
and being easily integrated as an IP core.

TABLE I
FPGA IMPLEMENTATION RESULTS ON VIRTEX-6

Proposed design [8]

Registers 258 160

LUTs 203 160

DSP48E1s 9 4

BRAMs 0 1

Clock cycles 34 5

Max frequency (MHz) 638.6 351.9

B. Discussion on the results
Table II shows the implementation results of the scaling-less

inverse square root operator on the Virtex-7 690T FPGA. In
terms of resources, it is very similar to the results presented in
Table I. The main difference concerns the achieved frequency,
which increases from 638.6 MHz to 740 MHz. The latter
frequency is the highest frequency that can be achieved by
the DSP cells of the Virtex-7 FPGA family [10], [11].

It is true that the architecture presented in [8] can be fully
pipelined in order to increase the frequency of the design.
The critical path will be located in the Block RAM. For
example, on a Virtex-7 FPGA target a Block RAM limits
the architecture at 601 MHz [11]. This difference between
the maximum frequency of DSP cells and Block RAM also
applies the newer generation of Xilinx FPGA. In fact, for
the Virtex Ultrascale, the maximum frequency of the Block
RAM (660 MHz) is lower than the DSP cell one (741 MHz)
[12]. So, in addition to offering flexibility and ease of use, the
operator presented in this paper is better than memory-based
architectures for high throughput applications.

TABLE II
IMPLEMENTATION RESULTS: 16-BIT INVERSE SQUARE ROOT ON VIRTEX-7

690T

Registers 261

LUTs 221

DSP48E1s 9

BRAMS 0

Clock cycles 34

Max frequency (MHz) 740

VI. CONCLUSION

This paper presents a scaling-less fixed-point Newton-
Raphson implementation for an inverse square root operator.
It is possible to have a design in which no scaling is oblig-
atory by adapting the first approximation, which allows to
implement a ”ready to use” IP core. This adaptation is made
with a Leading One Detector operator, followed by a simple
logical operation. The proposed design is size generic in order
to be more flexible and save resources. The architecture is
totally pipelined, which allows to reach the maximum clock
frequency offered by FPGA DSP cells. This frequency is
higher than the one allowed by memory blocks, which are
not used in the design. Thus this is an architecture which can
be used directly and easily in every digital signal processing
architecture regardless of the representation format of the
input. Moreover, the presented work is available as an open-
source project [13].

REFERENCES

[1] C. Mahapatra, S. Mahboob, V. C. M. Leung, and T. Stouraitis, “Fast
Inverse Square Root Based Matrix Inverse for MIMO-LTE Systems,” in
2012 International Conference on Control Engineering and Communi-
cation Technology (ICCECT), Dec. 2012, pp. 321–324.

[2] K. J. Huang, W. Y. Shih, J. C. Chang, C. W. Feng, and W. C. Fang, “A
pipeline VLSI design of fast singular value decomposition processor
for real-time EEG system based on on-line recursive independent
component analysis,” in 2013 35th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), Jul.
2013, pp. 1944–1947.

[3] R. Andraka, “A survey of cordic algorithms for fpga based computers,”
in Proceedings of the 1998 ACM/SIGDA Sixth International Symposium
on Field Programmable Gate Arrays, ser. FPGA ’98. New
York, NY, USA: ACM, 1998, pp. 191–200. [Online]. Available:
http://doi.acm.org/10.1145/275107.275139

[4] “Fast inverse square root,” Oct. 2016, page Version ID: 747006619.
[Online]. Available: https://en.wikipedia.org/w/index.php?title=Fast
inverse square root&oldid=747006619

[5] J. L. V. M. Stanislaus and T. Mohsenin, “High performance compressive
sensing reconstruction hardware with QRD process,” in 2012 IEEE
International Symposium on Circuits and Systems, May 2012, pp. 29–32.

[6] M. Allie and R. Lyons, “A root of less evil [digital signal processing],”
IEEE Signal Processing Magazine, vol. 22, no. 2, pp. 93–96, Mar. 2005.

[7] H. C. Neto and M. P. Vestias, “Very low resource table-based FPGA
evaluation of elementary functions,” in 2013 International Conference
on Reconfigurable Computing and FPGAs (ReConFig), Dec. 2013, pp.
1–6.

[8] G. R. Prabhu, B. Johnson, and J. S. Rani, “FPGA Based Scalable Fixed
Point QRD Core Using Dynamic Partial Reconfiguration,” in 2015 28th
International Conference on VLSI Design, Jan. 2015, pp. 345–350.

[9] S. Niu, S. Aslan, and J. Saniie, “FPGA based architectures for high
performance adaptive FIR filter systems,” in 2013 IEEE International
Instrumentation and Measurement Technology Conference (I2MTC),
May 2013, pp. 1662–1665.

[10] Xilinx. (2016 (Accessed: 2017-02-10)) 7 series dsp48e1 slice-user guide.
[Online]. Available: http://www.xilinx.com/support/documentation/user
guides/ug479 7Series DSP48E1.pdf

[11] ——. (2016 (Accessed: 2017-02-10)) Virtex-7 t and xt fpgas
data sheet: Dc and ac switching characteristics. [Online].
Available: http://www.xilinx.com/support/documentation/data sheets/
ds183 Virtex 7 Data Sheet.pdf

[12] ——. (2016 (Accessed: 2017-02-10)) Virtex ultrascale fpgas
data sheet: Dc and ac switching characteristics. [Online].
Available: https://www.xilinx.com/support/documentation/data sheets/
ds893-virtex-ultrascale-data-sheet.pdf

[13] Removed for review.

