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A hybrid random walk method for the simulation of coupled conduction and linearized radiation transfer at local scale in porous media with opaque solid phases
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Heat transfer properties from ambient up to extremely high temperatures are a key feature of advanced thermal protection and thermal exchange materials -like ceramic foams or fiber assemblies. Because of their porous nature, heat transfer rests not only on conduction in opaque solids and on convection in pores, but also on radiation trough pores. The precise knowledge of the thermal behavior of these materials in these conditions is an issue. In a "virtual material" framework, we present a computational simulation tool for heat transfer in such materials, combining solid-phase conduction and linearized radiative transfer in open or closed radiating cavities with opaque interfaces. The software is suited to working in large 3D blocks as produced e. g. by X-ray CMT or by image synthesis. An original Monte-Carlo Mixed Random Walks scheme accounting for both di↵usion and radiation is presented and validated. The application to a real image of a fibrous medium is described and discussed, principally in terms of the influence of the di↵usion/radiation ratio on the e↵ective (large-scale) di↵usivity tensor.

Advanced thermostructural materials must be able to resist to mechanical and thermal loads at very high temperatures, while controlling heat transfer, bringing either thermal insulation, as in Thermal Protection Systems in atmospheric reentry of space objects [START_REF] Heng | Advanced materials for thermal protection system[END_REF][START_REF] Venkatapathy | Thermal protection system development, testing, and qualification for atmospheric probes and sample return missions: Examples for Saturn, Titan and Stardust-type sample return[END_REF] or thermal transfer, as in Concentrated Solar Power plants [START_REF] Barlev | Innovation in concentrated solar power[END_REF]. Many porous materials have been and are still being developed for these purposes, like carbon and ceramic foams [START_REF] Agrafiotis | Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation[END_REF] and fibrous media [START_REF] Tran | Phenolic impregnated carbon ablators (pica) as thermal protection systems for discovry missions[END_REF].

One of the crucial points in the engineering of such materials is to determine their thermophysical properties. At elevated temperatures, transfers in the bulk of materials may include simultaneous contributions from conduction in the solid phase (fibre, matrix, interphase) and from radiation via the pore space [START_REF] Modest | Radiative Heat Transfer[END_REF]. While modeling of the conductive transfer via these materials is well developed [START_REF] Singh | Computational aspects of e↵ective thermal conductivity of highly porous metal foams[END_REF][START_REF] Calmidi | The e↵ective thermal conductivity of high porosity fibrous metal foams[END_REF] things are not the same for the coupled conductive-radiative transfer. The analysis of the coupled transfer requires the use of adapted modeling tools that allow considering these di↵erent contributions. One of the fundamental problems is the disparity in nature of the two types of transport. On the one hand, the conductive transport is of easy modeling using classical methods of PDE solutions, such as finite elements ; on the other hand, the radiative transfer obeys to quite distinct equations, such as RTE (Radiative Transfer Equation), from which the resolution can be envisaged in di↵erent ways: discrete ordinates [START_REF] Truelove | Three-dimensional radiation in absorbing-emitting-scattering media using the discrete-ordinate approximation[END_REF] with a finite element resolution [START_REF] Zhang | Finite element method for modelling radiative transfer in semitransparent graded index cylindrical medium[END_REF][START_REF] Fiedler | Non-linear calculations of transient thermal conduction in composite materials[END_REF], finite di↵erences with discretization of space directions [START_REF] Milandri | Heat transfer by radiation and conduction in fibrous media without axial symmetry[END_REF], moments methods [START_REF] Berthon | An asymptotic preserving relaxation scheme for a moment model of radiative transfer[END_REF], Hottel zones method [START_REF] Hottel | Radiant heat exchange in a gas-filled enclosure: Allowance for nonuniformity of gas temperature[END_REF], etc . . . Classically, in the commercial codes of thermal calculation, the radiation in enclosed cavity is solved by the calculation of radiative exchanges between facets of a matrix (form factors) or by discrete ordinates. One of the most popular methods for the RTE resolution is ray tracing [START_REF] Zeghondy | Determination of anisotropic absorption and extinction coe cients of a tomographed real porous medium[END_REF][START_REF] Zeghondy | Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (rdfi)[END_REF][START_REF] Tancrez | Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique[END_REF][START_REF] Rousseau | Prediction of thermal radiative properties of an X-ray µ-tomographied porous silica glass[END_REF][START_REF] Loretz | Metallic foams : Radiative properties/comparison between di↵erent models[END_REF][START_REF] Loretz | Analytical modelling of the radiative properties of metallic foams: Contribution of X-ray tomography[END_REF]; often rays are traced at random directions (Monte Carlo method) [START_REF] Modest | Radiative Heat Transfer[END_REF][START_REF] Volz | Monte carlo method[END_REF][START_REF] Howell | The calculation of nonlinear radiation transport by a Monte Carlo method: Statistical physics[END_REF][START_REF] Luo | Solution to coupled heat transfer in a rectangular medium with black surfaces with ray tracing method[END_REF][START_REF] Vueghs | Use of geometry in finite element thermal radiation combined with ray tracing[END_REF]. The interest is double: first, the Monte Carlo method is well adapted for numerical integration of equations written in the 5-dimensional space of position/orientation; second, there is a natural interpretation of this method, because it simulates more or less directly the propagation of IR rays. This method has been applied to the computerized representation of very complex 3D structures [START_REF] Tancrez | Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique[END_REF][START_REF] Rousseau | Prediction of thermal radiative properties of an X-ray µ-tomographied porous silica glass[END_REF][START_REF] Loretz | Metallic foams : Radiative properties/comparison between di↵erent models[END_REF], as it has very small memory requirements. Up to now, these methods yield e↵ective radiative properties for materials; however, they have to be combined with another appropriate method giving the conductive behavior of the solid phase to build an e↵ective heat di↵usivity or conductivity in the coupled regime. The Monte Carlo Random Walk (MCRW) method is also used to describe the phonon transfer in a material [START_REF] Terris | Prediction of the thermal conductivity anisotropy of si nanofilms. Results of several numerical methods[END_REF], similar to that of rare gas molecules in porous media [START_REF] Vignoles | Pearson 36 random walk algorithms for fiber-scale modeling of chemical vapor infiltration[END_REF][START_REF] Vignoles | Modelling binary, Knudsen and transition regime di↵usion inside complex porous media[END_REF]. In such a case, a direct simulation of species transport (phonons or molecules) is performed. However, another random walk method can be used, which is the simulation of Brownian motion at a larger scale than that of the absorption length [START_REF] Chandrasekhar | Stochastic problems in physics and astronomy[END_REF][START_REF] Kim | E↵ective conductivity of suspensions of hard spheres by Brownian motion simulation[END_REF][START_REF] Vignoles | A Brownian motion algorithm for tow scale modeling of chemical vapor infiltration[END_REF]: it is adapted to solve the energy equation or whatever similar elliptical equation (pressure equation for groundwater flow, mass di↵usion equation, etc), but in it the transported species is not any more the direct simulation of an "energy carrier". An interesting advantage of this method is that it takes quite naturally into account the local media anisotropy. The present study proposes a method coupling the latter Brownian motion scheme in a solid with the above mentioned ray tracing technique in the radiative cavities of the opaque material, in a single mixed algorithm which provides a natural coupling between linearized radiation and conduction.

According to the nature of the studied material, the influence of radiative heat transfer on the value of its e↵ective properties is more or less marked. Hence, many studies have taken radiation into account in the description of foams which are subject to important radiative transfer, because of their high porosity. The contribution of radiation to the thermal properties has been evaluated for polymer [START_REF] Almanza | Prediction of the radiation term in the thermal conductivity of crosslinked closed cell polyolefin foams[END_REF][START_REF] Micco | Radiation contribution to the thermal conductivity of plastic foams[END_REF], carbon [START_REF] Delettrez | Elaboration par voie gazeuse et caractérisation de céramiques alvéolaires base pyrocarbone ou carbure de silicium[END_REF] and metal [START_REF] Loretz | Metallic foams : Radiative properties/comparison between di↵erent models[END_REF] foams.

Here, the specific need is to calculate, when radiation can be linearised, an e↵ective di↵usivity a e↵ and a thermal conductivity k e↵ of porous materials with opaque and transparent phases, as full tensors, from 3D images obtained by Xray Computerized Micro-Tomography (CMT), taking into account simultaneously conductive and radiative heat transport in the bulk of the material.

We will first describe the principle and implementation of the mixed randomwalk method, then present its validation against analytical data; finally, an application to an actual 3D CMT image of a porous fibrous material will be shown and discussed.

Model and method

Principle

Problem frame

The heat transfer problem treated here concerns a heterogeneous domain containing two phases : the solid, subject to conduction, and the void, in which ra-diation takes place. The solid phase is a grey body characterised by a di↵use reflection law and of emissivity ". All thermophysical properties of this phase (thermal conductivity k s , thermal di↵usivity a s , density ⇢ s , thermal capacity per unit mass c p,s and emissivity " are uniform. The size of the domain is supposed large enough to be representative of the whole material, i. e. it is a Representative Volume Element (RVE). We will assume that an average temperature hT i can be defined on this RVE. Actually, the temperature is not defined in the void phase, so that the average temperature in the usual sense has to be taken as the intrinsic solid-phase average hT s i s .

The radiative flux per unit area at a point M (r) of an opaque gray wall with di↵usive emissivity " writes:

q rad = " Z ⇡ 2 0 Z 2⇡ 0 h I (T ) I in (✓, ) i cos ✓ sin ✓d✓d (1) 
where I (T ) is the equilibrium intensity at temperature T (r) and I in (✓, ) the incident intensity depending on ✓, angle between the incident unit vector and the unit normal to the wall, and , the azimuth. In a random walk method the summations over ✓ and are statistically achieved both for the emitted and absorbed fluxes per unit area.

The temperature field at time t at a point M (r) writes:

T (r, t) = T ref + T (r, t) (2) 
where T ref is a reference temperature for the whole medium and T is the temperature variation in M at time t. It is here assumed that the perturbations are small :

T /T ref << 1.
In this approximation, and considering constant thermophysical properties in the solid, the conducto-radiative heat transfer in the porous medium is fully linearized. Although this condition is not necessary in principle, it will be useful for an easy implementation into an MCRW scheme, described as follows.

Relation between enthalpy and walkers

The basic idea of the method, as for any Lagrangian scheme, is to translate temperature into walkers. The i th conductive walker located in an elementary discretized volume element V around a point M (r) at time t generates a temperature variation equal to :

Ti (r, t) = H ⇢ s c p,s V (3) 
where H (J/walker) is a "quantum of excess enthalpy". The temperature perturbation field is then approximated by summing over all walkers present in the elementary volume V :

T (r, t) = X i2 V Ti (r, t) (4) 

Itō-Taylor Random Walk

For a simulation of heat di↵usion in a homogeneous, isotropic medium, a random walker may follow an Itō -Taylor scheme [START_REF] Kinzelbach | The random walk method and extensions in groundwater modelling[END_REF], where, for fixed time intervals t w , every di↵usive space step x d is computed as:

x d = p 2a s t w 0 B B B B B B B B B B B B B B B @ 1 2 3 1 C C C C C C C C C C C C C C C A (5) 
in which 1,2,3 are random numbers obeying a Gaussian distribution with zero mean and unit variance. This scheme has been extended to the case of heterogeneous and anisotropic media [START_REF] Labolle | Random-walk simulation of transport in heterogeneous porous media : Local mass-conservation problem and implementation methods[END_REF], i.e. for which the di↵usion coe cient is tensorial and a function of space a s (x):

x = ✓ div • a s (x) ◆ t w + 0 B B B B B B B B B B B B B B B @ p a s,11 (x) 1 p a s,22 (x) 2 p a s,33 (x) 3 1 C C C C C C C C C C C C C C C A p 2 t w (6) 
Developed for dispersion of solutes in underground aquifers [START_REF] Kinzelbach | The random walk method and extensions in groundwater modelling[END_REF], this scheme has also been validated when applied to the simulation of gas infiltration in porous media [START_REF] Vignoles | A Brownian motion algorithm for tow scale modeling of chemical vapor infiltration[END_REF], a totally analogous problem.

Ray-tracing

As opposed to the random-walk scheme, heat transfer by radiation is simulated by Monte-Carlo ray-tracing [START_REF] Modest | Radiative Heat Transfer[END_REF]. Walkers are emitted by a surface with local temperature T with an emission probability proportional to the emitted flux. Since the emission directions ⌦ obey Lambert's law of di↵use emission (or reflection), their distribution is:

p (⌦) d⌦ = cos ✓d⌦ = cos ✓ sin ✓d✓d (7) 
Here, it is not considered that a walker represents a single photon: the parameters of the emission rules are averages over the whole wavelength spectrum. This limitation could be easily removed, but the resulting computation of energy-resolved radiation would be much longer. After emission, a walker travels instantly along a straight line (i.e., a ray) until it meets another surface element, upon which it will be reflected with a probability equal to the reflectivity 1 " (since " and the absorptivity ↵ are equal). The time is not advanced between an emission event and an absorption event, regardless of the number of intermediate reflection events.

Coupling conduction and radiation

The most crucial point is a correct specification of the coupling between both transfer modes, and it lies on the probability that a walker having arrived at the interface enter the void. Such a probability is not computed the same way, depending on the side of the interface the walker is coming from. If it arrives from the void space, then its computation is easy: it is exactly the material's reflectivity 1 " = P v!v . On the other hand, when it comes from the solid phase, a more original, though empirical, reasoning can be carried out.

When a conductive walker hits at point M a solid/void interface, it brings its energy quantum H during a time t w , shorter than the time step t of the method -the latter being a time step used to quantify transient heat transfer -and has travelled a distance x w from the last di↵usion point. The corresponding incoming flux is evaluated at the surface element S surrounding M as:

q in (M, t) = H t w S (8) 
According to the Itō-Taylor scheme, the average value of the squared displacement

D x 2 d E
is equal to 6a s t w . Recalling eq. ( 3), one has :

q in (M, t) = k s T 6 V D x 2 d E S (9) 
Let us note that the ratio 6 V/ S between the volume and the surface elements associated to the walker is approximately the size of the random walk displace-

ment step h| x d |i = q 8 3⇡ q D x 2 d E -i.e.
one considers the volume element as a hemisphere with radius h| x d |i. Averaging the flux over all elementary eventsand consequently over all possible incoming directions, one has:

D q in E (M, t) = k s T q D x 2 d E 2 p 2 p 3⇡ = k s T h| x d |i p 3⇡ 2 p 2 (10) 
Actually, the length that appears in the denominator of eq. ( 10) may be somewhat shorter, because the trajectories are interrupted by the wall collision. We can therefore assume safely that:

D q in E (M, t) = k s T h| x w |i (11) 
where h| x w |i is an average distance of the last step before reaching the wall, which we expect to be comparable to the average random walk step size h| x d |i.

In Appendix A, it is found analytically that h| x w |i ⇡ 0.72 h| x d |i; on the other hand, eq. ( 10) would give h| x w |i ⇡ 0.92 h| x d |i; numerically, the relation

is h| x w |i ⇡ 0.81 q D x 2 d E
, probably because of discretization e↵ects.

Generally, only a fraction of D q in E is emitted at M. The maximal emitted flux per unit area associated to the walker writes, after linearization:

d q e max = 4" T 3 ref ⇡ T d⌦ e cos ✓ e (12) 
In eq. ( 12), T has been neglected as compared to T ref and

I (T ref ) = T 3 ref ⇡
is the equilibrium intensity, d⌦ e is the emission solid angle and ✓ e is the angle between the emission direction and the normal to the interfacial element. If the photon propagation is instantaneous, eq. ( 12) shows that the emitted energy during t w is limited. Summing over all directions we obtain :

⌦ q e max ↵ = 4" T 3 ref T ( 13 
)
The quantity defined here may be compared to the incoming average flux computed in eq. [START_REF] Zhang | Finite element method for modelling radiative transfer in semitransparent graded index cylindrical medium[END_REF]. Two cases have to be considered:

• If D q in E  ⌦ q e max ↵
, the walker is emitted without condition in the void.

The limitation of the flux is the due to conduction.

• If D q in E > ⌦ q e max ↵
, the emission probability is inferior to unity and is then the ratio between the emitted flux and the incoming flux.

To summarize, the global emission probability writes:

P s!v (M, t) = 8 > > > > > < > > > > > : ⌦ q e max ↵ h q in i = 4" T 3 ref h| x w |i k s if ⌦ q e max ↵ < D q in E 1 if ⌦ q e max ↵ D q in E (14) 
Note that the limitation due to the conduction appearing in the second case can be avoided by diminishing the time step, which will lower the average space step h| x d |i and the "last step" size h| x w |i.

We can fairly well see that P s!v is actually a "numerical Nusselt number" based on the pseudo-heat transfer coe cient h bb = 4" T 3 ref and the average step size.

Implementation

Single walk algorithm

The proposed algorithm couples the classical ray-tracing method with Brownian motion in a hybrid random walk. Every excess enthalpy carrier will switch its behavior from one to the other walk routine depending whether it lies in the solid or in void space. Everytime it meets a surface element, it is decided whether it will continue its walk in the void or in the solid, using the probabilities P s!v and P v!v defined above. Figure 1 is an illustration of a typical walk. 

Surface discretization

The position of the interface is obtained by the Simplified Marching Cube (SMC) technique [START_REF] Vignoles | Simplified marching cubes: An e cient discretization scheme for simulations of deposition/ablation in complex media[END_REF]. This e cient scheme is a trade-o↵ between the full Marching Cube (MC) algorithm, accurate but requiring large memory storage space, and a simple cubic voxel discretization, which is unable to approximate the interface surface area per unit volume [START_REF] Vignoles | Modelling binary, Knudsen and transition regime di↵usion inside complex porous media[END_REF]. However, in that scheme, it is unfortunately possible to obtain portions of solid phase slabs with zero thickness. This issue is solved using a procedure described in Appendix B.

Boundary conditions (BCs)

In homogenization or averaging techniques, periodicity or symmetry BCs are commonly employed, both with drawbacks. For instance, some material sample domains, like those obtained by image processing from X-ray Computerized Tomography may not be naturally periodic, or display a texture with o↵-axis directions. In these cases, setting periodicity or symmetry BCs can severely a↵ect the results of the heat transfer computations. Using random walk schemes allow straightforwardly to implement less harmful BCs. The representation of a periodicity BC would be the reintroduction of a walker in the opposite face of the resolution domain, i. e. applying a translation of exactly one cell edge vector to its "local" coordinates, while keeping untouched "global" coordinates. But it is easy to reintroduce the walker in the opposite face at a random location in the same phase, instead of at exactly the same location. This has the e↵ect of implementing an "average periodicity" condition, i. e.:

hq (L x )i n x • n x = hq (0)i n x • n x (15) hT (L x )i n x = hT (0)i n x
where n x is the outward normal to the x = 0 face and inward normal to the x = L x face, and h•i n x is the face-average of a quantity:

h i n x = 1 L y L z Z L y 0 Z L z 0 dydz ( 16 
)
Figure 2 is an illustration of these BCs. 

Obtaining an e↵ective di↵usivity by the displacement covariance

A classical method to derive the e↵ective di↵usion tensor from random walks statistics is to apply Einstein's relationship [START_REF] Chandrasekhar | Stochastic problems in physics and astronomy[END_REF][START_REF] Einstein | Investigations on the theory of the brownian movement[END_REF]:

a comp = lim n!1 t!1 h(x(t) x(0)) ⌦ (x(t) x(0))i 2t (17) 
In practice, all random walkers are initially located in the image and are allowed to walk freely; when they encounter an image border, the above-mentioned boundary rules (either symmetry, periodicity, or average periodicity) are applied. Two coordinate sets are handled: a local one, always inside the image, and a global one, which is used for the computation of eq. ( 17). In the present case, one has to note that since all random walkers travel instantly through the void space, they are always found inside the solid when performing an evaluation of relation [START_REF] Tancrez | Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique[END_REF].

Consequently, the obtained di↵usion tensor is an intrinsic solid average. The effective di↵usion tensor, averaged over the whole material, is deduced by:

a e↵ = a comp (1 ⇧) ( 18 
)
where ⇧ is the pore (void) volume fraction. One has to note that Einstein's relationship only applies in the hypothesis of finite horizon in void space; in the converse case, the e↵ective di↵usion coe cient obtained by relations (17-18) slowly diverges with time [START_REF] Transvalidou | E↵ective di↵usion coe cient in square arrays of filament bundles[END_REF]. Finally, since the heat capacity is always obtained by the rule of mixtures, a e↵ and k e↵ are related by:

k e↵ = a e↵ . ⇣ ⇢c p ⌘ e↵ = a e↵ . ⇣ ⇢c p ⌘ s (1 ⇧) (19) 

Obtaining an e↵ective conductivity by flux/gradient correlation

To circumvent the above-mentioned problem, and to compare this approach with more classical averaging or homogenization techniques, a di↵erent computational routine has been designed, inspired by the Müller-Plathe method [START_REF] Müller-Plathe | Cause and e↵ect reversed in non-equilibrium molecular dynamics: an easy route to transport coe cients[END_REF] used in molecular dynamics to obtain the e↵ective thermal conductivity of a given solid or liquid by the flux/gradient correlation method. In this method, no double coordinate system (local/global) is required. While maintaining periodic, symmetric or "average-periodic" boundary conditions on two sets of opposite faces, we define a "semi-permeable" wall boundary condition on the last pair of opposed faces: for instance, all walkers reaching the x = L x face are allowed to re-enter the image by the x = 0 side whereas all walkers reaching the x = 0 face are forbidden to re-enter on the other side and simply undergo specular reflection. This has the e↵ect of creating a flux in the positive direction. As a consequence, the walker concentration acquires a gradient, with fewer walkers per unit volume on the "permeable" side. The walker fluxes are acquired on the semi-permeable pair of faces, while the concentration gradient is recorded on all pairs of faces, and one line of the e↵ective inverse conductivity tensor is obtained:

⇣ k 1 e↵ ⌘ i j = D T (L i ) E n i D T (0) E n i L j hqi n j • n j (20) 
The accuracy of numerical estimations of the concentration and of the flux may be enhanced by a time averaging technique. A limitation of this approach is that if the image is not symmetric in addition to periodic, then a severe bias is added to the concentration field with respect to what is expected from an averaging problem, resulting in an inaccurate homogenization. Nonetheless, if the image is very detailed (i. e. its size is much larger than the largest feature size), this bias has a negligible influence.

Validation

The method has been tested against cases for which analytical solutions are available: first, parallel plates separated by void space; then, a simple cubic array of void spheres dispersed in a conductive matrix. All walls are grey and di↵use, with a variable emissivity.

Parallel plates with grey di↵use walls

This simple case of a periodic medium is described in Figure 3: parallel solid plates with thickness L 1 are separated by void slices with thickness L tot L 1 . The void volume fraction is ⇧ = 1 L 1 /L tot and the internal surface area per unit volume is S v = 2/L tot . The temperature profile, for a positive horizontal heat flux q x > 0 is sketched on the same figure. Evidently, the addition of thermal resistances in series will give the e↵ective thermal resistance, as detailed hereafter.

Analytical model

The heat flux normal to the plates is expressed by Fourier's law in the solid:

q x = k s L 1 ⇣ T2 T1 ⌘ (21) 
It is also expressed by the radiative exchange laws, under Rosseland's linear approximation:

q x = h bb 2 " ⇣ T3 T2 ⌘ ( 22 
)
where the 2 " denominator translates multi-reflection e↵ects [START_REF] Modest | Radiative Heat Transfer[END_REF].

The e↵ective conductivity is given by Fourier's law over the whole unit cell: Solving eqs. [START_REF] Volz | Monte carlo method[END_REF][START_REF] Howell | The calculation of nonlinear radiation transport by a Monte Carlo method: Statistical physics[END_REF][START_REF] Luo | Solution to coupled heat transfer in a rectangular medium with black surfaces with ray tracing method[END_REF] for k e↵ yields:

q x = k e↵ L tot ⇣ T3 T1 ⌘ (23) 
1 k e↵ = L 1 L tot ! 1 k s + 1 L tot ! 2 " h bb ! (24) 
This relationship may be reinterpreted as :

1 k e↵ = (1 ⇧) 1 k s 1 + 2 " Nu ! ( 25 
)
where a radiative Nusselt number has been defined as :

Nu = h bb L 1 k s = h bb k s • 2 (1 ⇧) S v (26) 
Combining with eq. ( 19), the e↵ective di↵usivity will be given by:

a e↵ = a s (1 ⇧) 2 1 + 2 " Nu ! 1 ( 27 
)
We note that there is a very simple relation between the Nusselt number and the solid-to-void transition probability:

P s!v = Nu h| x w |i L 1 (28)

Numerical results and discussion

Computations have been carried out with several relative slab thicknesses, values of the emissivity, of P s!v , and of the step size h| x w |i. The Müller-Plathe-like scheme has been applied, the walker concentration profiles recorded along the

x coordinate, as well as the j x flux. The total number of random walkers was N = 24000; the dimensionless time was a s t/L 2 tot = 6; every run has taken approximately 1 minute on a single 2-GHz Core i7 CPU with 1.3 GHz memory access frequency. Figure 4 is a plot of the dimensionless thermal resistance k s /k e↵ against the conduction/radiation ratio, expressed as

⇣ 2 " P s!v L pix L tot ⌘
. Indeed, rewriting eq.( 24)

we can see straightforwardly that the former is an a ne function of the latter : ment with the previously obtained conductivities according to eq. ( 19) within 5% error for a "last step before wall collision" size of 0.81 pixel, corresponding to a time step size t = L 2 pix /6a s . Note that the e↵ective di↵usivities in the other two directions diverge, because of the non-fulfillment of the finite horizon requirement.

k s k e↵ = L 1 L tot ! + 2 " P s!v L pix L tot ! • h| x w |i L pix ! ( 29 
The random walk algorithm is therefore validated.

Cubic array of spherical pores with grey di↵use walls

Another test case for the method, without any infinite horizon nor flat surfaces, is the cubic array of spherical pores. A periodic cubic unit cell with 50 pixels edge size containing a single spherical cavity with a diameter of 29 pixels is used.

Computations have been run using the technique based on Einstein's formula, for various values of the emissivity and radiation/conduction ratio; the results are plotted in Figure 3.2, as scaled e↵ective conductivity ke↵ vs. Nusselt number Nu defined here as:

Nu = h bb ⇧ k s S v = P s!v ⇧ h| x w |i S v (30) 
All points follow the same tendency, well fitted by the following equation :

ke↵ = kc,0 + ✓ k 1 c,1 + ⇣ k+ Nu ⌘ 1 ◆ 1 (31) 
As the importance of radiation increases, the e↵ective conductivity switches progressively from a "pure conduction value" kc,0 to a "radiation-enhanced" e↵ective conductivity that remains finite but is larger by an additive factor kc,1 . The intermediate regime involves an e↵ective conductivity of the radiating cavity k+ . This behavior is straightforward to interpret, assimilating the material to the juxtaposition of three blocks. The first block, with conductivity kc,0 , is in parallel with the other two, themselves disposed in series, with conductivities kc,1 and k+ Nu.

The computed coe cients are compared to existing literature in Table 3.2.

The value of kc,0 falls within the bounds predicted by Torquato and Rubinstein [START_REF] Torquato | Improved bounds on the e↵ective conductivity of high contrast suspensions[END_REF] for a material containing a cubic array of perfectly insulating spheres, while kc,0 + kc,1 is within the bounds given by the same authors for perfectly conducting spheres in the same matrix, and is very close to the analytical estimate of Keller [START_REF] Keller | Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders[END_REF]. Finally, the value of k+ is in reasonable agreement with the analytical result given by Zarubin et al. [START_REF] Zarubin | Radiative-conductive heat transfer in a spherical cavity[END_REF], who obtained an e↵ective radiative conductivity for the pore only:

k rad = 4" T 3 ref R (32) 
where R = 3⇧/S v is the sphere radius. Recalling that the SMC surface discretization method contains approximations about the sphere surface, we can conclude that the agreement with the expected values is excellent. 

Application to a real porous medium sample

The chosen resolution domain is a 100⇥100⇥100 cubic pixels CT scan at 1.4

µm/voxel extracted from a larger data set [START_REF] Coindreau | Assessment of geometrical and transport properties of a fibrous C/C composite preform as digitized by X-ray computed micro-tomography. Part I : Image acquisition and geometrical properties[END_REF]. The porosity is 67.4%, the fiber and pore diameters are respectively 10.15 and 21.16 pixels (i. e. 14.21 and 29.62 µm ). As can be seen in figure 7, the fibers are more or less parallel, but their orientation does not follow the main axes of the grid; moreover, they are not all in contact.

Computations were run in the "average periodicity" mode, using Einstein's relationship for the determination of the e↵ective di↵usivity. A diagonalization analysis allowed retrieval of the eigenvalues and eigenvectors. By varying the emissivity and the solid-to-void transition probability, it has been checked that the e↵ective scaled conductivity eigenvalues ke↵,i (i = 1, 2, 3) could be cast into the following form :

ke↵,i = k e↵,i k s = kc,i + k+ i (") Nu 0 | {z } krad,i (33) 
where kc,i is the conductivity obtained in purely conductive mode and in direction i -the remaining contribution being krad,i -and the equivalent Nusselt number is defined as [START_REF] Bellet | RDFI determination of anisotropic and scattering dependent radiative conductivity tensors in porous media: Application to rod bundles[END_REF]:

Nu 0 = 4 hT i 3 ⇧ k s S v = P s!v ⇧ " h| x w |i S v (34) 
The scaled dimensionless radiative conductivity [START_REF] Bellet | RDFI determination of anisotropic and scattering dependent radiative conductivity tensors in porous media: Application to rod bundles[END_REF] is obtained as:

k+ = 1 k s @k e↵ @ ⇣ P s!v " ⌘ . S v h| x w |i ⇧ (35) 
Here, @k e↵ /@(P s!v /") is, up to a constant, the slope of the conductivity vs. T 3 ref curve. Figure 8 illustrates the verification of eq. ( 33) for the fastest and slowest directions of heat transfer. As could be expected, the pure conduction value in the fastest direction is slightly lower than (1 ⇧), which is the law-of-mixtures prediction. Somewhat more surprisingly, there is also a non-zero value -though small -in the slowest direction of transfer. This arises from the chosen boundary conditions, which connect together apparently unconnected fibers. Moreover, the law of mixtures is less well respected for high emissivities, as could be expected since the fibers and voids are not in a parallel arrangement. and Taine et al. [START_REF] Taine | Generalized radiative transfer equation for porous medium upscaling: Application to the radiative Fourier laws[END_REF] give for periodic arrays of parallel bundles. This is not a surprising fact, because there is a very important di↵erence between this image and ideal arrays : there is no infinite horizon here. On the other hand, the values determined by Chahlafi et al. [START_REF] Chahlafi | Radiative transfer within non Beerian porous media with semitransparent and opaque phases in non equilibrium: Application to reflooding of a nuclear reactor[END_REF] in non-ideal images of bundles of damaged rods are in good agreement with ours. Nonetheless, the evolution of k+ with " is very similar to the ideal case, i.e. a very weak dependency.

It should be noted that these results on e↵ective conductivities are subjected to a validity criterion, as discussed thoroughly by Gomart & Taine [START_REF] Gomart | Validity criterion of the radiative fourier law for an absorbing and scattering medium[END_REF], namely :

hrT i T ref <<  e↵ (36) 
where  e↵ is an e↵ective absorption coe cient, roughly of the order of magnitude of the internal surface area.

Conclusion

This paper has presented the principles and implementation of a mixed randomwalk algorithm designed for the resolution of the coupled radiative-conductive heat transfer in a porous medium with an opaque and a transparent phase (void pores). The algorithm has been used for the determination of e↵ective conductiv- The dotted lines refer to the values determined by Chahlafi et al. [START_REF] Chahlafi | Radiative transfer within non Beerian porous media with semitransparent and opaque phases in non equilibrium: Application to reflooding of a nuclear reactor[END_REF] are coupled, in the limit of small temperature perturbations, as compared to the average medium temperature. Validation with respect to analytical cases has been obtained; an example of application to actual porous media has shown the potentiality of the computational tool, by showing how the e↵ective conduction tensor changes when switching from purely conductive to mixed conductive/radiative transfer. Further work has to be carried out in several directions. First, a very severe limitation in the use of the presented method arises from the linearisation hypothesis : only very small temperature gradients are admissible, following the Gomart-Taine criterion. The determination of e↵ective conductivities could be extended to the case of high gradients, by removing the linearisation hypothesis.

In numerical practice, this would require to design an iterative numerical scheme in which the transition probability P s!v would be recomputed as a function of the local temperature and the random walks launched again, until convergence. Application of the model to situations where the boundaries have an influence on the overall conductivity can also be treated with the provided flux/gradient method.

The algorithm could be also used for the determination of e↵ective optical properties, or for direct simulations of a flash experiment. Many enrichments of the modeled physics -considering grey media, for instance -may be attempted The mean step size is h| x d |i = q 16a t ⇡ . The length of the last step is simply obtained by setting y = h in the modulus of x d :

| x w | = p x 2 + h 2 + z 2 (A.2)
Let us assume r 2 = x 2 + z 2 . We have to consider all events where the wall is hit or trespassed, so that the probability density has to be: Numerically, one has:

P h = 1 2 erfc h 2 p a t ! (A.4)
The probability density is therefore :

p(h)dh = r ⇡ 4a t erfc h 2 p a t ! dh (A.5)
The average over all possible values of h of the last step size is given by : The two integrals appearing in this expression are evaluated separately. The first one is:

h| x w |i = Z 1 h=0 "Z 1 r=0 | x w | p(
I 1 = Z 1 h=0 h p ⇡ 2 p a t erfc h 2 p a t ! dh = p ⇡a t 2 (A.9)
The second one may be evaluated numerically: 

I 2 = Z 1 h=0 ⇡ 2 erfc

•

  New hybrid random-walk scheme for coupled conduction-radiation heat transfer • Scheme validated with respect to analytical cases • Works on large 3D domains like discretized X-ray CT blocks • Fastest heat transfer direction changes between radiative and conductive modes 1. Introduction

Figure 1 :

 1 Figure 1: Rendering of a typical random walk in an open-cell foam.

Figure 2 :

 2 Figure 2: Several boundary condition schemes: a) Symmetry (induces an artificial alignment of the e↵ective tensor eigenvalues on the image principal axes) , b) Translation (does not work on non-periodic images), c) Translation plus a random tangential movement of the replicated image.

Figure 3 :

 3 Figure 3: Periodic medium with parallel plates. Solid and void spaces are identified by the distinct nature of the random walk steps. A temperature profile T (x) is superimposed to the figure. Note that T has not to be defined in the void space.

)

  Therefore the slope of the obtained lines should be equal to the step size expressed in pixel units, and the intercept should be the relative solid volume amount. What is actually found is a slope in very close agreement with the dimensionless step size and a somewhat shifted intercept; the error between the actual intercept and the expected intercept decreases with diminishing stepsize as h| x w |i 0.4 , as illustrated by fig.5.

Figure 4 :Figure 5 :

 45 Figure 4: Scaled thermal resistance for parallel plates for 3 di↵erent L 1 /L tot ratio, as a function of the conduction/radiation ratio, for h| x w |i = 0.81 pixels. The inset gives the slopes and intercepts as a function of the solid phase volume amount.

Figure 6 :

 6 Figure 6: Scaled e↵ective conductivity of a material containing a cubic array of spherical voids with grey di↵use walls. The geometrical dimensions are given in the inset. The bounds of Torquato& Rubinstein[START_REF] Torquato | Improved bounds on the e↵ective conductivity of high contrast suspensions[END_REF] for perfectly insulating (left) and perfectly conducting spheres (right) are depicted by the shaded areas; the prediction of Keller[START_REF] Keller | Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders[END_REF] for perfectly conducting spheres is depicted by the straight line on the right.

Figure 7 :

 7 Figure 7: Image used for the e↵ective conductivity computations : a portion of a CT scan of a fiber bundle.

Figure 9 10 Figure 8 :

 9108 Figure 9 displays the evolution of the angle between the fastest transfer direction (red arrow on fig. 10) and the z axis (almost vertical on the images), as a function of the radiation /conduction ratio Nu 0 . A clear change occurs between Nu 0 = 10 2 and 1, in coincidence with the curvature change of the log-log curves of figure 8. This Nu 0 range of h 10 2 ; 1 i clearly defines what can be called a tran-

Figure 9 :

 9 Figure 9: Evolution of the angle between the fastest di↵usion direction (red arrow on fig 10) and the z direction (green axis on fig. 10), as a function of the equivalent Nusselt number.

ities in porous media whereby conduction in the solid and radiation on theFigure 10 :

 10 Figure 10: Heat transfer eigenvectors in a fibrous bundle CT image. a,b): pure conduction, c,d) : with radiation. The eigenvectors colors are red, green, yellow in decreasing order of magnitude, and are displayed in the center of the image (green and yellow are hardly visible on top). A sample radiative/conductive trajectory portion is rendered as white lines in the bottom images.

Figure 11 :

 11 Figure 11: Evolution of the dimensionless radiative conductivity as a function of the emissivity.

P h = P walker hits the wall distant by h = Z 1 r=0 Z 1 y=hp

 11 ( x d ) 2⇡rdrdy (A.3)

  

  

  

  

Table 1 :

 1 Comparison of obtained results and estimates from literature for the e↵ective conductivity of a material containing a cubic array of spherical void with di↵use grey walls.

	Coe cient Literature values Ref. This work
	kc,0	[0.78 0.82]	[40] 0.80
	kc,0 + kc,1 [1.37 1.55]	[40] 1.52
		1.49	[41]
	k+	3	[42] 2.73

  Appendix A. Evaluation of the average last step size before collision at the interface The average last step size h| x w |i may be computed assuming that the walker lies at a point M distant from the surface by length h; the step size x d is such that

	Symbol Meaning	Unit
	too. Moreover, application to other types of porous media than those discussed here would be of great interest. Symbol Meaning Average h•i Unit a Thermal di↵usivity m 2 .s 1 c p Heat capacity per unit mass J.kg 1 .K 1 h bb Radiative heat transfer coe cient Face-average h•i n x Solid-phase intrinsic average h•i s • Perturbation its variance is E D x 2 d = 6a t and obeys a Maxwellian distribution: W.m 2 .K 1 I Radiative intensity W.m 4 I tot Total radiative intensity W.m 4 I Equilibrium black body radiative intensity k Thermal conductivity k Scaled thermal conductivity L x, y or z Cell dimensions L pix Pixel size n Exterior normal to a surface element N Number of walkers Nu Nusselt number P v!v Probability to be reflected in void P s!v q Heat flux R Sphere radius S Surface S v Surface area per unit volume T Temperature K ⌦ Solid angle sr m 1 Azimuthal angle rad m 2 Stefan's constant W.m 2 .K 4 m ⇢ Density kg.m 3 W.m 2 ⇧ Porosity -Probability to be transferred from solid to void - Volume absorption coe cient m 1 -✓ Polar angle rad -" Wall emissivity --V Volume element m 3 -S Surface element m 2 • + radiation-related m q Flux element W.m 2 • s relative to the solid phase m H Enthalpy excess per walker J • rad radiative -t Time increment s • ref reference W.m 1 .K 1 x Position increment m • max maximal W.m 4 Symbol Meaning Unit ↵ Wall absorptivity -Random Gaussian number -• in incident • e emitted e↵ective • e↵ p ( x d ) d 3 x = 1 8 (⇡a t) 3 2 exp ! x 2 + y 2 + z 2 4a t dxdydz (A.1)
	T	Temperature perturbation	K
	t	Time	s
	x	Position	m
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Summing both, we get : 12 is an example of a zero-thickness slab that may result from the SMC discretization scheme. For the walk algorithm, one defines a probability of not traversing such a surface as:

Then, depending on whether a random number with uniform density on the unit interval is smaller or larger than this probability, the walker is reflected by or transmitted through the slab, respectively.