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Abstract

Heat transfer properties from ambient up to extremely high temperatures are a key

feature of advanced thermal protection and thermal exchange materials – like ce-

ramic foams or fiber assemblies. Because of their porous nature, heat transfer rests

not only on conduction in opaque solids and on convection in pores, but also on

radiation trough pores. The precise knowledge of the thermal behavior of these

materials in these conditions is an issue. In a ”virtual material” framework, we

present a computational simulation tool for heat transfer in such materials, com-

bining solid-phase conduction and linearized radiative transfer in open or closed

radiating cavities with opaque interfaces. The software is suited to working in

large 3D blocks as produced e. g. by X-ray CMT or by image synthesis. An origi-

nal Monte-Carlo Mixed Random Walks scheme accounting for both di↵usion and

radiation is presented and validated. The application to a real image of a fibrous

medium is described and discussed, principally in terms of the influence of the

di↵usion/radiation ratio on the e↵ective (large-scale) di↵usivity tensor.
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method ; Virtual material

Highlights

• New hybrid random-walk scheme for coupled conduction-radiation heat

transfer

• Scheme validated with respect to analytical cases

• Works on large 3D domains like discretized X-ray CT blocks

• Fastest heat transfer direction changes between radiative and conductive

modes

1. Introduction

Advanced thermostructural materials must be able to resist to mechanical and

thermal loads at very high temperatures, while controlling heat transfer, bringing

either thermal insulation, as in Thermal Protection Systems in atmospheric reentry

of space objects [1, 2] or thermal transfer, as in Concentrated Solar Power plants

[3]. Many porous materials have been and are still being developed for these

purposes, like carbon and ceramic foams [4] and fibrous media [5].

One of the crucial points in the engineering of such materials is to determine

their thermophysical properties. At elevated temperatures, transfers in the bulk

of materials may include simultaneous contributions from conduction in the solid

phase (fibre, matrix, interphase) and from radiation via the pore space [6]. While

modeling of the conductive transfer via these materials is well developed [7, 8]

things are not the same for the coupled conductive-radiative transfer. The analy-

sis of the coupled transfer requires the use of adapted modeling tools that allow

considering these di↵erent contributions. One of the fundamental problems is the

disparity in nature of the two types of transport. On the one hand, the conductive
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transport is of easy modeling using classical methods of PDE solutions, such as

finite elements ; on the other hand, the radiative transfer obeys to quite distinct

equations, such as RTE (Radiative Transfer Equation), from which the resolution

can be envisaged in di↵erent ways: discrete ordinates [9] with a finite element

resolution [10, 11], finite di↵erences with discretization of space directions [12],

moments methods [13], Hottel zones method [14], etc . . . Classically, in the com-

mercial codes of thermal calculation, the radiation in enclosed cavity is solved by

the calculation of radiative exchanges between facets of a matrix (form factors)

or by discrete ordinates. One of the most popular methods for the RTE resolution

is ray tracing [15–20]; often rays are traced at random directions (Monte Carlo

method)[6, 21–24]. The interest is double: first, the Monte Carlo method is well

adapted for numerical integration of equations written in the 5-dimensional space

of position/orientation; second, there is a natural interpretation of this method, be-

cause it simulates more or less directly the propagation of IR rays. This method

has been applied to the computerized representation of very complex 3D struc-

tures [17–19], as it has very small memory requirements. Up to now, these meth-

ods yield e↵ective radiative properties for materials; however, they have to be

combined with another appropriate method giving the conductive behavior of the

solid phase to build an e↵ective heat di↵usivity or conductivity in the coupled

regime. The Monte Carlo Random Walk (MCRW) method is also used to de-

scribe the phonon transfer in a material [25], similar to that of rare gas molecules

in porous media [26, 27]. In such a case, a direct simulation of species transport

(phonons or molecules) is performed. However, another random walk method

can be used, which is the simulation of Brownian motion at a larger scale than

that of the absorption length [28–30]: it is adapted to solve the energy equation or

whatever similar elliptical equation (pressure equation for groundwater flow, mass

di↵usion equation, etc), but in it the transported species is not any more the direct
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simulation of an ”energy carrier”. An interesting advantage of this method is that

it takes quite naturally into account the local media anisotropy. The present study

proposes a method coupling the latter Brownian motion scheme in a solid with

the above mentioned ray tracing technique in the radiative cavities of the opaque

material, in a single mixed algorithm which provides a natural coupling between

linearized radiation and conduction.

According to the nature of the studied material, the influence of radiative heat

transfer on the value of its e↵ective properties is more or less marked. Hence,

many studies have taken radiation into account in the description of foams which

are subject to important radiative transfer, because of their high porosity. The

contribution of radiation to the thermal properties has been evaluated for polymer

[31, 32], carbon [33] and metal [19] foams.

Here, the specific need is to calculate, when radiation can be linearised, an

e↵ective di↵usivity ae↵ and a thermal conductivity ke↵ of porous materials with

opaque and transparent phases, as full tensors, from 3D images obtained by X-

ray Computerized Micro-Tomography (CMT), taking into account simultaneously

conductive and radiative heat transport in the bulk of the material.

We will first describe the principle and implementation of the mixed random-

walk method, then present its validation against analytical data; finally, an appli-

cation to an actual 3D CMT image of a porous fibrous material will be shown and

discussed.

2. Model and method

2.1. Principle

2.1.1. Problem frame

The heat transfer problem treated here concerns a heterogeneous domain con-

taining two phases : the solid, subject to conduction, and the void, in which ra-
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diation takes place. The solid phase is a grey body characterised by a di↵use

reflection law and of emissivity ". All thermophysical properties of this phase

(thermal conductivity ks, thermal di↵usivity as, density ⇢s, thermal capacity per

unit mass cp,s and emissivity " are uniform. The size of the domain is supposed

large enough to be representative of the whole material, i. e. it is a Representative

Volume Element (RVE). We will assume that an average temperature hT i can be

defined on this RVE. Actually, the temperature is not defined in the void phase,

so that the average temperature in the usual sense has to be taken as the intrinsic

solid-phase average hTsis.
The radiative flux per unit area at a point M (r) of an opaque gray wall with

di↵usive emissivity " writes:

qrad = "

Z ⇡
2

0

Z 2⇡

0

h
I� (T ) � Iin (✓, �)

i
cos ✓ sin ✓d✓d� (1)

where I� (T ) is the equilibrium intensity at temperature T (r) and Iin (✓, �) the inci-

dent intensity depending on ✓, angle between the incident unit vector and the unit

normal to the wall, and �, the azimuth. In a random walk method the summations

over ✓ and � are statistically achieved both for the emitted and absorbed fluxes per

unit area.

The temperature field at time t at a point M (r) writes:

T (r, t) = Tref + T̃ (r, t) (2)

where Tref is a reference temperature for the whole medium and T̃ is the tempera-

ture variation in M at time t. It is here assumed that the perturbations are small :

T̃/Tref << 1.

In this approximation, and considering constant thermophysical properties in

the solid, the conducto-radiative heat transfer in the porous medium is fully lin-

earized. Although this condition is not necessary in principle, it will be useful for

an easy implementation into an MCRW scheme, described as follows.
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2.1.2. Relation between enthalpy and walkers

The basic idea of the method, as for any Lagrangian scheme, is to translate

temperature into walkers. The ith conductive walker located in an elementary dis-

cretized volume element �V around a point M (r) at time t generates a temperature

variation equal to :

T̂i (r, t) =
�H

⇢scp,s�V
(3)

where �H (J/walker) is a ”quantum of excess enthalpy”. The temperature per-

turbation field is then approximated by summing over all walkers present in the

elementary volume �V :

T̃ (r, t) =
X

i2�V

T̂i (r, t) (4)

2.1.3. Itō-Taylor Random Walk

For a simulation of heat di↵usion in a homogeneous, isotropic medium, a ran-

dom walker may follow an Itō -Taylor scheme [34], where, for fixed time intervals

�tw, every di↵usive space step �xd is computed as:

�xd =
p

2as�tw

0
BBBBBBBBBBBBBBB@

�1

�2

�3

1
CCCCCCCCCCCCCCCA

(5)

in which �1,2,3 are random numbers obeying a Gaussian distribution with zero

mean and unit variance. This scheme has been extended to the case of hetero-

geneous and anisotropic media [35], i.e. for which the di↵usion coe�cient is

tensorial and a function of space a
s
(x):

�x =
✓
�div · a

s
(x)

◆
�tw +

0
BBBBBBBBBBBBBBB@

p
as,11 (x)�1

p
as,22 (x)�2

p
as,33 (x)�3

1
CCCCCCCCCCCCCCCA

p
2�tw (6)
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Developed for dispersion of solutes in underground aquifers[34], this scheme

has also been validated when applied to the simulation of gas infiltration in porous

media [30], a totally analogous problem.

2.1.4. Ray-tracing

As opposed to the random-walk scheme, heat transfer by radiation is simu-

lated by Monte-Carlo ray-tracing [6]. Walkers are emitted by a surface with local

temperature T̃ with an emission probability proportional to the emitted flux. Since

the emission directions ⌦ obey Lambert’s law of di↵use emission (or reflection),

their distribution is:

p (⌦) d⌦ = cos ✓d⌦ = cos ✓ sin ✓d✓d� (7)

Here, it is not considered that a walker represents a single photon: the parameters

of the emission rules are averages over the whole wavelength spectrum. This lim-

itation could be easily removed, but the resulting computation of energy-resolved

radiation would be much longer. After emission, a walker travels instantly along a

straight line (i.e., a ray) until it meets another surface element, upon which it will

be reflected with a probability equal to the reflectivity 1 � " (since " and the ab-

sorptivity ↵ are equal). The time is not advanced between an emission event and

an absorption event, regardless of the number of intermediate reflection events.

2.1.5. Coupling conduction and radiation

The most crucial point is a correct specification of the coupling between both

transfer modes, and it lies on the probability that a walker having arrived at the

interface enter the void. Such a probability is not computed the same way, de-

pending on the side of the interface the walker is coming from. If it arrives from

the void space, then its computation is easy: it is exactly the material’s reflectivity

1 � " = Pv!v. On the other hand, when it comes from the solid phase, a more

original, though empirical, reasoning can be carried out.
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When a conductive walker hits at point M a solid/void interface, it brings its

energy quantum �H during a time �tw, shorter than the time step �t of the method

– the latter being a time step used to quantify transient heat transfer – and has

travelled a distance �xw from the last di↵usion point. The corresponding incoming

flux is evaluated at the surface element �S surrounding M as:

�qin (M, t) =
�H
�tw�S

(8)

According to the Itō-Taylor scheme, the average value of the squared displacement
D
�x2

d

E
is equal to 6as�tw. Recalling eq. (3), one has :

�qin (M, t) = ksT̂
6�V

D
�x2

d

E
�S

(9)

Let us note that the ratio 6�V/�S between the volume and the surface elements

associated to the walker is approximately the size of the random walk displace-

ment step h|�xd|i =
q

8
3⇡

qD
�x2

d

E
– i.e. one considers the volume element as a

hemisphere with radius h|�xd|i. Averaging the flux over all elementary events –

and consequently over all possible incoming directions, one has:

D
�qin

E
(M, t) =

ksT̂qD
�x2

d

E
2
p

2p
3⇡
=

ksT̂
h|�xd|i

p
3⇡

2
p

2
(10)

Actually, the length that appears in the denominator of eq. (10) may be somewhat

shorter, because the trajectories are interrupted by the wall collision. We can

therefore assume safely that:
D
�qin

E
(M, t) =

ksT̂
h|�xw|i

(11)

where h|�xw|i is an average distance of the last step before reaching the wall, which

we expect to be comparable to the average random walk step size h|�xd|i.
In Appendix A, it is found analytically that h|�xw|i ⇡ 0.72 h|�xd|i; on the

other hand, eq. (10) would give h|�xw|i ⇡ 0.92 h|�xd|i; numerically, the relation

is h|�xw|i ⇡ 0.81
qD
�x2

d

E
, probably because of discretization e↵ects.

8



Generally, only a fraction of
D
�qin

E
is emitted at M. The maximal emitted flux

per unit area associated to the walker writes, after linearization:

d�qe
max =

4"�T 3
ref

⇡
T̂ d⌦e cos ✓e (12)

In eq. (12), T̂ has been neglected as compared to Tref and I� (Tref) =
�T 3

ref
⇡ is the

equilibrium intensity, d⌦e is the emission solid angle and ✓e is the angle between

the emission direction and the normal to the interfacial element. If the photon

propagation is instantaneous, eq. (12) shows that the emitted energy during �tw is

limited. Summing over all directions we obtain :

⌦
�qe

max
↵
= 4"�T 3

refT̂ (13)

The quantity defined here may be compared to the incoming average flux com-

puted in eq. (10). Two cases have to be considered:

• If
D
�qin

E
 ⌦

�qe
max

↵
, the walker is emitted without condition in the void.

The limitation of the flux is the due to conduction.

• If
D
�qin

E
>

⌦
�qe

max
↵
, the emission probability is inferior to unity and is then

the ratio between the emitted flux and the incoming flux.

To summarize, the global emission probability writes:

Ps!v (M, t) =

8>>>>><
>>>>>:

⌦
�qe

max
↵

h�qini =
4"�T 3

ref h|�xw|i
ks

if
⌦
�qe

max
↵
<

D
�qin

E

1 if
⌦
�qe

max
↵ �

D
�qin

E (14)

Note that the limitation due to the conduction appearing in the second case can

be avoided by diminishing the time step, which will lower the average space step

h|�xd|i and the ”last step” size h|�xw|i.
We can fairly well see that Ps!v is actually a ”numerical Nusselt number”

based on the pseudo-heat transfer coe�cient hbb = 4"�T 3
ref and the average step

size.
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2.2. Implementation

2.2.1. Single walk algorithm

The proposed algorithm couples the classical ray-tracing method with Brown-

ian motion in a hybrid random walk. Every excess enthalpy carrier will switch its

behavior from one to the other walk routine depending whether it lies in the solid

or in void space. Everytime it meets a surface element, it is decided whether it

will continue its walk in the void or in the solid, using the probabilities Ps!v and

Pv!v defined above. Figure 1 is an illustration of a typical walk.

Figure 1: Rendering of a typical random walk in an open-cell foam.

2.2.2. Surface discretization

The position of the interface is obtained by the Simplified Marching Cube

(SMC) technique [36]. This e�cient scheme is a trade-o↵ between the full March-

ing Cube (MC) algorithm, accurate but requiring large memory storage space, and
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a simple cubic voxel discretization, which is unable to approximate the interface

surface area per unit volume [27]. However, in that scheme, it is unfortunately

possible to obtain portions of solid phase slabs with zero thickness. This issue is

solved using a procedure described in Appendix B.

2.2.3. Boundary conditions (BCs)

In homogenization or averaging techniques, periodicity or symmetry BCs are

commonly employed, both with drawbacks. For instance, some material sam-

ple domains, like those obtained by image processing from X-ray Computerized

Tomography may not be naturally periodic, or display a texture with o↵-axis di-

rections. In these cases, setting periodicity or symmetry BCs can severely a↵ect

the results of the heat transfer computations. Using random walk schemes allow

straightforwardly to implement less harmful BCs. The representation of a pe-

riodicity BC would be the reintroduction of a walker in the opposite face of the

resolution domain, i. e. applying a translation of exactly one cell edge vector to its

”local” coordinates, while keeping untouched ”global” coordinates. But it is easy

to reintroduce the walker in the opposite face at a random location in the same

phase, instead of at exactly the same location. This has the e↵ect of implementing

an ”average periodicity” condition, i. e.:

hq (Lx)inx
· nx = hq (0)inx

· nx (15)

hT (Lx)inx = hT (0)inx

where nx is the outward normal to the x = 0 face and inward normal to the

x = Lx face, and h•inx is the face-average of a quantity:

h inx =
1

LyLz

Z Ly

0

Z Lz

0
 dydz (16)

Figure 2 is an illustration of these BCs.
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Figure 2: Several boundary condition schemes: a) Symmetry (induces an artificial alignment of

the e↵ective tensor eigenvalues on the image principal axes) , b) Translation (does not work on

non-periodic images), c) Translation plus a random tangential movement of the replicated image.

12



If the two opposite faces do not have the same porosity, then the reintroduction

of the walkers from the least porous face (with porosity ⇧�) to the most porous

one (⇧+) is biased by the porosity di↵erence, i. e. a random number between 0

and ⇧+ is drawn and if it is larger than ⇧� the walker is reflected back instead of

transferred to the opposite face. Failure to implement this correction would add

an artificial global heat flux.

2.2.4. Obtaining an e↵ective di↵usivity by the displacement covariance

A classical method to derive the e↵ective di↵usion tensor from random walks

statistics is to apply Einstein’s relationship [28, 37]:

a
comp
= lim

n!1
t!1

h(x(t) � x(0)) ⌦ (x(t) � x(0))i
2t

(17)

In practice, all random walkers are initially located in the image and are allowed to

walk freely; when they encounter an image border, the above-mentioned bound-

ary rules (either symmetry, periodicity, or average periodicity) are applied. Two

coordinate sets are handled: a local one, always inside the image, and a global

one, which is used for the computation of eq. (17). In the present case, one has

to note that since all random walkers travel instantly through the void space, they

are always found inside the solid when performing an evaluation of relation (17).

Consequently, the obtained di↵usion tensor is an intrinsic solid average. The ef-

fective di↵usion tensor, averaged over the whole material, is deduced by:

a
e↵
= a

comp
(1 � ⇧) (18)

where ⇧ is the pore (void) volume fraction. One has to note that Einstein’s rela-

tionship only applies in the hypothesis of finite horizon in void space; in the con-

verse case, the e↵ective di↵usion coe�cient obtained by relations (17-18) slowly

diverges with time [38]. Finally, since the heat capacity is always obtained by the
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rule of mixtures, a
e↵

and k
e↵

are related by:

k
e↵
= a

e↵
.
⇣
⇢cp

⌘
e↵
= a

e↵
.
⇣
⇢cp

⌘
s
(1 � ⇧) (19)

2.2.5. Obtaining an e↵ective conductivity by flux/gradient correlation

To circumvent the above-mentioned problem, and to compare this approach

with more classical averaging or homogenization techniques, a di↵erent compu-

tational routine has been designed, inspired by the Müller-Plathe method [39]

used in molecular dynamics to obtain the e↵ective thermal conductivity of a given

solid or liquid by the flux/gradient correlation method. In this method, no double

coordinate system (local/global) is required. While maintaining periodic, sym-

metric or ”average-periodic” boundary conditions on two sets of opposite faces,

we define a ”semi-permeable” wall boundary condition on the last pair of opposed

faces: for instance, all walkers reaching the x = Lx face are allowed to re-enter

the image by the x = 0 side whereas all walkers reaching the x = 0 face are for-

bidden to re-enter on the other side and simply undergo specular reflection. This

has the e↵ect of creating a flux in the positive direction. As a consequence, the

walker concentration acquires a gradient, with fewer walkers per unit volume on

the ”permeable” side. The walker fluxes are acquired on the semi-permeable pair

of faces, while the concentration gradient is recorded on all pairs of faces, and one

line of the e↵ective inverse conductivity tensor is obtained:

⇣
k�1

e↵

⌘
i j
= �

D
T̃ (Li)

E
ni
�

D
T̃ (0)

E
ni

L j hqin j
· n j

(20)

The accuracy of numerical estimations of the concentration and of the flux may

be enhanced by a time averaging technique. A limitation of this approach is that

if the image is not symmetric in addition to periodic, then a severe bias is added to

the concentration field with respect to what is expected from an averaging prob-

lem, resulting in an inaccurate homogenization. Nonetheless, if the image is very
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detailed (i. e. its size is much larger than the largest feature size), this bias has a

negligible influence.

3. Validation

The method has been tested against cases for which analytical solutions are

available: first, parallel plates separated by void space; then, a simple cubic array

of void spheres dispersed in a conductive matrix. All walls are grey and di↵use,

with a variable emissivity.

3.1. Parallel plates with grey di↵use walls

This simple case of a periodic medium is described in Figure 3: parallel solid

plates with thickness L1 are separated by void slices with thickness Ltot � L1. The

void volume fraction is ⇧ = 1 � L1/Ltot and the internal surface area per unit

volume is S v = 2/Ltot. The temperature profile, for a positive horizontal heat

flux qx > 0 is sketched on the same figure. Evidently, the addition of thermal

resistances in series will give the e↵ective thermal resistance, as detailed hereafter.

3.1.1. Analytical model

The heat flux normal to the plates is expressed by Fourier’s law in the solid:

qx =
ks

L1

⇣
T̃2 � T̃1

⌘
(21)

It is also expressed by the radiative exchange laws, under Rosseland’s linear ap-

proximation:

qx =
hbb

2 � "
⇣
T̃3 � T̃2

⌘
(22)

where the 2 � " denominator translates multi-reflection e↵ects [6].

The e↵ective conductivity is given by Fourier’s law over the whole unit cell:

qx =
ke↵

Ltot

⇣
T̃3 � T̃1

⌘
(23)
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Figure 3: Periodic medium with parallel plates. Solid and void spaces are identified by the distinct

nature of the random walk steps. A temperature profile T (x) is superimposed to the figure. Note

that T has not to be defined in the void space.
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Solving eqs. (21-23) for ke↵ yields:

1
ke↵
=

 
L1

Ltot

!
1
ks
+

 
1

Ltot

!  
2 � "
hbb

!
(24)

This relationship may be reinterpreted as :

1
ke↵
= (1 � ⇧)

1
ks

 
1 +

2 � "
Nu

!
(25)

where a radiative Nusselt number has been defined as :

Nu =
hbbL1

ks
=

hbb

ks
· 2 (1 � ⇧)

S v
(26)

Combining with eq. (19), the e↵ective di↵usivity will be given by:

ae↵ =
as

(1 � ⇧)2

 
1 +

2 � "
Nu

!�1

(27)

We note that there is a very simple relation between the Nusselt number and

the solid-to-void transition probability:

Ps!v = Nu
h|�xw|i

L1
(28)

3.1.2. Numerical results and discussion

Computations have been carried out with several relative slab thicknesses, val-

ues of the emissivity, of Ps!v, and of the step size h|�xw|i. The Müller-Plathe-like

scheme has been applied, the walker concentration profiles recorded along the

x coordinate, as well as the jx flux. The total number of random walkers was

N = 24000; the dimensionless time was ast/L2
tot = 6; every run has taken approx-

imately 1 minute on a single 2-GHz Core i7 CPU with 1.3 GHz memory access

frequency. Figure 4 is a plot of the dimensionless thermal resistance ks/ke↵ against

the conduction/radiation ratio, expressed as
⇣

2�"
Ps!v

Lpix

Ltot

⌘
. Indeed, rewriting eq.(24)

we can see straightforwardly that the former is an a�ne function of the latter :

ks

ke↵
=

 
L1

Ltot

!
+

 
2 � "
Ps!v

Lpix

Ltot

!
·
 h|�xw|i

Lpix

!
(29)
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Therefore the slope of the obtained lines should be equal to the step size expressed

in pixel units, and the intercept should be the relative solid volume amount. What

is actually found is a slope in very close agreement with the dimensionless step

size and a somewhat shifted intercept; the error between the actual intercept and

the expected intercept decreases with diminishing stepsize as h|�xw|i0.4, as illus-

trated by fig. 5.

Figure 4: Scaled thermal resistance for parallel plates for 3 di↵erent L1/Ltot ratio, as a function of

the conduction/radiation ratio, for h|�xw|i = 0.81 pixels. The inset gives the slopes and intercepts

as a function of the solid phase volume amount.

The same computations have been carried out using another technique based

on Einstein’s formula. All walkers are initially located inside the sample image;

they are freely moved using the mixed random walk algorithm, and periodicity

boundary conditions are applied. The obtained e↵ective di↵usivities are in agree-

18



Figure 5: Graph of the error on the scaled resistance limit at high radiation/conduction ratio on

parallel plates, for ⇧ = 0.7, as a function of the step size h|�xw|i.
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ment with the previously obtained conductivities according to eq. (19) within 5%

error for a ”last step before wall collision” size of 0.81 pixel, corresponding to a

time step size �t = L2
pix/6as. Note that the e↵ective di↵usivities in the other two di-

rections diverge, because of the non-fulfillment of the finite horizon requirement.

The random walk algorithm is therefore validated.

3.2. Cubic array of spherical pores with grey di↵use walls

Another test case for the method, without any infinite horizon nor flat surfaces,

is the cubic array of spherical pores. A periodic cubic unit cell with 50 pixels

edge size containing a single spherical cavity with a diameter of 29 pixels is used.

Computations have been run using the technique based on Einstein’s formula,

for various values of the emissivity and radiation/conduction ratio; the results are

plotted in Figure 3.2, as scaled e↵ective conductivity k̂e↵ vs. Nusselt number Nu

defined here as:

Nu =
hbb⇧

ksS v
=

Ps!v⇧

h|�xw|i S v
(30)

All points follow the same tendency, well fitted by the following equation :

k̂e↵ = k̂c,0 +
✓
�k̂�1

c,1 +
⇣
k̂+Nu

⌘�1
◆�1

(31)

As the importance of radiation increases, the e↵ective conductivity switches pro-

gressively from a ”pure conduction value” k̂c,0 to a ”radiation-enhanced” e↵ective

conductivity that remains finite but is larger by an additive factor �k̂c,1. The inter-

mediate regime involves an e↵ective conductivity of the radiating cavity k̂+. This

behavior is straightforward to interpret, assimilating the material to the juxtaposi-

tion of three blocks. The first block, with conductivity k̂c,0, is in parallel with the

other two, themselves disposed in series, with conductivities �k̂c,1 and k̂+Nu.

The computed coe�cients are compared to existing literature in Table 3.2.

The value of k̂c,0 falls within the bounds predicted by Torquato and Rubinstein

[40] for a material containing a cubic array of perfectly insulating spheres, while

20



Figure 6: Scaled e↵ective conductivity of a material containing a cubic array of spherical voids

with grey di↵use walls. The geometrical dimensions are given in the inset. The bounds of Torquato

& Rubinstein [40] for perfectly insulating (left) and perfectly conducting spheres (right) are de-

picted by the shaded areas; the prediction of Keller [41] for perfectly conducting spheres is de-

picted by the straight line on the right.
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k̂c,0+�k̂c,1 is within the bounds given by the same authors for perfectly conducting

spheres in the same matrix, and is very close to the analytical estimate of Keller

[41]. Finally, the value of k̂+ is in reasonable agreement with the analytical result

given by Zarubin et al. [42], who obtained an e↵ective radiative conductivity for

the pore only:

krad = 4"�T 3
refR (32)

where R = 3⇧/S v is the sphere radius. Recalling that the SMC surface discretiza-

tion method contains approximations about the sphere surface, we can conclude

that the agreement with the expected values is excellent.

Coe�cient Literature values Ref. This work

k̂c,0 [0.78 � 0.82] [40] 0.80

k̂c,0 + �k̂c,1 [1.37 � 1.55] [40] 1.52

1.49 [41]

k̂+ 3 [42] 2.73

Table 1: Comparison of obtained results and estimates from literature for the e↵ective conductivity

of a material containing a cubic array of spherical void with di↵use grey walls.

4. Application to a real porous medium sample

The chosen resolution domain is a 100⇥100⇥100 cubic pixels CT scan at 1.4

µm/voxel extracted from a larger data set [43]. The porosity is 67.4%, the fiber

and pore diameters are respectively 10.15 and 21.16 pixels (i. e. 14.21 and 29.62

µm ). As can be seen in figure 7, the fibers are more or less parallel, but their

orientation does not follow the main axes of the grid; moreover, they are not all in

contact.

Computations were run in the ”average periodicity” mode, using Einstein’s

relationship for the determination of the e↵ective di↵usivity. A diagonalization
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Figure 7: Image used for the e↵ective conductivity computations : a portion of a CT scan of a fiber

bundle.
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analysis allowed retrieval of the eigenvalues and eigenvectors. By varying the

emissivity and the solid-to-void transition probability, it has been checked that the

e↵ective scaled conductivity eigenvalues k̂e↵,i (i = 1, 2, 3) could be cast into the

following form :

k̂e↵,i =
ke↵,i

ks
= k̂c,i + k̂+i (") Nu0|     {z     }

k̂rad,i

(33)

where k̂c,i is the conductivity obtained in purely conductive mode and in direction

i – the remaining contribution being k̂rad,i – and the equivalent Nusselt number is

defined as [44]:

Nu0 =
4� hT i3⇧

ksS v
=

Ps!v⇧

" h|�xw|i S v
(34)

The scaled dimensionless radiative conductivity [44] is obtained as:

k̂+ =
1
ks

@ke↵

@
⇣

Ps!v
"

⌘ .
S v h|�xw|i

⇧
(35)

Here, @ke↵/@(Ps!v/") is, up to a constant, the slope of the conductivity vs. T 3
ref

curve. Figure 8 illustrates the verification of eq. (33) for the fastest and slowest

directions of heat transfer. As could be expected, the pure conduction value in

the fastest direction is slightly lower than (1 � ⇧), which is the law-of-mixtures

prediction. Somewhat more surprisingly, there is also a non-zero value – though

small – in the slowest direction of transfer. This arises from the chosen boundary

conditions, which connect together apparently unconnected fibers. Moreover, the

law of mixtures is less well respected for high emissivities, as could be expected

since the fibers and voids are not in a parallel arrangement.

Figure 9 displays the evolution of the angle between the fastest transfer direc-

tion (red arrow on fig. 10) and the z axis (almost vertical on the images), as a

function of the radiation /conduction ratio Nu0. A clear change occurs between

Nu0 = 10�2 and 1, in coincidence with the curvature change of the log-log curves

of figure 8. This Nu0 range of
h
10�2; 1

i
clearly defines what can be called a tran-

sition regime.
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a)

b)

Figure 8: Scaled e↵ective conductivities of a fibrous image sample in the fastest(a) and slowest (b)

directions, as a function of the radiation/di↵usion ratio Nu0, for various values of the emissivity ".
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Figure 9: Evolution of the angle between the fastest di↵usion direction (red arrow on fig 10) and

the z direction (green axis on fig. 10), as a function of the equivalent Nusselt number.
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In figure 10, we can see the orientation of the eigenvectors obtained in purely

conductive mode and in radiation-dominated mode (Ps!v = 0.5 and " = 0.1, lead-

ing to Nu0 = 130, i.e. after the transition regime). The direction of fastest di↵usion

follows very well the fiber direction in pure conduction mode, as expected. On

the other hand, when radiation is not negligible, transfer becomes important in the

transverse directions (eigenvalues are approximately 1/3 of the fastest direction),

and the eigenvector set is rotated downwards.

The k̂+ values are plotted as a function of " in fig. 11, showing a weak de-

pendence. The absolute values are small as compared to what Bellet et al. [44]

and Taine et al. [45] give for periodic arrays of parallel bundles. This is not a

surprising fact, because there is a very important di↵erence between this image

and ideal arrays : there is no infinite horizon here. On the other hand, the values

determined by Chahlafi et al. [46] in non-ideal images of bundles of damaged

rods are in good agreement with ours. Nonetheless, the evolution of k̂+ with " is

very similar to the ideal case, i.e. a very weak dependency.

It should be noted that these results on e↵ective conductivities are subjected

to a validity criterion, as discussed thoroughly by Gomart & Taine [47], namely :

hrT i
Tref

<< e↵ (36)

where e↵ is an e↵ective absorption coe�cient, roughly of the order of magnitude

of the internal surface area.

5. Conclusion

This paper has presented the principles and implementation of a mixed random-

walk algorithm designed for the resolution of the coupled radiative-conductive

heat transfer in a porous medium with an opaque and a transparent phase (void

pores). The algorithm has been used for the determination of e↵ective conductiv-

ities in porous media whereby conduction in the solid and radiation on the voids
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a) b)

c) d)

Figure 10: Heat transfer eigenvectors in a fibrous bundle CT image. a,b): pure conduction, c,d) :

with radiation. The eigenvectors colors are red, green, yellow in decreasing order of magnitude,

and are displayed in the center of the image (green and yellow are hardly visible on top). A sample

radiative/conductive trajectory portion is rendered as white lines in the bottom images.
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Figure 11: Evolution of the dimensionless radiative conductivity as a function of the emissivity.

The dotted lines refer to the values determined by Chahlafi et al. [46]
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are coupled, in the limit of small temperature perturbations, as compared to the

average medium temperature. Validation with respect to analytical cases has been

obtained; an example of application to actual porous media has shown the poten-

tiality of the computational tool, by showing how the e↵ective conduction tensor

changes when switching from purely conductive to mixed conductive/radiative

transfer. Further work has to be carried out in several directions. First, a very

severe limitation in the use of the presented method arises from the linearisation

hypothesis : only very small temperature gradients are admissible, following the

Gomart-Taine criterion. The determination of e↵ective conductivities could be

extended to the case of high gradients, by removing the linearisation hypothesis.

In numerical practice, this would require to design an iterative numerical scheme

in which the transition probability Ps!v would be recomputed as a function of the

local temperature and the random walks launched again, until convergence. Ap-

plication of the model to situations where the boundaries have an influence on the

overall conductivity can also be treated with the provided flux/gradient method.

The algorithm could be also used for the determination of e↵ective optical

properties, or for direct simulations of a flash experiment. Many enrichments of

the modeled physics - considering grey media, for instance - may be attempted

too. Moreover, application to other types of porous media than those discussed

here would be of great interest.

Acknowledgements

The author wishes to acknowledge Pr. Jean Taine (EM2C, ECP, Paris), Pr. Al-

berto Ortona (ICIMSI, Lugano, Switzerland), Dr. Benoı̂t Rousseau (LTN, CNRS,

Nantes), and Dr. Cyril Caliot (PROMES, CNRS, Perpignan) for fruitful discus-

sions, and two anonymous reviewers for suggesting many improvements.

30



Symbol Meaning Unit

a Thermal di↵usivity m2.s�1

cp Heat capacity per unit mass J.kg�1.K�1

hbb Radiative heat transfer coe�cient W.m�2.K�1

I Radiative intensity W.m�4

Itot Total radiative intensity W.m�4

I� Equilibrium black body radiative intensity W.m�4

k Thermal conductivity W.m�1.K�1

k̂ Scaled thermal conductivity -

Lx, y or z Cell dimensions m

Lpix Pixel size m

n Exterior normal to a surface element -

N Number of walkers -

Nu Nusselt number -

Pv!v Probability to be reflected in void -

Ps!v Probability to be transferred from solid to void -

q Heat flux W.m�2

R Sphere radius m

S Surface m2

S v Surface area per unit volume m�1

T Temperature K

T̂ Temperature perturbation K

t Time s

x Position m
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Symbol Meaning Unit

↵ Wall absorptivity -

� Random Gaussian number -

�x Position increment m

�t Time increment s

�H Enthalpy excess per walker J

�q Flux element W.m�2

�S Surface element m2

�V Volume element m3

" Wall emissivity -

✓ Polar angle rad

 Volume absorption coe�cient m�1

⇧ Porosity -

⇢ Density kg.m�3

� Stefan’s constant W.m�2.K�4

� Azimuthal angle rad

⌦ Solid angle sr
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Symbol Meaning Unit

h•i Average

h•inx Face-average

h•is Solid-phase intrinsic average

•̃ Perturbation

•in incident

•e emitted

•e↵ e↵ective

•max maximal

•ref reference

•rad radiative

•s relative to the solid phase

•+ radiation-related
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Appendix A. Evaluation of the average last step size before collision at the

interface

The average last step size h|�xw|i may be computed assuming that the walker

lies at a point M distant from the surface by length h; the step size �xd is such that

its variance is
D
�x2

d

E
= 6a�t and obeys a Maxwellian distribution:

p (�xd) d3x =
1

8 (⇡a�t)
3
2

exp
 
� x2 + y2 + z2

4a�t

!
dxdydz (A.1)

The mean step size is h|�xd|i =
q

16a�t
⇡ . The length of the last step is simply

obtained by setting y = h in the modulus of �xd :

|�xw| =
p

x2 + h2 + z2 (A.2)

Let us assume r2 = x2 + z2. We have to consider all events where the wall is hit or

trespassed, so that the probability density has to be:

Ph = P
�
walker hits the wall distant by h

�
=

Z 1

r=0

Z 1

y=h
p (�xd) 2⇡rdrdy (A.3)

Numerically, one has:

Ph =
1
2

erfc
 

h
2
p

a�t

!
(A.4)

The probability density is therefore :

p(h)dh =
r
⇡

4a�t
erfc

 
h

2
p

a�t

!
dh (A.5)

The average over all possible values of h of the last step size is given by :

h|�xw|i =
Z 1

h=0

"Z 1

r=0
|�xw| p(r)dr

#
p(h)dh (A.6)

or, expanding the expression:

h|�xw|i =
p
⇡

8 (a�t)
3
2

Z 1

h=0

"Z 1

r=0

p
r2 + h2 exp

 
� r2

4a�t

!
d(r2)

#
erfc

 
h

2
p

a�t

!
dh (A.7)
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Evaluating the integral between brackets gives:

h|�xw|i =
Z 1

h=0

" p
⇡

2
p

a�t
h +
⇡

2
exp

 
h2

4a�t

!
erfc

 
h

2
p

a�t

!#
erfc

 
h

2
p

a�t

!
dh (A.8)

The two integrals appearing in this expression are evaluated separately. The first

one is:

I1 =

Z 1

h=0

h
p
⇡

2
p

a�t
erfc

 
h

2
p

a�t

!
dh =

p
⇡a�t
2

(A.9)

The second one may be evaluated numerically:

I2 =

Z 1

h=0

⇡

2
erfc

 
h

2
p

a�t

!2

exp
 

h2

4a�t

!
dh ⇡ 0.8687

p
a�t (A.10)

Summing both, we get :

h|�xw|i ⇡ 1.75496
p

a�t (A.11)

Comparing to the average step size and to the root mean square step size, we

finally get:

h|�xw|i ⇡ 0.777645 h|�xd|i (A.12)

and:

h|�xw|i ⇡ 0.716459
qD
�x2

d

E
(A.13)

Appendix B. Treatment of the zero-thickness slabs

Fig B.12 is an example of a zero-thickness slab that may result from the SMC

discretization scheme. For the walk algorithm, one defines a probability of not

traversing such a surface as:

Prefl =

1X

n=1

"Ps!v (1 � Ps!v)2n =
"

2 � Ps!v
(B.1)

Then, depending on whether a random number with uniform density on the unit

interval is smaller or larger than this probability, the walker is reflected by or

transmitted through the slab, respectively.
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Figure B.12: Example of zero thickness slab arising from the SMC discretization scheme.
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