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1 Introduction

The Multi-Compartment Vehicle Routing Problem with Stochastic Demands (MC-VRPSD) [8] con-
sists of designing a set of minimal-cost routes to serve the demands for multiple products of a set
of geographically scattered customers. The two distinguishing features of the problem are: (i) the
products are incompatible and must be transported in independent vehicle compartments to avoid
product mixing, and (ii) the demand of each client for each product is not known with certainty,
and thus it is modeled as a random variable. The MC-VRPSD naturally arises in several practical
situations. For instance, dairies often use vehicles with multiple compartments to collect milk of
different types (e.g., from cows and goats) and qualities (e.g., different suckling dates); petroleum
companies deliver different types of fuel to outlet retailers using multi-compartment tankers; public
utilities use trucks with compartments to perform selective waste collection; and food companies
distribute in compartmentalized vehicles groceries that require different levels of refrigeration. In
these real-world scenarios, more often than not demands are stochastic rather than deterministic,
meaning that they are subject to levels of uncertainty that should be considered during the route
planning process in order to avoid higher costs during route execution.

Depending on the specific context, different solution frameworks can be applied to solve VRPs
with stochastic demands and in particular, the MC-VRPSD. One of the most widely used approaches
is the two-stage stochastic programming (or stochastic programming with recourse) framework (SP)
[2]. As its name suggests, the SP framework solves the problem in two phases. In the first phase
a set of routes is planned, while in the second phase the planned routes are executed. However,
because of the demand uncertainty, while servicing a given customer the remaining capacity of the
vehicle may not be enough to satisfy the whole customer demand; in such a case, a route failure
is said to occur. In case of a failure, a problem-dependent predefined corrective action, known as

Hamburg, Germany, July 13-16, 2009



id-2 MIC 2008: The VIII Metaheuristics International Conference

recourse, is taken to recover the solution feasibility. In summary, the problem consists of minimizing
the sum of the cost of the planned routes and the expected cost of the route failures.

One limitation of the two-stage stochastic programming framework is that its optimization
criterion is based on the expected cost of the solution and does not take into account the risk
averse behavior of the decision maker towards the cost spread (variance) [10]. As it stands, two
transportation plans having the same expected cost are deemed equivalent despite their different
variability. In the MC-VRPSD the cost spread depends on the number and potential location
(customer) of the recourse actions. Conservative routes avoid failures and lead to solutions of
low variance, yet they often result on expensive planned routes [8]. Therefore, there is a tradeoff
between the expected value of the total cost and its variability. In this research we extend the
two-stage stochastic programming formulation of the MC-VRPSD [8] to address both criteria based
on posterior articulation of preferences.

To solve the extended MC-VRPSD formulation, we propose a new Multiobjective Evolutionary
Algorithm (MOEA) that couples NSGA-II [1] with a local search procedure and a biobjective
reparation and evaluation strategy based on Monte Carlo simulation. We report computational
experiments on instances of up to 50 customers and 3 products and compare against an alternative
metaheuristic that solves repetitively a single-objective version of the problem with the variability
as a side constraint.

2 Problem definition

Formally, the MC-VRPSD can be defined on a complete and undirected graph G = (V, ) where

V ={0,...,n} is the vertex set and £ the edge set. Vertices v = 1...n represent the customers and
vertex v = 0 represents the depot. A distance d. is associated to edge e = (u,v) = (v,u) € £ and
it represents the travel cost between vertices u and v. There exists a set P = {1,...,p,...,m} of

products that must be transported in independent compartments of fixed capacity @,. All vehicles
are identical and the fleet size is unlimited. For product p customer v has an independent random
demand &, following a known distribution with mean p, ;, and standard deviation o, ;. The actual
values of the demands (realizations) are nonnegative and less than the capacity of the corresponding
compartment (), yet only known upon the vehicle’s arrival to the customer location. Each customer
must be visited only once by exactly one vehicle (route) and the total length of each route should
not exceed a maximum distance L. Henceforth, without loss of generality the discussion is restricted
to the case of collection routes, nonetheless the case of delivery routes is equivalent.

The MC-VRPSD formulation as a biobjective two-stage stochastic programming model follows.
In the first stage, a set R of a priori or planned routes is designed. Each route r € R is a
sequence of vertices r = (0,v1,...,;,...,0p,.,0), where v; € V \ {0} and n, represents the number
of customers serviced by the route. In the second stage, each planned route is executed until a
route failure occurs, that is, whenever the capacity of at least one of the compartment is exceeded.
Upon failure, the failing compartment is loaded up to its capacity and the recourse action takes
place. The recourse action is defined as a return trip to the depot to unload all the compartments,
followed by a trip back to the customer location to complete the service. After service completion,
the route is resumed from that point on as originally planned. The actual solution to the problem
(or second-stage solution) is then the true set of routes traﬁeled by the vehicles. Since the location
of the route failures depends on the demand realizations &, the cost of the second-stage solution
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C(R) is a random variable, with mean p () and standard deviation o), given by

crR) = S ¢ (1)

reR
= Y L +Y G(F) (2)
reR reR

where C.(= 1, + GT(?)) is the total travel cost, [, denotes the planned length (planned cost), and
- . . .

G,( &) the length of the returning trips to the depot caused by route failures (cost of recourse) for

each route r € R. Then, the problem is to determine in the first stage a set of planned routes R

that minimizes the expected cost of the transportation plan

BICR)] =Y EIC] =Y 1+ ElG,(€)] (3)

reR reR reR

and its coefficient of variation

/ o2
CV('R,) _ OC(R) _ ZTER Cr (4)

B Hc(Rr) B ZreRE[Cr]

Note that C,., the total travel distance of route r, is a random variable which value is only known
when the vehicle returns to the depot after completing the route. Thus, imposing the maximum
distance L as a hard constraint, that is, enforcing C, < L for all possible scenarios (demand
realizations), tends to generate very conservative and expensive routes. A common approach in the
stochastic VRP literature [13, 8] is to impose the distance constraint over the expected length of
the route F[C,]. Even though this constraint guarantees that on average every route will satisfy the
maximum distance, for those cases in which the distance constraint is not met the violation can be
arbitrarily large. To overcome this drawback, we model this distance limit as a chance constraint:

Pr(C,>L)<pB, YVreR (5)

where (§ is an acceptance threshold set by the decision maker according to his risk aversion to
violations of the distance constraint.

3 Multi-Objective Evolutionary Algorithm

The proposed MOEA belongs to the class of methods for multiobjective optimization with posterior
articulation of preferences, in which a set of nondominated solutions is first generated and then
presented to the decision maker who selects one solution from the set depending on his preferences.
We say that a set of routes R (solution) dominates a set of routes R’ (i.e., R < R’) if and only
if the following two conditions hold: (i) E[C(R)] < E[C(R')] and CV(R) < CV(R'); and (ii)

Hamburg, Germany, July 13-16, 2009



id-4 MIC 2008: The VIII Metaheuristics International Conference

E[C(R)] < E[C(R")] or CV(R) < CV(R'). A set of routes R that is not dominated by any other
set of routes is said to be Pareto optimal. The image of the Pareto optimal routes in the objective
space is known as the Pareto front (PF). Consequently, the goal of the proposed MOEA is to find
an approximation PF of PF.

3.1 General structure

The proposed MA encodes the MC-VRPSD solutions (set of routes R) into a multipermutation
genotype known as the Genetic Vehicle Representation (GVR) [11]. Specifically, each permutation
contains an ordered set of customers representing a route r € R.

Starting from an initial population P(0) comprised of P individuals, the algorithm runs for
T generations. At every generation a new children population C(t) is generated by mating, with
probability p., the individuals of the current population P(¢). Next, mutation and local search
operators are applied with probabilities p,, and p;s to every offspring in C(¢). Finally, P individuals
are selected from an expanded population £(t) < P(t) UC(t) to become part of the next generation,
namely P(t + 1). Phenotypic clones, that is, individuals sharing the same value of the objective
functions (3) and (4), are completely forbidden in the population to foster diversification in the
objective space.

3.2 Initialization and genetic operators

To accelerate algorithmic convergence, the initial population is generated based on a Stochastic Best
Insertion (SBI) heuristic [8]. Phenotypic clones are eliminated and replaced by randomly generated
solutions, leading to a diversified initial population with good quality solutions.

The crossover operator is based on the GVR crossover proposed by Pereira et al. [11] and used
in [9], in which a child inherits all the traits (routes) from one parent (recipient) and a small portion
of the genetic material (subroute) from the other parent (donor). A subroute is randomly selected
from the donor and inserted into the position having the lowest insertion cost. To speed up the
procedure, the insertion cost is calculated taking into account only the planned cost of the route
(I;). After insertion, duplicate customers are eliminated from the child, preserving those in the
inserting subroute.

The mutation operator, known as inversion mutation [11], reverses the visit order of all vertices
in a randomly selected subroute. The inversion mutation diversifies the population along two fronts.
First, the route structure is altered by the exchange of two arcs; and second, the traveling direction
of a subsequence of customers is changed. The latter is specially important since in the MC-VRPSD
the cost of recourse is not symmetric [8].

The local search procedure embedded in the MOEA consists of a Variable Neighborhood Search
(VNS) with two types of neighborhoods, namely, Relocate and 2-Opt. The former extracts a cus-
tomer from its current position and inserts it into a different route; while the latter replaces two
non-adjacent edges on a route. Each iteration of the VNS works as follows. First, the relocate
move extracts one customer from its current route and tries to insert it into a different route. Once
an improving move is found, it is executed and immediately 2-Opt moves (replacements of two
non-adjacent edges) are tried in the route where the customer was inserted. As soon as a successful
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2-opt move is found (or lack thereof), a new VNS iteration begins. The whole procedure is repeated
until no more improvements are found. Similarly to the crossover operator, the VNS works only
over the planned cost of the route avoiding the expensive computation of the cost of recourse.

3.3 Individual reparation and evaluation

The crossover, mutation, and local search operators may generate infeasible solutions in terms of
the distance constraint (5). To repair and evaluate individuals we propose bio-split, a biobjective
extension of the split procedure proposed by Prins [12]. Bio-split requires the GVR genotype to
be transformed into a chromosome without route delimiters, that is, a giant tour with a single
permutation of customers. From the chromosome, an auxiliary graph G’ is built and used to
find two optimal partitions of the permutation representing two different sets of feasible routes.
The directed graph G’ = (V', A) is comprised of the vertex set V' = {0,v1,...,v;,...,v,}, where
vertices vy, ...,v, € V\{0} and 0 is an auxiliary vertex; and the arc set A, where arc (v;, Vitn,) € A
represents a feasible route r with cost C, and Pr(C, > L) < f3, starting and ending at the depot and
traversing the sequence of customers from v;y1 to vjyy,.. The bio-split procedure finds two paths
connecting 0 and v, in G’ that represent two sets of routes R and R, that minimize E[C(R4)] and
CV(Rz2), respectively. Figure 1 illustrates the bio-split procedure, where an incoming individual
(Status A) containing an infeasible route (L = 80, 5 = 0.2) is transformed into a single chromosome
(Step 1, Status B), followed by a partition (Step 2) and recoding (Step 3) into two sets of feasible
routes of minimum expected cost and minimum coefficient of variation, respectively (Status C).

Instance plot -] - H

Status A: Incoming individual Status B: Single chromosome - P 29 - \10\ .
. - ~ :

OJ EI I i OOLELEE (o, L i,
Tole] | s -

. 30 10 .

Pr(Cy > 80) = 0.35 > 0.2 : 15,77 N ! o \\ :

: i NJs ! " ~

L Te)

1,7 :

Step 1: : ~
Cy =11+ E[G1(§)] =60+8  Chromosome : Eﬂ NP -
building L - L b
Pr(Cy > 80) = 0.19 < 0.2 : I -

Step 2: Chromosome splitting

Are I, E[G.(9)] ()’%r Pr(C,>1L)

de
e a 200 0.0 0.0 0.00
b 300 0.0 0.0 0.00
c @ . «p ¢ 400 00 0.0 0.00
Acevalaton  d  60.0 0.0 0.0 0.00
Vit1s Vitn, e 400 0.0 0.0 0.00
H @ a,b 40.0 6.0 9.0 0.03
Step 3: Individual recoding b,e 550 0.0 0.0 0.00
— - Awsin®y d.e  60.0 8.0 16.0 0.19

--------- Arcsin Ry
————— Arcsin Rjand R,
Status C: repaired and evaluated individual ; Status C: repaired and evaluated individual

: Co =lo+ E[Go(§)] =40+ 0
@E Co = lo+ E[Gy(§)] =40+ 0 : Pr(Co > 80) = 0.00 < 0.2
Pr(Cy > 80) = 0.00 < 0.2 :
) . s Cy =11+ E[G1(&)] = 40+ 6
<> - Cp =1+ B[Gi(§)] =40+ 6 E[C(R1) _)(}"4 : <> Pr(Cy > 80) = 0.00 < 0.2 E[C(R9)] = 186
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Cy > 80) = ll 1‘) < 0.2 H
: E Cy = I3+ E[G3(£)] = 40+ 0
Pr(Cy > 80) = 0.00 < 0.2

Figure 1: Example of the proposed bio-split procedure for individual evaluation and reparation

To partition the chromosome, the bio-split procedure requires the evaluation of three metrics,
namely, E[C)], O'%T, and Pr(C, > L), for each route r. For the biobjective MC-VRPSD formulation
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introduced in Section 2 there is no analytical method to perform exact evaluations of these metrics,
thus the proposed MOEA uses estimates computed by Monte Carlo simulation. To construct these
estimators, each route r is evaluated on a set €, of independent scenarios (replications), where each
scenario w € 2, is a realization of the random demands of the customers serviced by the route.
Since the cost C, follows a different distribution for each route r, the number of replications |, |
needed to build good estimators may differ largely between routes. To overcome this difficulty,
the algorithm dynamically sets the value of |€2,| for each route during its evaluation based on the
sequential procedure to construct confidence intervals shown in Law and Kelton [5]. The procedure
uses two parameters set by the decision maker that define the quality of the estimators: (i) a
confidence level (1 — a) and (ii) a maximum relative estimation error . During the evaluation of
each route, replications are performed until the confidence interval of the estimators falls within the
selected parameters.

3.4 Individual selection

To select the individuals for the next generation, the proposed MOEA implements the NSGA-II [1]
selection mechanism. NSGA-II classifies the population into fronts where, the first front is comprised
of all the nondominated solutions in the population; the second front contains the solutions that
become nondominated once the solutions in the first front are removed; and so on. The classification
procedure ends once every solution has been classified into a front. Next, starting from the first
front, the solutions are added into the next generation P(¢t 4+ 1) until [P(¢t 4+ 1)| = P. To preserve
the diversity in the population, NSGA-II uses a crowding measure based on the average edge of the
cuboid enclosing a solution in the frontier. For further details on NSGA-II the reader is referred [1].

4 Computational Experiments

4.1 Benchmark algorithm

To assess the performance of the proposed MOEA, we implemented an alternative solution method
based on the e-constraints approach for multi-criteria optimization [3] and the Memetic Algorithm
(MA) for the MC-VRPSD proposed in [8]. The method approximates the Pareto front by solving
the original MC-VRPSD minimizing the total expected cost (3) for different levels of the coefficient
of variation (4). The method, hereafter called Stepwise MA (SMA), operates as follows. First,
at step t = 0 the original MC-VRPSD is solved using MA. Then, SMA calculates a step size
§ = CV(RY)/A, where RV is the set of routes encoded in the best individual of the final population
of the MA and A is the total number of steps defined by the user. The final population of the MA
is stored into a global population § and then injected with some fresh individuals generated by
the SBI heuristic to form the initial population for the next step. Next, t is incremented and the
constraint CV(R) < CV(R") — (¢ x §) enforced. Then, MA is called again to solve the constrained
MC-VRPSD. The process continues until the maximum number of steps/é is reached. At the end,
the nondominated individuals of S form the approximate Pareto front PF.

4.2 Performance metrics

We compared MOEA against SMA under the light of three wide-accepted metrics for multiobjective
optimization [4]. The first two metrics are the absolute and relative quality measures. The former
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reports the fraction of solutions contributed by each algorithm to an aggregated front obtained
by combining the solutions of both algorithms and selecting those that are nondominated. The
latter reports the fraction of the nondominated solutions generated by each algorithm that are
truly nondominated, that is, they appear in the aggregated front. Figure 2(a) illustrates these
two metrics by means of an example. While the MOEA and SMA fronts are both comprised of 5
nondominated solutions, the aggregated front contains 6 solutions, four of them from MOEA and
just two from SMA. Consequently, the absolute and relative quality are 0.66(= 4/6) and 0.80(= 4/5)
for MOEA; and 0.33(= 2/6) and 0.40(= 2/5) for SMA.

The third metric known as the Size of the Space Covered (SSC) was proposed by Zitzler et
al. [14]; it estimates the quality of the Pareto front by measuring the size of the space enclosed
by the frontier and a reference point. In general, the larger the enclosed space, the better the
approximation. As an example, Figure 2(b) shows the space enclosed by the MOEA front and the
reference point (CV(R)*, E[C(R)]*), defined by two upper bounds of the objective functions (4)
and (3), respectively. The value of the SSC metric is given by the union of the dominated spaces
(shown in gray) generated by each solution in the front. To compare MOEA against SMA, we
calculate for each experiment the SSC metric for both methods and compare the approaches using
the number of best solutions, that is, the number of instances in which the method has the best
SSC metric, and the deviation relative to the best, given by epest = (SSChest —SSChnethod)/SSChest-

E[C(R) FIC(R

[C(R)] [CR)] (CV(R)*. E[C(R)])
6000 ~ 6000 7 =

+ +
5000 - 5000
4000 4 e} 4000 +
H +
3000 4 o} 3000 4
H +
2000 - O 2000 4
H +

1000 - & 1000 +

0 T T T T T " OV(R) 0 T T T T T " CV(R)

0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00% 0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00%

—+ MOEA front O SMAfront  []Aggregated front —+moea [l Upper bound Space covered

(a) Relative and absolute quality: SMA, MOEA, (b) Size of the space covered metric: MOEA front
and aggregated fronts

Figure 2: Examples of performance metrics

4.3 Results

After fine tuning the set of parameters for both MOEA (P = 80, T' = 2000, p. = 0.75, p,, = 0.10,
and p;s = 0.2) and SMA (P = 80, T' = 1000, p. = 0.5, p,, = 0.20, p;s = 0.2, A = 10), the two
methods were tested on a set of 30 randomly generated instances. For every instance, 50 customers
were randomly distributed over a 100 x 100 Euclidean space; each client v demands three different
products (p = 1,2, 3) following a Normal distribution N (uy p, 0y,p), where p, , randomly falls within
[10,100] and o, ), is set such that the coefficient of variation oy ,/fyp is 0.3; the capacity of the
compartments was set meeting a tightness ratio (3_,e oy Hv,p)/@p = 15; and last, the maximum
distance per route was set as L = / xmax,cy\ {0} do,», where 8 is uniformly distributed between 3 and
4. A single run of each method was executed on every instance using two values of 4 (0.1 and 0.4) for
the distance constraint (5). All the experiments were conducted using (1 — a) = 0.95 and v = 0.05
as parameters for the Monte Carlo simulation model. Both SMA and MOEA were coded in Java
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using Multiobjective Java Genetic Algorithms (MO-JGA), an object-oriented framework for the
rapid development of multiobjective evolutionary algorithms [7]. The support for the generation
of random numbers in the Monte Carlo simulation model is provided by the package Stochastic
Simulation in Java (SSJ) [6].

Table 1: Computational experiments on a set of 30 randomly generated instances

8=0.1 6=04 Average
MOEA SMA MOEA SMA MOEA SMA
Avg. Abs. Quality (%) 57.29 42.71 62.30 37.70 59.80 40.20
Avg. Rel. Quality (%) 70.19 58.24 79.74  56.33 74.97 57.28

SSC Best Solutions 4 26 1 29 - -
SSC Avg. cpest (%) 391  0.28 552  0.00 4.72 0.15
Avg. CPU Time (s) 789 1147 930 1370 859.89 1258.55

* Intel Core 2 Duo 2.4 GHz processor, 4 GB of RAM, running Windows XP Professional

Table 1 reports the average values for the three performance metrics and the execution time
over the 30 instances. In terms of quality, the results show that MOEA dominates SMA in both the
absolute and relative measures. In terms of the absolute quality, MOEA provides on average 59.8%
of the solutions of the aggregated front, while SMA provides only 40.2%. This gap is even more
significant when the distance constraint is relaxed (higher value of 3). On the experiments conducted
with 8 = 0.1 the gap is 15.58% (= 57.29 — 42.71), while it reaches 24.60% (= 62.30 — 37.70) when
B = 0.4. A plausible explanation for this behavior is that larger values of § translate into larger
search spaces. Thus, there are more tradeoffs between the two objectives (i.e., routing alternatives)
to be explored; a feature that is better exploited by the biobjective search of MOEA than the
intensive single-objective search of SMA. In terms of relative quality, the results show that an
important fraction of the solutions generated by both methods, nearly 75% for MOEA and 60%
for SMA, turn to be nondominated in the aggregated front. The explanation of this result is well
illustrated by the aggregated front plotted in Figure 3(c). Note that the solutions provided by the
MOEA are densely spread along the central region of the front, while those provided by SMA are
concentrated at the ends of the front. In other words, the two methods complement each other.
While SMA is capable of finding good solutions for each single objective, MOEA is able to unveil
a large set of tradeoffs between the two objectives. Although it is only illustrated for one instance,
the behavior shown in Figure 3(c) is typical along the thirty instances comprised in the testbed.

Regarding the size of the space covered (SSC), the results show that SMA dominates MOEA.
Even thought the fronts generated by SMA covered larger spaces in 92% (= 55/60) of the exper-
iments, in terms of the deviation with respect to the best solution the difference between MOEA
and SMA is only 4.57% (4.72 — 0.15), meaning that the fronts produced by both methods cover
spaces of similar size. The better results of SMA can be explained by its ability to find extreme
solutions. As shown in Figures 3(a) and 3(b), SMA is able to find a larger number of solutions with
low coefficient of variation CV(R) than MOEA. These extreme solutions generate large dominated
spaces that contribute significantly to the value of the SSC metric.

Last, a final look at Table 1 shows that MOEA is 30% faster than SMA.
Hamburg, Germany, July 13-16, 2009
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Figure 3: Approximated Pareto fronts for an instance with 50 customers and 3 products solved for
8=0.1

5 Concluding remarks and future research

This paper introduces the biobjective MC-VRPSD, the problem of designing collection routes to
serve customers who have independent stochastic demands for different products that must be
transported in independent vehicle compartments due to product mixing constraints. Due to the
stochastic demands, the executed routes may have a different cost each time the solution is imple-
mented. Thus, the objective is to select the set of routes that minimizes (i) the expected value of
the total cost of the transportation plan and (ii) its coefficient of variation. To solve the biobjec-
tive MC-VRPSD this paper proposes a multiobjective evolutionary algorithm (MOEA) based on
a stochastic programming with recourse formulation. The MOEA couples NSGA-II with a local
search procedure and bio-split, a novel evaluation and reparation strategy based on Monte Carlo
simulation. To assess the performance of the MOEA, an alternative solution approach called SMA
was implemented. SMA approximates the Pareto front by solving with a Memetic Algorithm the
single-objective counterpart of the MC-VRPSD. SMA solves a sequence of problems minimizing the
total expected cost, subject to different levels of the coefficient of variation. The two new methods
were tested on a set of randomly generated instances with 50 clients and 3 products. The results
show that the proposed MOEA is faster than SMA and produces approximate Pareto fronts of
higher absolute and relative better quality. On the other hand, SMA is able to unveil nondomi-
nated solutions at the ends of the Pareto front, unveiling a larger dominated space according to the
SSC metric. Research currently underway includes the development of new diversification and local
search mechanisms that allow the MOEA to explore extreme solutions (thus covering larger domi-
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nated spaces); and the implementation of new simulation components and acceleration techniques
that could reduce the computational burden on larger instances.
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