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Abstract

Neural network dynamics emerge from the interaction of spiking cells. One way to formulate the
problem is through a theoretical framework inspired by ideas coming from statistical physics, the so-
called mean-field theory. In this document, we investigate different issues related to the mean-field
description of an excitatory network made up of leaky integrate-and-fire neurons. The description is
written in the form a nonlinear partial differential equation which is known to blow up in finite time
when the network is strongly connected. We prove that in a moderately connected regime the equation is
globally well-posed in the space of measures, and that there exist stationary solutions. In the case of weak
connectivity we also demonstrate the uniqueness of the steady state and its global exponential stability.
The method relies on a contraction argument of Doeblin’s type in the linear case, which corresponds to
a population of non-interacting units.

Keywords: Neural network; leaky integrate-and-fire; piecewise deterministic Markov process; Doeblin
condition; measure solution; relaxation to steady state
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1 Introduction

The dynamics of neural networks is extremely complex. In the brain, a population of neurons is ruled by
the interaction of thousands of nervous cells that exchange information by sending and receiving action
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Figure 1: Simulation of the LIF model. The upper panel shows the time evolution of the membrane potential,
the lower panel illustrates the arrival times of impulses, so-called Poisson spike train. The red dots correspond
to discontinuities induced by the jump process. The parameters are: h = 0.2, vr = 0.1 and Poisson rate 100.

potentials. Neuroscience needs a theory to relate key biological properties of neurons, with emerging
behavior at the network scale. From a mathematical perspective, a neural network can simply be seen
as a high-dimensional dynamical system of interacting elements. Unfortunately, introducing these inter-
actions tends to lead to models that are analytically intractable. A big challenge has been to reduce the
description of neural circuits.

Most attempts to establish a mathematically tractable characterization of neural networks have made
use of mean-field theory (MT), see [16, 4] for a bio-physical review on the subject. Because each neuron
receives input from many others, a single cell is mostly responsive to the average activity of the population
- the mean-field - rather than the specific pattern of individual units. Based on theoretical concepts
coming from statistical physics, MT gives rise to a so-called mean-field equation that defines the dynamic
of a large (theoretically infinite) population of neurons [16, 24]. The use of MT is nowadays well accepted
in neuroscience, and, over the past few decades or so, it has brought important insights into the emergent
properties of neural circuits. For instance, it has played a crucial part in the understanding of neural
synchronization and emerging brain rhythms [5].

Although MT is widespread among theoreticians, most of the mean-field equations are written within
the language of partial differential equations (PDEs) for which there are only few mathematical studies.
In this paper, our goal is precisely to fill this gap by considering a mean-field model that prevails in
neuroscience. We focus our investigation on the existence and properties of the steady state measure of
a PDE that arises for the description of an excitatory network of leaky integrate-and-fire (LIF) neurons.

The LIF model is a well-established neuron model within the neuroscience community [31]. It consists
in an ordinary differential equation that describes the subthreshold dynamics of a neuron membrane’s
potential. The equation is endowed with a discontinuous reset mechanism to account for the onset of
an action potential. Whenever the membrane potential reaches the firing threshold, the neuron initiates
an action potential and the membrane potential is reset, see [8] for a review and [1, 7] for historical
consideration. In its normalized form, the LIF model reads{

d
dt
v(t) = −v(t) + h

∑+∞
j=1 δ(t− tj)

If v > 1 then v = vr.

Here, vr is the reset potential, δ is the Dirac measure, h is the so-called synaptic strength, and tj are the
arrival times of action potentials that originate from presynaptic cells.

Due to the presence of Dirac masses, the LIF equation describes a stochastic jump process, or piecewise
deterministic Markov process [15]. Those voltage jumps result from the activation of the synapse at the
reception of an action potential, and the stochastic feature is embedded in the Poisson distribution of
time arrivals [32]. It is worth saying that, despite its vast simplifications, the LIF model yields amazingly
accurate predictions and is known to reproduce many aspects of actual neural data [26]. Of course, there
have been several variants and generalizations of the model [31]. In Fig. 1, a simulation of the LIF model
is presented. It illustrates the different processes involved in the membrane equation such as the voltage
jumps at the reception of an action potential, and the reset mechanism at the initiation of an action
potential.
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Figure 2: Simulations of the neural network. The network contains N = 100 neurons. In each panel is shown
the spiking activity of every neuron in a raster plot (dots represent spikes). The parameters are: h = 0.1,
vr = 0.1 and Poisson rate 200. The release probability ρ is: A) ρ = 0.01, B) ρ = 0.09.

In a network, when a cell fires, the dynamic of each other neuron should be affected by the action
potential. However, since synaptic transmissions are highly stochastic, the depolarization of the postsy-
naptic cell only occurs according to a certain probability. This probability plays the role of a coupling
parameter. The dynamic of a neural network made up of LIF neurons is exposed in Fig. 2. For each
simulation, we show the network raster plot where dots indicate the spiking time of individual units.
The panels correspond to different values of the coupling. As we can see, for weak coupling, the network
displays an asynchronous activity where each neuron fires irregularly (Fig. 2A). In contrast, when the
coupling parameter is taken sufficiently large, the network enters into a synchronous state (Fig. 2B).
The system seems to have a critical coupling value for which, above this value, the system is driven to
a synchronous state, while below this value, it remains asynchronous [35, 36]. A great deal of attention
has been devoted to the precise functional forms of these patterns, and this type of transition can be
studied rigorously using MT.

As mentioned above, MT is used to simplify the description of networks and is formally derived in
the limit of an infinitely large number of elements [16, 4]. In this setting, trajectories of individual units
are ignored, and instead, the focus is made on the probability of finding a randomly chosen neuron in a
certain state. A continuity equation describing the dynamics of the probability density function (PDF)
is then derived, and the study of the PDF forms the basis of the mean-field approach. The fundamental
assumption at the core of this theoretical setting is that all the neurons of the network share similar
biophysical properties.

A pioneering attempt to describe neural networks within the framework of MT was made around the
1970 with the seminal work of Wilson and Cowan, followed by the Amari [42, 2]. Since then the study of
neural circuits within the mean-field approach has never lost interest within the scientific community. To
mention just a few, Sirovich, Omurtag and Knight [41], Nykamp and Tranchina [37], Brunel and Hakim
[6, 5], and the work of Gerstner [23], were among the first to study networks of LIF neurons using MT.

Assuming that each neuron receives excitatory synaptic input with average rate σ(t) and fires action
potentials at rate r(t), we denote the density function p(t, v), such that Np(t, v)dv gives the number of
neurons with membrane potential in [v−dv, v) at time t. The dynamics of the density p(t, v) is prescribed
by the following nonlinear partial differential equation:

∂

∂t
p(t, v)− ∂

∂v
[vp(t, v)]︸ ︷︷ ︸
Leak

−σ(t)
[
p(t, v)− p(t, v − h)1[h,1)(v)

]︸ ︷︷ ︸
Jump

= δ(v − vr)r(t)︸ ︷︷ ︸
Reset

, 0 < v < 1. (1)

We show in Fig. 3 a schematic representation of the state space for the mean-field equation where the
different operators take place. The firing activity of the network r(t) is easily extracted from the mean-
field equation. The proportion of cells crossing the threshold, see Fig. 3, is given by:

r(t) = σ(t)

∫ 1

1−h
p(t, w) dw.
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Figure 3: Schematic representation of the state space for the mean-field equation.

To account for the arrival of action potentials coming from an external source, the arrival rate σ(t) is
given by the sum of an external rate and the firing rate

σ(t) = σ0 + Jr(t),

where J is the average number of synaptic connexion. The last equality is justified in the mean-field
framework where it is assumed that single cells are only sensitive to the average population activity [41].

The equation is complemented with a zero flux boundary condition

p(t, 1) = 0.

Figure 4 portrays the dynamics of the mean-field equation where a Gaussian profile was taken as
initial condition (Fig. 4A). Under the drift and the jump process, the density function gives a non zero
flux at the threshold, and this flux is reinjected right away according to the reset process. This effect can
be clearly seen in the third panel of the simulation presented in Fig. 4B. Asymptotically, the solution
reaches a stationary profile which is shown in Fig. 4C.

Interestingly, it has been shown that the mean-field solution blows-up in finite time for any initial
data in the strong connectivity regime [19]. This was attributed to the instantaneity of spikes firings and
their immediate effects on the firing of other cells. This is happening when

J ≥ 1 +
1− vr
h

and hσ0 > 1.

Although progresses have been made, several questions remain unanswered, specially in the moderate
or weak connectivity regime. For instance, as we can see from some simulation presented above, we
observe that the density convergences toward a stationary state. Can we show the existence of a steady
state? Can we analyze its stability properties? Answering these questions will allow us to form a deeper
understanding of the asynchronous states of neural networks. Our challenge is to study the existence
and properties of the mean-field equation steady state.

The paper is structured as follows. First we give a summary of the main results obtained throughout
this manuscript. Section 3 is devoted to the study of the linear regime, which corresponds to a population
of uncoupled neurons (J = 0). More precisely we prove the well-posedness of the equation in the space
of measures and, via a so-called Doeblin’s condition, the exponential convergence to an asynchronous
state. Using the result in the linear case we show in section 4 the existence of a stationary solution in a
moderate nonlinear regime

J < 1 +

⌊
1− vr
h

⌋
.

In Section 5 we prove the existence and uniqueness of global in time measure solutions to Equation (1) in
the nonexplosive regime J < 1. Eventually, we demonstrate in section 6 the global exponential stability
of the (unique) steady state in the weakly nonlinear regime J � 1. This work complements results on
asynchronous state in different models [34, 38, 39].

2 Main results

In this paper we are interested in measure valued solutions to Equation (1). Considering measure solutions
to structured population equations has attracted increasing interest in the last few years [9, 13, 22, 27, 28].
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Figure 4: Simulations of the MF equation. A gaussian was taken as initial condition. The plots show in
blue the evolution in time of the solution at different times. The red dots correspond to the discontinuity
induced by the reset process. The parameters of the simulation are: vr = 0 : 3, h = 0.05, σ0 = 50, J = 0 A)
t = 0, B) t = 0.12, C) t = 7.

In our case it is a very natural framework for two reasons. First it allows to consider for instance a Dirac
mass initial distribution, corresponding to a fully synchronous state of the network. Second it is very well
suited for dealing with an equation which has a measure source term (the reset part in Equation (1)).

Before giving the definition of such solutions, we recall some results about measure theory (and we
refer to [40] for more details). We endow the interval [0, 1] with its usual topology and the associated
Borel σ-algebra. We denote by M([0, 1]) the space of signed Borel measures on [0, 1], by M+([0, 1]) its
positive cone (the set of finite positive Borel measures), and by P([0, 1]) the set of probability measures.
The Jordan decomposition theorem ensures that any µ ∈ M([0, 1]) admits a unique decomposition
µ = µ+−µ− where µ+, µ− ∈M+([0, 1]) are mutually singular. The spaceM([0, 1]) is endowed with the
total variation norm defined for all µ ∈M([0, 1]) by

‖µ‖TV := µ+([0, 1]) + µ−([0, 1]).

For any bounded Borel function f on [0, 1] the supremum norm is defined by ‖f‖∞ = sup0≤v≤1 |f(v)|
and for any µ ∈M([0, 1]) we use the notation

µf :=

∫
[0,1]

f dµ.

Endowed with the supremum norm, the space C([0, 1]) of continuous functions on [0, 1] is a Banach space.
The Riesz representation theorem ensures thatM([0, 1]) can be identified with the topological dual space
of C([0, 1]) through the mapping

M([0, 1]) → C([0, 1])′

µ 7→ {f 7→ µf}
which is an isometric isomorphism:

‖µ‖TV = sup
‖f‖∞≤1

|µf |.

Recall that a sequence (µn)n∈N ⊂ M([0, 1]) is said to converge weak* to µ ∈ M([0, 1]) if (µnf)n∈N
converges to µf for all f ∈ C([0, 1]).

Now we can give the definition of a measure solution to Equation (1). We use the notation 1Ω for
the indicator function of a subset Ω ⊂ [0, 1], and we simply denote by 1 the constant function 1[0,1].

Definition 2.1. Let T ∈ (0,+∞]. We say that a family (µt)t≥0 ⊂ P([0, 1]) is a solution to Equation (1)
on [0, T ) with initial datum µ0 if

• t 7→ σ(t) :=
σ0

1− Jµt([1− h, 1])
is positive on [0, T ) and belongs to L1

loc([0, T )),

• t 7→ µt is weak*-continuous on [0, T ),

• and for all f ∈ C1([0, 1]) and all t ∈ [0, T )

µtf = µ0f +

∫ t

0

∫
[0,1]

(
− vf ′(v) + σ(s)

[
f(v + h)1[0,1−h)(v) + f(vr)1[1−h,1](v)− f(v)

])
dµs(v) ds.
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It will be useful to define the following operators. For any f ∈ C([0, 1]) we set

Bf(v) = f(v + h)1[0,1−h)(v) + f(vr)1[1−h,1](v)− f(v),

and, for any f ∈ C1([0, 1]) and σ > 0,

Aσf(v) = −vf ′(v) + σ Bf(v).

With this definition the weak formulation of Equation (1) in Definition 2.1 reads

µtf = µ0f +

∫ t

0

µs(Aσ(s)f) ds.

Notice that A and B are conservative in the sense that A1 = B1 = 0. Notice also that B is a bounded
operator in the sense that

∀f ∈ C([0, 1]), ‖Bf‖∞ ≤ 2 ‖f‖∞,
but in general we do not have Bf ∈ C([0, 1]), and thus neither Aσf ∈ C([0, 1]) when f ∈ C1([0, 1]).
This prevents the use of general results about the existence and uniqueness of measure solutions for
structured population models (see [9, 13, 27]). For proving the well-posedness of our problem we use a
duality method which is well suited for analysing the steady states.

From now on we always assume that h is small enough to satisfy

0 < h < vr < 1− h,

and also, to avoid pathological situations, that

1− vr
h

6∈ N.

Now we state the main results of the paper.

Theorem 2.2. If J < 1 +
⌊

1−vr
h

⌋
, then there exists at least one steady state to Equation (1), i.e. there

exists a probability measure µ̄ which satisfies

∀f ∈ C1([0, 1]), µ̄(Aσ̄f) = 0, where σ̄ =
σ0

1− Jµ̄([1− h, 1])
.

Theorem 2.3. Assume that J < 1. Then for all µ0 ∈ P([0, 1]) there exists a unique global measure
solution (µt)t≥0 to Equation (1), in the sense of Definition 2.1.

Theorem 2.4. When J < (5 − 2
√

6)
(
h
4

)σ0+1
, the steady state µ̄ is unique and globally exponentially

stable. More precisely there exist explicit constants t0, a > 0 such that for all µ0 ∈ P([0, 1]) and all t ≥ 0∥∥µt − µ̄∥∥TV ≤ e−a(t−t0)
∥∥µ0 − µ̄

∥∥
TV
.

3 The unconnected case (J = 0)

In the case J = 0 the equation is linear and reads

∂

∂t
p(t, v)− ∂

∂v

[
vp(t, v)

]
+ σ0

[
p(t, v)− p(t, v − h)1[h,1)(v)

]
=

[
σ0

∫
[1−h,1]

p(t, w) dw

]
δv=vr . (2)

For the sake of clarity in the current section we will denote by A the operator Aσ0 , σ0 being a fixed
positive number. Since the equation is linear, we do not need to restrict the definition of a solution
to probability measures. We say that (µt)t≥0 ⊂ M([0, 1]) is a measure solution to Equation (2) when
t 7→ µt is weak*-continuous and for all f ∈ C1([0, 1]) and all t ≥ 0

µtf = µ0f +

∫ t

0

µsAf ds.

6



For building and studying such measure solutions we follow the method in [22], which is based on the
dual equation

∂tf(t, v) + v∂vf(t, v) + σ0f(t, v) = σ0

[
f(t, v + h)1[0,1−h)(v) + f(t, vr)1[1−h,1](v)

]
,

with the initial condition f(0, ·) = f0. This equation is well-posed in the space of continuous functions,
in the sense of the following lemma.

Lemma 3.1. For any f0 ∈ C([0, 1]), there exists a unique f ∈ C(R+ × [0, 1]) which satisfies

f(t, v) = f0(ve−t)e−σ0t + σ0

∫ t

0

e−σ0τ
[
f(t− τ, e−τv + h)1[0,1−h)(e

−τv) + f(t− τ, vr)1[1−h,1](e
−τv)

]
dτ.

Additionally if f0 = 1 then f = 1, and if f0 ≥ 0 then f ≥ 0.

Proof. The proof consists in applying the Banach fixed point theorem. Fix T > 0 and define on the
Banach space C([0, T ]× [0, 1]) endowed with the supremum norm ‖ · ‖∞ the mapping Γ by

Γf(t, v) := f0(ve−t) e−σ0t +σ0

∫ t

0

e−σ0τ
[
f(t− τ, ve−τ +h)1[0,1−h)(ve−τ ) + f(t− τ, vr)1[1−h,1](ve−τ )

]
dτ.

It is a contraction whatever the value of T. Indeed it is an affine mapping and for f0 ≡ 0 we have

‖Γf‖∞ ≤ (1− e−σ0T )‖f‖∞.

The Banach fixed point theorem ensures the existence and uniqueness of a fixed point for Γ in C([0, T ]×
[0, 1]), for any T > 0.

If f0 = 1, it is easy to verify that Γ1 = 1 and then f = 1 by uniqueness.
For the positivity it suffices to check that when f0 ≥ 0, the closed positive cone of C([0, T ]× [0, 1]) is

invariant under Γ.

With this result we can define a family (Mt)t≥0 of linear operators on C([0, 1]) by Mtf0 = f(t, ·), and
we have the following properties.

Corollary 3.2. The family of operators (Mt)t≥0 is a semigroup, i.e.

M0f = f and Mt+sf = Mt(Msf),

which is conservative and positive, in the sense that for all t ≥ 0

Mt1 = 1 and f ≥ 0 =⇒ Mtf ≥ 0.

As a direct consequence it is a contraction for the supremum norm, meaning that for all f ∈ C([0, 1])
and all t ≥ 0

‖Mtf‖∞ ≤ ‖f‖∞.

Proof. For the semigroup property, it suffices to check that (t, v) 7→Mn
t+sf(v) and (t, v) 7→Mn

t (Mn
s f)(v)

are both the unique fixed point of Γ for f0 = Mn
s f, which is nothing but easy computations.

The conservativity and the positivity are immediate consequences of Lemma 3.1.

Now we define by duality a semigroup onM([0, 1]) = C([0, 1])′. For µ ∈M([0, 1]) and t ≥ 0 we define
µMt ∈M([0, 1]) by

∀f ∈ C([0, 1]), (µMt)f = µ(Mtf). (3)

The properties of the right action of (Mt)t≥0 are readily transfered to the left action by duality.

Corollary 3.3. The left semigroup (Mn
t )t≥0 defined on M([0, 1]) by (3) is positive and conservative,

i.e. for all t ≥ 0 we have
µ ∈M+([0, 1]) =⇒ µMt ∈M+([0, 1]),

µ ∈ P([0, 1]) =⇒ µMt ∈ P([0, 1]).

It is also a contraction for the total variation norm, i.e. for all µ ∈M([0, 1]) and for all t ≥ 0

‖µMt‖TV ≤ ‖µ‖TV .

7



We are now ready to state the main result of the section.

Theorem 3.4. For any µ0 ∈ M([0, 1]) the family (µ0Mt)t≥0 is the unique measure solution to Equa-
tion (2).
Additionally there exists a unique invariant probability measure µ̄, i.e. there exists a unique µ̄ ∈ P([0, 1])
such that

∀t ≥ 0, µ̄Mt = µ̄.

This invariant measure is globally exponentially stable: for all µ ∈M([0, 1]) and for all t ≥ 0∥∥µMt − (µ1)µ̄
∥∥
TV
≤ e−a(t−t0)

∥∥µ− (µ1)µ̄
∥∥
TV
,

where t0 = log 4
h
> 0 and a =

− log
(

1−σ0
2

(h
4

)
σ0
)

log 4
h

> 0.

The discontinuity of 1[0,1−h) and 1[1−h,1] is an obstacle for proving directly that (µ0Mt)t≥0 is a
measure solution to Equation (2). To work around this difficulty, we regularize these functions (see [21]
for a similar approach).

3.1 A regularized problem

We approximate the indicator function 1[1−h,1] by

χn(v) :=


0 if v ≤ 1− h− h

n
,

1 +
n

h
(v − 1 + h) if 1− h− h

n
≤ v ≤ 1− h,

1 if v ≥ 1− h+ h
n
,

where n ∈ N∗. The sequence (χn)n≥1 is a decreasing sequence of continuous functions which converges
pointwise to 1[1−h,1]. We define the associated regularized operators

Bnf(v) := f(v + h)(1− χn(v)) + f(vr)χn(v)− f(v) and Anf(v) := −vf ′(v) + σ0 Bnf(v).

As for A we have the conservation property An1 = 0. But contrary to A, for f ∈ C1([0, 1]) we have
Anf ∈ C([0, 1]), and this allows to build a measure solution to the regularized equation by duality.

Consider the regularized dual equation

∂tf(t, v) + v∂vf(t, v) + σ0f(t, v) = σ0

[
f(t, v + h)(1− χn(v)) + f(t, vr)χn(v)

]
, (4)

with the initial condition f(0, ·) = f0. As for the non-regularized case, this equation is well-posed on
the space of continuous functions. But it is also well-posed in the space of continuously differentiable
functions.

Lemma 3.5. For f0 ∈ C([0, 1]), there exists a unique f ∈ C(R+ × [0, 1]) which satisfies

f(t, v) = f0(ve−t)e−σ0t + σ0

∫ t

0

e−σ0τ
[
f(t− τ, e−τv + h)(1− χn(e−τv)) + f(t− τ, vr)χn(e−τv)

]
dτ.

Additionally

• if f0 = 1 then f = 1,

• if f0 ≥ 0 then f ≥ 0,

• if f0 ∈ C1([0, 1]) then f ∈ C1(R+ × [0, 1]) and f satisfies (4).

Proof. For the existence and uniqueness of a solution as well as the first two points we proceed as for
Lemma 3.1 by applying the Banach fixed point theorem to the mapping

Γf(t, v) := f0(ve−t) e−σ0t + σ0

∫ t

0

e−σ0τ
[
f(t− τ, ve−τ + h)(1− χn(ve−τ )) + f(t− τ, vr)χn(ve−τ )

]
dτ.

8



It remains to check that when f0 is of class C1 then the same holds for f. To do so we prove that
when f0 ∈ C1([0, 1]) the mapping Γ is a contraction in the Banach space C1([0, T ]× [0, 1]) endowed with
the norm ‖f‖C1 := ‖f‖∞ + ‖∂tf‖∞ + ‖∂vf‖∞ when T is small enough. We have

∂tΓf(t, v) = Anf0(ve−t) e−σ0t+σ0

∫ t

0

e−σ0τ
[
∂tf(t−τ, ve−τ+h)(1−χn(ve−τ ))+∂tf(t−τ, vr)χn(ve−τ )

]
dτ.

(5)
and

∂vΓf(t, v) =f ′0(ve−t) e−(1+σ0)t + σ0

∫ t

0

e−(1+σ0)τ∂vf(t− τ, ve−τ + h)(1− χn(ve−τ )) dτ

+ σ0

∫ t

0

e−(1+σ0)τ n

h
1[1−h− h

n
,1−h](ve−τ )

[
f(t− τ, vr)− f(t− τ, ve−τ + h)

]
dτ

so when f0 = 0 we have

‖Γf‖C1 ≤ (1− e−σ0T )‖f‖C1 + 2σ0
n

h
log
(

1 +
h

n(1− h− h
n

)

)
T‖f‖∞ ≤

1− 2h+ 2σ0

1− 2h
T‖f‖C1

and Γ is a contraction in C1([0, T ]× [0, 1]) when T < 1−2h
1−2h+2σ0

. This ensures that the unique fixed point

f of Γ belongs to C1([0, T ] × [0, 1]). To check that f satisfies (4) we can differentiate the alternative
formulation of Γf

Γf(t, v) = f0(ve−t) e−σ0t+σ0

∫ t

0

e−σ0(t−τ)[f(τ, ve−(t−τ)+h)(1−χn(ve−(t−τ)))+f(τ, vr)χn(ve−(t−τ))
]
dτ

with respect to t and we get

∂tΓf(t, v) =− vf ′0(ve−t) e−(1+σ0)t − σ0f0(ve−t) e−σ0t + σ0

[
f(t, v + h)(1− χn(v)) + f(t, vr)χn(v)

]
− σ2

0

∫ t

0

e−σ0(t−τ)[f(τ, ve−(t−τ) + h)(1− χn(ve−(t−τ))) + f(τ, vr)χn(ve−(t−τ))
]
dτ

− σ0

∫ t

0

ve−(1+σ0)τ∂vf(t− τ, ve−τ + h)(1− χn(ve−τ )) dτ

− σ0

∫ t

0

ve−(1+σ0)τ n

h
1[1−h− h

n
,1−h](ve−τ )

[
f(t− τ, vr)− f(t− τ, ve−τ + h)

]
dτ.

So we have

∂tΓf(t, v) + v∂vΓf(t, v) + σ0Γf(t, v) = σ0

[
f(t, v + h)(1− χn(v)) + f(t, vr)χn(v)

]
and the fixed point satisfies (4).

With this result we define a family (Mn
t )t≥0 of linear operators on C([0, 1]) by setting Mn

t f0 = f(t, ·).
Lemma 3.6. The family of operators (Mn

t )t≥0 is a conservative and positive semigroup on C([0, 1]),
hence a contraction for the supremum norm. Additionally it is strongly continuous, i.e.

∀f ∈ C([0, 1]), ‖Mn
t f − f‖∞ −−−→

t→0
0,

For all f ∈ C1([0, 1]) we have
∂tM

n
t f = AnMn

t f = Mn
t Anf (6)

and ∥∥∥∥1

t

(
Mn
t f − f

)
−Anf

∥∥∥∥
∞
−−−→
t→0

0.

9



Proof. For the semigroup property, it suffices to check that (t, v) 7→Mn
t+sf(v) and (t, v) 7→Mn

t (Mn
s f)(v)

are both the unique fixed point of Γ for f0 = Mn
s f, which is nothing but easy computations.

The conservativity and the positivity are immediate consequences of the previous proposition, as well
as the fact that ∂tM

n
t f = AnMn

t f. For the last equality we deduce from (5) that ∂tM
n
t f is the unique

fixed point of Γ associated to f0 = Anf, so ∂tM
n
t f = Mn

t Anf.
For the strong continuity we use the fact that a continuous function on a compact set is uniformly

continuous.
For the last point we use the strong continuity to write for f ∈ C1([0, 1])∥∥∥∥1

t

(
Mn
t f − f

)
−Anf

∥∥∥∥
∞
≤ 1

t

∫ t

0

‖Mn
s Anf −Anf‖∞ ds −−−→

t→0
0

since Anf ∈ C([0, 1]).

Now we can define by duality a semigroup onM([0, 1]) = C([0, 1])′. For µ ∈M([0, 1]) we define µMn
t

by
∀f ∈ C([0, 1]), (µMn

t )f = µ(Mn
t f).

The family (Mn
t )t≥0 is then also a positive and conservative semigroup onM([0, 1]) (hence a contraction

for the total variation norm). Additionally the family (µMn
t )t≥0 is a measure solution to the regularized

LIF equation.

Lemma 3.7. For all µ ∈ M([0, 1]) the application t 7→ µMn
t is weak*-continuous, and for all f ∈

C1([0, 1]) and t ≥ 0

µMn
t f = µf +

∫ t

0

µMn
s Anf ds. (7)

Proof. The continuity of t 7→Mn
t f(v) for all f ∈ C([0, 1]) and v ∈ [0, 1] and the dominated convergence

theorem ensure the weak*-continuity of t 7→ µMn
t .

For the second part of the lemma it suffices to integrate the identity ∂sM
n
s f = Mn

s Anf in time on [0, t]
and then in space on [0, 1] against the measure µ. The conclusion follows from the Fubini’s theorem.

3.2 Passing to the limit

Now we pass to the limit n→∞ to get that the family (µMt)t≥0 is a measure solution to Equation (2).

Lemma 3.8. For all T > 0 we have

sup
0≤t≤T

sup
‖f‖∞≤1

‖Mn
t f −Mtf‖∞ −−−−→

n→∞
0.

Proof. From the definitions of (Mt)t≥0 and (Mn
t )t≥0 we get that for all f ∈ C([0, 1]) such that ‖f‖∞ ≤ 1

‖Mtf −Mn
t f‖∞ ≤ σ0

∫ t

0

‖Mt−τf −Mn
t−τf‖∞dτ + 2σ0 sup

0≤v≤1

∫ t

0

1[1−h− h
n
,1−h](e

−τv) dτ

≤ σ0

∫ t

0

‖Mt−τf −Mn
t−τf‖∞dτ + 2σ0 log

(
1 +

h

n(1− 2h)

)
and we conclude by the Grönwall’s lemma that

‖Mtf −Mn
t f‖∞ ≤ 2σ0 log

(
1 +

h

n(1− 2h)

)
eσ0t.

Corollary 3.9. For any µ0 ∈ M([0, 1]) the family (µ0Mt)t≥0 is the unique measure solution to Equa-
tion (2).
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Proof. From Lemma 3.8 we deduce that for all µ ∈M([0, 1]) we have µMn
t → µMt in the TV-norm when

n→∞. This allows to pass to the limit in (7) by dominated convergence, since for all f ∈ C1([0, 1]) we
have Anf → Af pointwise and ‖Anf‖∞ ≤ ‖f ′‖∞ + 2 ‖f‖∞.

The weak*-continuity of t 7→ µMt follows from the weak*-continuity of t 7→ µMn
t , using again

Lemma 3.8.

For the uniqueness we use that if (µt)t≥0 is a solution to Equation (2) then for all n ∈ N∗, all t > 0,
all µ ∈M([0, 1]), and all f ∈ C1([0, 1]) we have

d

ds

(∫ s

0

µτM
n
t−sf dτ

)
= µsM

n
t−sf −

∫ s

0

µτ AnMn
t−sf dτ

= µMn
t−sf +

∫ s

0

µτ (A−An)Mn
t−sf dτ

= µMn
t−sf +

∫ s

0

µτ (B − Bn)Mn
t−sf dτ. (8)

For proving the validity of these computations we write for all h > 0

1

h

[ ∫ s+h

0

µτM
n
t−s−hf dτ −

∫ s

0

µτM
n
t−sf dτ

]
=

1

h

∫ s+h

s

µτM
n
t−sf dτ +

∫ s+h

s

µτ
Mn
t−s−hf −Mn

t−sf

h
dτ +

∫ s

0

µτ
Mn
t−s−hf −Mn

t−sf

h
dτ.

For the convergence of the first term above we use the weak*-continuity of τ → µτ to get

1

h

∫ s+h

s

µτM
n
t−sf dτ −−−→

h→0
µsM

n
t−sf.

For the second term we use that t 7→ µt is locally bounded for the TV-norm due to the uniform bound-
edness principle, because it is weak*-continuous. Using (6) we deduce∣∣∣∣ ∫ s+h

s

µτ
Mn
t−s−hf −Mn

t−sf

h
dτ

∣∣∣∣ ≤ h sup
s≤τ≤s+h

‖µτ‖TV ‖Anf‖∞ −−−→
h→0

0.

For the last term we also use (6) to get by dominated convergence∫ s

0

µτ
Mn
t−s−hf −Mn

t−sf

h
dτ −−−→

h→0
−
∫ s

0

µτ AnMn
t−sf dτ.

Now that (8) is proved, we integrate on [0, t] to obtain∫ t

0

µτf dτ =

∫ t

0

µMn
t−sf ds+

∫ t

0

∫ s

0

µτ (B − Bn)Mn
t−sf dτ ds

and by dominated convergence, when n→∞,∫ t

0

µτf dτ =

∫ t

0

µMsf ds.

Differentiating it with respect to t we get that µtf = µMtf and then µt = µMt because C1([0, 1]) is
dense in C([0, 1]).

3.3 Exponential contraction and invariant measure

We first prove the exponential contraction of any couple of probability solutions.

Proposition 3.10. For all µ, µ̃ ∈ P([0, 1]) we have

∀t ≥ 0, ‖µMt − µ̃Mt‖TV ≤ e−a(t−t0)‖µ− µ̃‖TV

with

t0 = log
4

h
> 0 and a =

− log
(

1− σ0
2

(
h
4

)σ0)
log 4

h

> 0.
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Notice that the values of t0 and a are explicit (in terms of the coefficients of the model) but not optimal.
The optimization of these constants is also an interesting issue that could be addressed in a future work.
The proof of Proposition 3.10 relies on a so-called Doeblin’s condition (see for instance [29, 33]).

Lemma 3.11. The semigroup (Mt)t≥0 satisfies the Doeblin’s condition

∀f ≥ 0, ∀v ∈ [0, 1], Mt0f(v) ≥ c (νf),

with t0 = log 4
h
> 0, c = σ0

2

(
h
4

)σ0 ∈ (0, 1), and ν = 2
h
1[h

2
,h] the uniform probability measure on [h

2
, h].

Proof. We start with the definition of (Mt)t≥0 which gives for f ≥ 0

Mtf(v) = f(ve−t)e−σ0t + σ0

∫ t

0

e−σ0τ
[
Mt−τf(e−τv + h)1[0,1−h)(e

−τv) +Mt−τf(vr)1[1−h,1](e
−τv)

]
dτ

≥ f(ve−t)e−σ0t + σ0

∫ t

0

e−σ0τMt−τf(e−τv + h)1[0,1−h)(e
−τv) dτ.

Iterating this inequality we deduce

Mtf(v) ≥ f(ve−t)e−σ0t + σ0

∫ t

0

e−σ0tf((e−τv + h)e−(t−τ))1[0,1−h)(e
−τv) dτ

≥ σ0e−σ0t
∫ t

0

f((e−τv + h)e−(t−τ))1[0,1−h)(e
−τv) dτ.

Let t1 = − log h the time after which all the neurons which did not undergo potential jumps have a
voltage between 0 and h (i.e. ∀τ ≥ t1, ∀v ∈ [0, 1], ve−τ ∈ [0, h]), and let t2 > 0 to be chosen later. For
t = t0 := t1 + t2 we have

Mt0f(v) ≥ σ0e−σ0t0
∫ t0

t1

f(e−t0v + he−(t0−τ))dτ

≥ σ0e−σ0t0
∫ t0

t1

f(e−t0v + he−(t0−τ)) e−(t0−τ)dτ

=
σ0

h
e−σ0t0

∫ ve−t0+h

ve−t0+he−t2
f(w) dw

(
w = e−t0v + he−(t0−τ))

≥ σ0

h
e−σ0t0

∫ h

2he−t2
f(w) dw

For the last inequality we have used that ve−t0 ≤ e−t1−t2 = he−t2 . So if we choose t2 = log 4 we get

Mt0f(v) ≥ σ0

2
e−σ0t0

2

h

∫ h

h
2

f(w) dw =
σ0

2

(h
4

)σ0
ν(f).

Proof of Proposition 3.10. We divide the proof into three steps.
Step 1: We first prove that for all v, v′ ∈ [0, 1] we have

‖δvMt0 − δv′Mt0‖TV ≤ (1− c)‖δv − δv′‖TV .

Define the linear operator U on C([0, 1]) by

∀f ∈ C([0, 1]), ∀v ∈ [0, 1], Uf(v) :=
1

1− c (Mt0f(v)− c (νf)).

This operator is conservative (U1 = 1) and Lemma 3.11 ensures that it is positive. As a consequence it
is a contraction (‖Uf‖∞ ≤ ‖f‖∞) and we deduce that for all v, v′ ∈ [0, 1]

sup
‖f‖∞≤1

∣∣Mt0f(v)−Mt0f(v′)
∣∣ = (1− c) sup

‖f‖∞≤1

∣∣Uf(v)− Uf(v′)
∣∣ ≤ (1− c) sup

‖f‖∞≤1

∣∣f(v)− f(v′)
∣∣.

12



Step 2: We extend the result to general measures. For µ, µ̃ ∈ P([0, 1]) we have (µ − µ̃)+([0, 1]) =
(µ̃− µ)+([0, 1]) = 1

2
‖µ− µ̃‖TV . We deduce from the step 1 that

‖µMt0 − µ̃Mt0‖TV = ‖(µ− µ̃)+Mt0 + (µ− µ̃)−Mt0‖TV
= ‖(µ− µ̃)+Mt0 − (µ̃− µ)+Mt0‖TV

= sup
‖f‖∞≤1

∣∣∣∣ ∫
v

Mt0f(v)d(µ− µ̃)+(v)−
∫
v′
Mt0f(v′)d(µ̃− µ)+(v′)

∣∣∣∣
=

1

(µ− µ̃)+([0, 1])
sup

‖f‖∞≤1

∣∣∣∣ ∫∫
vv′

[
Mt0f(v)−Mt0f(v′)

]
d(µ− µ̃)+(v)d(µ̃− µ)+(v′)

∣∣∣∣
≤ sup

v,v′
‖δvMt0 − δv′Mt0‖TV (µ− µ̃)+([0, 1])

≤ (1− c) sup
v,v′
‖δv − δv′‖TV

1

2
‖µ− µ̃‖TV = (1− c)‖µ− µ̃‖TV .

Step 3: Conclusion. For t ≥ 0 we define n =
⌊
t
t0

⌋
and we get by induction

‖µMt − µ̃Mt‖TV ≤ (1− c)n‖µMt−nt0 − µ̃Mt−nt0‖TV ≤ en log(1−c)‖µ− µ̃‖TV .

This ends the proof since

n log(1− c) ≤
( t
t0
− 1
)

log(1− c) = −a(t− t0).

Corollary 3.12. There exists a unique invariant measure µ̄ ∈ P([0, 1]) for the semigroup (Mt)t≥0 and
for all µ ∈M([0, 1]) we have

∀t ≥ 0, ‖µMt − (µ1)µ̄‖TV ≤ e−a(t−t0)‖µ− (µ1)µ̄‖TV .

Proof. We proved in the step 2 of the proof of Proposition 3.10 that the mapping µ 7→ µMt0 is a
contraction in the Cauchy space (P([0, 1], ‖ · ‖TV ). We deduce that it admits a unique fixed point µ̄ ∈
P([0, 1]). The semigroup property ensures that for all t ≥ 0, µ̄Mt is also a fixed point of Mt0 . By
uniqueness we get that µ̄Mt = µ̄, meaning that µ̄ is invariant under (Mt)t≥0. This concludes the proof
since the exponential convergence is an immediate consequence of Proposition 3.10.

4 Existence of a steady state when J < 1 +
⌊

1−vr
h

⌋
This section is devoted to the proof of Theorem 2.2. The result in the previous section ensures that for
all σ > 0 there exists a unique µσ ∈ P([0, 1]) such that µσAσ = 0. The question we address here is the
existence of σ̄ > 0 such that

σ̄ =
σ0

1− Jµσ̄([1− h, 1])
. (9)

In this case the measure µ̄ := µσ̄ is a steady state for the nonlinear equation. We will prove the existence
of such a steady state under the condition J < 1 +

⌊
1−vr
h

⌋
. This condition is quite optimal because we

know that if J ≥ 1 + 1−vr
h

then there does not exist global solutions to the nonlinear equation (blow-up
in finite time fo any initial data [19]).

For finding σ̄ which satisfies (9), we define the two functions

F :

{
(0,+∞) → [0,+∞)

σ 7→ µσ([1− h, 1])
and G :

{
(0,+∞) → R

σ 7→ 1

J

(
1− σ0

σ

) .

and we prove the existence of σ̄ such that F (σ̄) = G(σ̄). To do so we need informations on the function
F and it requires some regularity results on the regularity of the invariant measure µσ.
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Lemma 4.1. For any σ > 0, the invariant measure µσ is absolutely continuous with respect to the
Lebesgue measure. Its density pσ is satisfies vpσ(v) ∈W 1,∞([0, vr) ∪ (vr, 1]) and

∀v ∈ (0, 1), 0 < pσ(v) ≤ min
{σvσ−1

hσ
,
σ

v

}
.

Proof. Recall that µσ satisfies∫
[0,1]

[ v
σ
f ′(v) + f(v)− f(v + h)1[0,1−h)(v)

]
dµσ(v) = f(vr)µ

σ([1− h, 1]), ∀f ∈ C1([0, 1]). (10)

Thus the derivative of vµσ(dv) in the distributional sense is a finite measure and then vµσ(dv) is a
function with bounded variation. We deduce that there exist α ≥ 0 and pσ ∈ L1

+(0, 1) such that
µσ = α δ0 + pσ(v) dv. More precisely vpσ(v) is a W 1,1 function on the intervals (0, h), (h, vr) and (vr, 1)
(so that it has a left and a right trace at v = h and v = vr) with a jump at v = vr given by

vrpσ(v−r )− vrpσ(v+
r ) = σ

∫ 1

1−h
pσ(w) dw

and also a priori at v = h given by

hpσ(h−)− hpσ(h+) = µσ({0}) = α.

We will actually prove that µσ does not charge 0, i.e. α = 0, so that there is no jump at v = h. Consider
f ∈ C1

c ([0, 1)) which satisfies f(0) = 1, and define fn(v) := f(nv). For all n > b1/hc Equation (10)
written with fn gives ∫

[0,1]

[ v
σ
f ′n(v) + fn(v)

]
dµσ(v) = 0.

By dominated convergence we have∫
[0,1]

fn(v) dµσ(v) −−−−→
n→∞

µσ({0}) = α

and ∫
[0,1]

vf ′n(v) dµσ(v) =

∫
[0,1]

nvf ′(nv) dµσ(v) −−−−→
n→∞

0.

We conclude that α = 0, so that µσ = pσ(v) dv. The function pσ has no jump at v = h and it satisfies
the following equation on (0, vr) ∪ (vr, 1)

−1

σ
(vpσ(v))′ + pσ(v) = pσ(v − h)1[0,1−h)(v).

For the bound on pσ we start by studying pσ on the interval (0, h). On this interval the equation
satisfied by pσ is

(vpσ(v))′ = pσ(v)

which gives after integration

pσ(v) =
( v
h

)σ−1

pσ(h−). (11)

By positivity of pσ we have on both intervals (0, vr) and (vr, 1) the differential inequality

(vpσ(v))′ ≤ σpσ(v)

from which we get

∀ 0 < w < v ≤ 1, pσ(v) ≤
( v
w

)σ−1

pσ(w). (12)

Integrating from w = 0 to w = 1 we deduce

1 ≥
∫ v

0

pσ(w) dw ≥ pσ(v)

vσ−1

∫ v

0

wσ−1dw =
vpσ(v)

σ
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and
pσ(v) ≤ σ

v
∀ 0 < v ≤ 1.

Combining with (12) we get that

∀ 0 < w < v ≤ 1, pσ(v) ≤ σ

wσ
vσ−1

and with (11) we obtain

pσ(v) ≤ σvσ−1

hσ
∀ 0 < v ≤ 1.

From (12) we deduce that the support of pσ is necessarily of the form [0, vm] with 0 < vm ≤ 1 and
pσ is strictly positive in the interior of its support. Assume that vm < 1. Then integrating the equation
satisfied by pσ between vm and ṽ := min{vm + h, 1} > vm we get the contradiction

0 =

∫ ṽ−h

vm−h
pσ(v) dv > 0.

So vm = 1 and pσ(v) > 0 for all v ∈ (0, 1).

We are now ready to prove Theorem 2.2, which is a direct consequence of the following lemma about
the asymptotic behavior of the function F.

Lemma 4.2. The function F is continuous and satisfies

lim
σ→0

F (σ) = 0 and lim
σ→+∞

F (σ) =

(
1 +

⌊
1− vr
h

⌋)−1

.

Proof of Theorem 2.2. If J < 1 +
⌊

1−vr
h

⌋
then Lemma 4.2 ensures the existence of σ̄ > 0 such that

F (σ̄) = G(σ̄). Then σ̄ satisfies (9) and µσ̄ is a steady state of the nonlinear equation.

Proof of Lemma 4.2. Fix σ > 0 and consider a sequence (σn)n∈N ⊂ [σ/2, 2σ] which converges to σ. Since
the associated sequence (pσn)n∈N satisfies

∀n ∈ N, ∀v ∈ [0, 1], 0 ≤ pσn(v) ≤ 2σvσ/2−1

h2σ

we deduce from the Dunford-Pettis theorem that there exists a subsequence, still denoted by (pσn), which
converges L1-weak to a limit q ∈ P([0, 1]) ∩ L1(0, 1), i.e.∫ 1

0

pσn(v)ϕ(v) dv →
∫ 1

0

q(v)ϕ(v) dv

for all ϕ ∈ L∞(0, 1). Passing to the limit in the weak formulation we get that q is solution to (10). By
uniqueness we get that q = pσ and the whole sequence converges to pσ. This gives the continuity of the
application

σ 7→
∫ 1

0

pσ(v)ϕ(v) dv

for any ϕ ∈ L∞(0, 1), and as a consequence the continuity of F since 1[1−h,1] ∈ L∞(0, 1).

For the limit at 0 we readily deduce from Lemma 4.1 that

0 ≤ F (σ) ≤ σ

1− h −−−→σ→0
0.

If we want to be more precise we can prove that pσ converges weak* to δ0 when σ → 0. Indeed for any
sequence (σn)n∈N which tends to 0 we can extract from (pσn)n≥0 a subsequence, still denoted (pσn)n≥0,
which converges weak* to a probability measure µ. Lemma 4.1 ensures that

∀ 0 < ε ≤ v ≤ 1, ∀σ > 0, 0 ≤ pσ(v) ≤ σ

ε
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so we deduce that for all f ∈ Cc([ε, 1]) we have

µf = lim
n→∞

∫ 1

0

pσn(v)f(v) dv = lim
n→∞

∫ 1

ε

pσn(v)f(v) dv = 0.

As a consequence suppµ = 0 and since µ ∈ P([0, 1]) we deduce that µ = δ0, and then pσ
∗
⇀ δ0 when

σ → 0 since the sequence (σn) is arbitrary.

We finish with the limit at +∞. Let (σn)n∈N a sequence which tends to +∞. We can extract from
(pσn)n≥0 a subsequence, still denoted (pσn)n≥0, which weakly converges to a probability measure µ. We
want to identify the limit µ. We have that∫ 1

0

pσn(v)f(v) dv → µf (n→∞)

for all f ∈ C([0, 1]). We define

D := {f ∈ C1([0, 1]), f(vr) = f(1)}

which satisfies the property that
∀f ∈ D, Af ∈ C([0, 1])

and as a consequence

∀f ∈ D, 0 =
1

σn
µσnAσnf =

1

σn
µσn(vf ′(v)) + µσnBf −−−−→

n→∞
µBf.

This property that µBf = 0 for all f ∈ D, i.e.∫
[0,1]

[
f(v)− f(v + h)1[0,1−h)(v)

]
dµ(v) = f(vr)µ([1− h, 1]), ∀f ∈ D.

allows to prove that

µ =

(
1 +

⌊
1− vr
h

⌋)−1 b 1−vrh c∑
k=0

δvr+kh.

We prove this step by step. First for f ∈ C1
c ([0, h)) we get

∫
[0,h)

f(v)dµ(v) = 0 and so suppµ∩ [0, h) = ∅.
We easily deduce by induction, choosing f ∈ C1

c (kh, (k + 1)h), that suppµ ∩ [0, kh) = 0 for any k ∈ N
such that kh ≤ vr and then with one more step, with f ∈ C1

c (kh, vr), that suppµ ∩ [0, vr) = ∅. Keeping
going we get by choosing f ∈ C1

c (vr + kh, vr + (k + 1)h) that suppµ ∩ (vr + kh, vr + (k + 1)h) = ∅ for
any k ∈ N. Finally we have proved that

suppµ ⊂
{
{vr + kh}, 0 ≤ k ≤

⌊
1− vr
h

⌋}
so there exists a finite family of nonnegative real numbers αk such that

µ =

b 1−vrh c∑
k=0

αk δvr+kh.

For 1 ≤ k ≤
⌊

1− vr
h

⌋
, considering f ∈ C1

c (vr+(k−1/2)h,min{vr+(k+1/2)h, 1}) such that f(vr+kh) =

1 as a test function, we get that αk = αk−1. Now let f ∈ C1([0, 1]) such that f(vr) = f(1) = 1 and
supp f ⊂ [vr − h/2, vr + h/2] ∪ [vr +

⌊
1−vr
h

⌋
h, 1] (recall that 1− h < vr +

⌊
1−vr
h

⌋
h < 1 since 1−vr

h
6∈ N).

Using this function as a test function we get that α0 = αb 1−vrh c. Finally all the αk are equal and

µ =

(
1 +

⌊
1− vr
h

⌋)−1 b 1−vrh c∑
k=0

δvr+kh.
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Since this limit does not depend on the subsequence, we deduce that for any f ∈ C([0, 1]) we have

lim
σ→+∞

∫ 1

0

f(v)pσ(v) dv =

∫ 1

0

f(v) dµ(v) =

(
1 +

⌊
1− vr
h

⌋)−1 b 1−vrh c∑
k=0

f(vr + kh).

Since 1[1−h,1] is not continuous we cannot conclude directly for the limit of F. For all n ≥ 1 we define
χ̃n(v) := χn(v − h

n
). For all v ∈ [0, 1] we have χ̃n(v) ≤ 1[1−h,1](v) ≤ χn(v) and since vr +

⌊
1−vr
h

⌋
h ∈

[1− h, 1]

lim
σ→+∞

∫ 1

0

χn(v)pσ(v) dv =

(
1 +

⌊
1− vr
h

⌋)−1 [
χn

(
vr +

⌊
1− vr
h

⌋
h− h

)
+ χn

(
vr +

⌊
1− vr
h

⌋
h

)]
,

lim
σ→+∞

∫ 1

0

χ̃n(v)pσ(v) dv =

(
1 +

⌊
1− vr
h

⌋)−1

χ̃n

(
vr +

⌊
1− vr
h

⌋
h

)
.

We deduce that for all n ≥ 1

χ̃n

(
vr+

⌊
1− vr
h

⌋
h

)
≤
(

1 +

⌊
1− vr
h

⌋)
lim

σ→+∞
F (σ) ≤ χn

(
vr+

⌊
1− vr
h

⌋
h−h

)
+χn

(
vr+

⌊
1− vr
h

⌋
h

)
.

The fact that vr +
⌊

1−vr
h

⌋
h ∈ (1− h, 1) (since 1−vr

h
6∈ N) ensures that

lim
n→∞

χn

(
vr +

⌊
1− vr
h

⌋
h

)
= lim
n→∞

χ̃n

(
vr +

⌊
1− vr
h

⌋
h

)
= 1

and

lim
n→∞

χn

(
vr +

⌊
1− vr
h

⌋
h− h

)
= 0,

and the conclusion follows.

5 Global well-posedness for J < 1

For a connectivity J < 1, we know from [18] that Equation (1) is globally well-posed in L1([0, 1]). We
prove here Theorem 2.3 which ensures that it is still the case in the larger space M([0, 1]).

Our method of proof relies on duality arguments and divides into several steps. First we remark that
if (µt)t≥0 is a measure solution to Equation (1), then for all t ≥ 0 there exists a function φt, obtained
by solving a nonlinear dual equation which involves only µ0, such that µt([1 − h, 1]) = µ0φt. Once φt
is known for all t, we deduce the value of σ(t) and we can see Equation (1) as a time-inhomogeneous
but linear equation. We solve this equation in a similar way as for the linear case J = 0. This method
of construction allows us to prove a Duhamel formula for Equation (1) which is then used to prove
uniqueness. The Duhamel formula is also the corner stone to prove the exponential stability of the
steady state in the weakly connected regime (Section 6).

In what follows, µ is a fixed probability measure. Due to the discontinuity of the indicator
functions, we need to apply the method described above to a regularized problem before passing to the
limit, as in Section 3. The first step consists in building, for t ≥ 0, a regularized version of the function
φt. For T > 0 we denote XT := C({(s, t, v), 0 ≤ s ≤ t < T, 0 ≤ v ≤ 1}) and for n ∈ N∗ and T small
enough we define ψn ∈ XT as the unique solution to the nonlinear equation

∂sψn(s, t, v) = v∂vψn(s, t, v)+
σ0

1− Jµψn(0, s, ·)
[
ψn(s, t, v)−ψn(s, t, v+h)(1−χn(v))−ψn(s, t, vr)χn(v)

]
,

with the terminal condition ψn(t, t, v) = χn(v). More precisely ψn is defined in the following lemma,

where we have set T ∗ = (1−J)2

2σ0
.
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Lemma 5.1. There exists a unique function ψn ∈ {f ∈ XT∗ , 0 ≤ f ≤ 1} which satisfies

ψn(s, t, v) = χn(ves−t) e
σ0

1−J (s−t) +

∫ t

s

(
σ0

1− J −
σ0

1− Jµψn(0, τ, ·)

)
e
σ0

1−J (s−τ)ψn(τ, t, ves−τ ) dτ

+

∫ t

s

σ0

1− Jµψn(0, τ, ·) e
σ0

1−J (s−τ)[ψn(τ, t, ves−τ + h)(1− χn(ves−τ )) + ψn(τ, t, vr)χn(ves−τ )
]
dτ.

Proof. Let T ∈ (0, T ∗). We use the Banach fixed point theorem for the mapping

Γf(s, t, v) =χn(ves−t) e
σ0

1−J (s−t) +

∫ t

s

(
σ0

1− J −
σ0

1− Jµf(0, τ, ·)

)
e
σ0

1−J (s−τ)f(τ, t, ves−τ ) dτ

+

∫ t

s

σ0

1− Jµf(0, τ, ·) e
σ0

1−J (s−τ)[f(τ, t, ves−τ + h)(1− χn(ves−τ )) + f(τ, t, vr)χn(ves−τ )
]
dτ

on the invariant complete metric space {f ∈ XT , 0 ≤ f ≤ 1}. This mapping is a contraction when

T < (1−J)2

2σ0
since

‖Γf1 − Γf2‖∞ ≤
[

σ0

1− J ‖f1 − f2‖∞ + 2

∥∥∥∥ σ0

1− Jµf1
− σ0

1− Jµf2

∥∥∥∥
∞

+

∥∥∥∥ σ0

1− Jµf2

∥∥∥∥
∞
‖f1 − f2‖∞

]
T

≤ 2σ0

(1− J)2
T ‖f1 − f2‖∞.

In a second step we define for any f0 ∈ C([0, 1]) the function f ∈ XT∗ as the unique solution to the
linear equation

∂sf(s, t, v) = v∂vf(s, t, v) +
σ0

1− Jµψn(0, s, ·)
[
f(s, t, v)− f(s, t, v + h)(1− χn(v))− f(s, t, vr)χn(v)

]
with the terminal condition f(t, t, v) = f0(v). This definition is made more precise in the following lemma.

Lemma 5.2. For all f0 ∈ C([0, 1]) there exists a unique f ∈ XT∗ which verifies

f(s, t, v) = f0(ves−t) e
σ0

1−J (s−t) +

∫ t

s

(
σ0

1− J −
σ0

1− Jµψn(0, τ, ·)

)
e
σ0

1−J (s−τ)f(τ, t, ves−τ ) dτ

+

∫ t

s

σ0

1− Jµψn(0, τ, ·) e
σ0

1−J (s−τ)[f(τ, t, ves−τ + h)(1− χn(ves−τ )) + f(τ, t, vr)χn(ves−τ )
]
dτ.

Additionally if f0 ≥ 0, then f ≥ 0.

This allows to define a positive semigroup (Nn
s,t)0≤s≤t<T∗ on C([0, 1]) by Nn

s,tf0(v) := f(s, t, v). The
semigroup property means that

Nn
t,tf = f and ∀τ ∈ [s, t], Nn

s,tf = Nn
s,τ (Nn

τ,tf).

Additionally we easily check that Nn
s,t1 = 1 and, together with the positivity property, it ensures the

contraction property
‖Nn

s,tf‖∞ ≤ ‖f‖∞.
A fundamental remark here is that the uniqueness in Lemmas 5.1 and 5.2 ensures that

ψn(s, t, v) = Nn
s,tχn(v).

For all t ∈ [0, T ∗) we define

σn(t) :=
σ0

1− Jµψn(0, t, ·) =
σ0

1− JµNn
0,tχn

and for the sake of conciseness we denote by Ant the operator Anσn(t), i.e.

∀f ∈ C1([0, 1]), Ant f(v) := Anσn(t)f(v) = −vf ′(v) + σn(t)Bnf(v).

This operator is the infinitesimal generator of the semigroup (Nn
s,t) in the sense of the following lemma,

where we have set T ∗∗ = (1−J)2(1−2h)
3σ0

.
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Lemma 5.3. If f ∈ C1([0, 1]), then the function (s, t, v) 7→ Nn
s,tf(v) is continuously differentiable on the

set {0 ≤ s ≤ t ≤ T ∗∗, 0 ≤ v ≤ 1} and we have

∀ 0 ≤ s ≤ t ≤ T ∗∗, ∂sN
n
s,tf = −AnsNn

s,tf, and ∂tN
n
s,tf = Nn

s,tAnt f.

Proof of Lemmas 5.2 and 5.3. First let f0 ∈ C([0, 1]), 0 < T < T ∗, and define on XT the mapping

Γf(s, t, v) = f0(ves−t) e
σ0

1−J (s−t) +

∫ t

s

(
σ0

1− J −
σ0

1− Jµψn(0, τ, ·)

)
e
σ0

1−J (s−τ)f(τ, t, ves−τ ) dτ

+

∫ t

s

σ0

1− Jµψn(0, τ, ·) e
σ0

1−J (s−τ)[f(τ, t, ves−τ + h)(1− χn(ves−τ )) + f(τ, t, vr)χn(ves−τ )
]
dτ.

For any f1, f2 ∈ XT we have

‖Γf1 − Γf2‖∞ ≤ min

{
2σ0

1− J ,
σ0

(1− J)2

}
‖f1 − f2‖∞T

and this ensures that Γ is a contraction on XT endowed with the supremum norm. We deduce the
existence and uniqueness of a fixed point for Γ from the Banach fixed point theorem.

If f0 ≥ 0 the positive cone of XT is invariant under Γ so the fixed point belongs to this cone.

Now assume that T < T ∗∗ and f0 ∈ C1([0, 1]). In this case we can apply the Banach fixed point
theorem in the space {f ∈ XT : ∂vf, ∂tf ∈ XT } with the norm ‖f‖C1 := ‖f‖∞ + ‖∂vf‖∞ + ‖∂tf‖∞.
Indeed, computing

∂tΓf(s, t, v) = Ant f0(ves−t) e
σ0

1−J (s−t) +

∫ t

s

(
σ0

1− J −
σ0

1− Jµψn(0, τ, ·)

)
e
σ0

1−J (s−τ)∂tf(τ, t, ves−τ ) dτ

+

∫ t

s

σ0

1− Jµψn(0, τ, ·) e
σ0

1−J (s−τ)[∂tf(τ, t, ves−τ + h)(1− χn(ves−τ )) + ∂tf(τ, t, vr)χn(ves−τ )
]
dτ

∂vΓf(s, t, v) = es−tf ′0(ves−t) e
σ0

1−J (s−t) +

∫ t

s

(
σ0

1− J −
σ0

1− Jµψn(0, τ, ·)

)
e
σ0

1−J (s−τ)es−τ∂vf(τ, t, ves−τ ) dτ

+

∫ t

s

σ0

1− Jµψn(0, τ, ·) e
σ0

1−J (s−τ)es−τ∂vf(τ, t, ves−τ + h)(1− χn(ves−τ ))

+

∫ t

s

σ0

1− Jµψn(0, τ, ·) e
σ0

1−J (s−τ)es−τ
n

h
1[1−h− h

n
,1−h](ves−τ )

[
f(τ, t, vr)− f(τ, t, ves−τ + h)

]
dτ

we get for f1, f2 ∈ {f ∈ XT : ∂vf, ∂tf ∈ XT }

‖∂tΓf1 − ∂tΓf2‖∞ ≤ min

{
2σ0

1− J ,
σ0

(1− J)2

}
‖∂t(f1 − f2)‖∞T

‖∂vΓf1 − ∂vΓf2‖∞ ≤
[

min

{
2σ0

1− J ,
σ0

(1− J)2

}
‖∂v(f1 − f2)‖∞ +

2σ0

1− J
1

1− 2h
‖f1 − f2‖∞

]
T

and finally

‖Γf1 − Γf2‖C1 ≤ min

{
4σ0

(1− J)(1− 2h)
,

3σ0

(1− J)2(1− 2h)

}
T‖f1 − f2‖C1 .

We deduce that the unique fixed point of Γ satisfies ∂vf, ∂tf ∈ XT . We can also compute

∂sΓf(s, t, v) = v∂vΓf(s, t, v) +
σ0

1− J
[
Γf(s, t, v)− f(s, t, v)

]
+

σ0

1− Jµψn(0, s, ·)
[
f(s, t, v)− f(s, t, v + h)(1− χn(v))− f(s, t, vr)χn(v)

]
and this ensures that the fixed point also satisfies ∂sf ∈ XT and ∂sf = −Ans f.

From the computation of ∂tΓf we see that if Nn
s,tf0 is the fixed point of Γ with terminal condition f0

then ∂tN
n
s,tf0 is the fixed of Γ with terminal condition Ant f0. By uniqueness we deduce that ∂tN

n
s,tf0 =

Nn
s,tAnt f0.
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The third step consists in defining the measure µNn
s,t by duality

∀f ∈ C([0, 1]), (µNn
s,t)f := µ(Nn

s,tf).

The following lemma ensures that t 7→ µNn
0,t is a solution to a regularized version of Equation (1) on the

interval [0, T ∗∗).

Lemma 5.4. The mapping t 7→ µNn
0,t, which is defined on [0, T ∗), takes its values in P([0, 1]) and is

weak*-continuous. Additionally for all t ∈ [0, T ∗∗) we have

∀f ∈ C1([0, 1]), µNn
0,tf = µf +

∫ t

0

µNn
0,sAns f ds. (13)

Proof. The positivity property in Lemma 5.2 ensures that µNn
0,t ∈ M+([0, 1]). Additionally we easily

check that Nn
0,t1 = 1. Together with the positivity this implies that µNn

0,t ∈ P([0, 1]), and also that
‖Nn

0,tf‖∞ ≤ ‖f‖∞ for all f ∈ C([0, 1]). The weak*-continuity of t 7→ µNn
0,t follows from the continuity

of t 7→ Nn
0,tf(v) for all f ∈ C([0, 1]), v ∈ [0, 1], and from the dominated convergence theorem.

For (13) we prove a little bit more, namely that for all f ∈ C1([0, 1]) the mapping t 7→ µNn
0,tf is

continuously differentiable and that

d

dt
(µNn

0,tf) = µNn
0,tAnt f.

Indeed, from Lemma 5.3 and by dominated convergence we have

1

h

(
µNn

0,t+hf − µNn
0,tf

)
= µ

[ 1

h

(
Nn

0,t+hf −Nn
0,tf

)]
−−−→
h→0

µ(∂tN
n
0,tf) = µNn

0,tAnt f.

In the fourth step we pass to the limit n→∞.
Lemma 5.5. For all t ∈ [0, T ∗), the sequence (µNn

0,t)n∈N∗ is convergent for the total variation norm.
Denoting (µt)0≤t<T∗ ⊂ P([0, 1]) the limit family, we have for all t ∈ [0, T ∗∗)

∀f ∈ C1([0, 1]), µtf = µf +

∫ t

0

µsAσ(s)f ds.

Proof. We check that (µNn
0,t)n∈N∗ is a Cauchy sequence. Let n, p ∈ N∗, 0 ≤ s ≤ t < T ∗, and f ∈ C([0, 1])

such that ‖f‖∞ ≤ 1. We have, using that µ ∈ P([0, 1]) and the Fubini’s theorem,

‖Nn
s,tf −Nn+p

s,t f‖∞ ≤ 2

∫ t

s

∣∣∣∣ σ0

1− JµNn
0,τχn

− σ0

1− JµNn+p
0,τ χn+p

∣∣∣∣ dτ +
2σ0

1− J

∫ t

s

‖Nn
τ,tf −Nn+p

τ,t f‖∞ dτ

≤ 2σ0J

(1− J)2

∫ t

s

|µNn
0,τχn − µNn+p

0,τ χn+p| dτ +
2σ0

1− J

∫ t

s

‖Nn
τ,tf −Nn+p

τ,t f‖∞ dτ

≤ 2σ0J

(1− J)2

∫ t

s

|µNn
0,τχn − µNn

0,τχn+p| dτ

+
2σ0J

(1− J)2

∫ t

s

|µNn
0,τχn+p − µNn+p

0,τ χn+p| dτ +
2σ0

1− J

∫ t

s

‖Nn
τ,tf −Nn+p

τ,t f‖∞ dτ

≤ 2σ0J

(1− J)2

∫ t

s

µ|Nn
0,τ (χn − χn+p)| dτ

+
2σ0

(1− J)2

∫ t

s

‖µNn
τ,t − µNn+p

τ,t ‖TV dτ +
2σ0

1− J

∫ t

s

‖Nn
τ,tf −Nn+p

τ,t f‖∞ dτ

≤ 2σ0J

(1− J)2
sup
v∈[0,1]

∫ t

0

|Nn
0,τ (χn − χn+p)(v)| dτ

+
2σ0

(1− J)2

∫ t

s

‖µNn
τ,t − µNn+p

τ,t ‖TV dτ +
2σ0

1− J

∫ t

s

‖Nn
τ,tf −Nn+p

τ,t f‖∞ dτ.
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We bound the quantity

Ωn(s, t) := sup
p∈N

sup
v∈[0,1]

∫ t

s

|Nn
s,τ (χn − χn+p)(v)| dτ

for n ∈ N∗, 0 ≤ s ≤ t < T ∗. From the definition of the semigroup (Nn
s,t) we have for all v ∈ [0, 1], n ∈ N∗,

and 0 ≤ s ≤ t < T ∗∫ t

s

|Nn
s,τ (χn − χn+p)(v)| dτ ≤

∫ t

s

|(χn − χn+p)(ves−τ )| dτ +
σ0

1− J

∫ t

s

∫ τ

s

|Nn
τ ′,τ (χn − χn+p)(ves−τ

′
)| dτ ′dτ

+
σ0

1− J

∫ t

s

∫ τ

s

|Nn
τ ′,τ (χn − χn+p)(ves−τ

′
+ h)(1− χn(ves−τ

′
) +Nn

τ ′,τ (χn − χn+p)(vr)χn(ves−τ
′
)| dτ ′dτ

≤
∫ t

s

1[1−h− h
n
,1−h](ves−τ ) dτ +

σ0

1− J

∫ t

s

∫ t

τ ′
|Nn

τ ′,τ (χn − χn+p)(ves−τ
′
)| dτdτ ′

+
σ0

1− J

∫ t

s

∫ t

τ ′
|Nn

τ ′,τ (χn − χn+p)(ves−τ
′

+ h)(1− χn(ves−τ
′
) +Nn

τ ′,τ (χn − χn+p)(vr)χn(ves−τ
′
)| dτdτ ′

≤ log

(
1 +

h

n(1− 2h)

)
+

3σ0

1− J

∫ t

s

Ωn(τ ′, t) dτ ′.

Taking the supremum in the left hand side we get the inequality

Ωn(s, t) ≤ log

(
1 +

h

n(1− 2h)

)
+

3σ0

1− J

∫ t

s

Ωn(τ, t) dτ

which gives by Grönwall’s lemma

Ωn(s, t) ≤ log

(
1 +

h

n(1− 2h)

)
e

3σ0
1−J (t−s).

Coming back to the first computations of the proof we get

‖Nn
s,tf −Nn+p

s,t f‖∞ ≤
2σ0J

(1− J)2
log

(
1 +

h

n(1− 2h)

)
e

3σ0
1−J t +

2σ0

(1− J)2

∫ t

s

‖µNn
τ,t − µNn+p

τ,t ‖TV dτ

+
2σ0

1− J

∫ t

s

‖Nn
τ,tf −Nn+p

τ,t f‖∞ dτ

which gives by the Grönwall’s lemma

‖Nn
s,tf −Nn+p

s,t f‖∞ ≤
2σ0

(1− J)2

[
J log

(
1 +

h

n(1− 2h)

)
e

3σ0
1−J t +

∫ t

s

‖µNn
τ,t − µNn+p

τ,t ‖TV dτ
]
e

2σ0
1−J (t−s).

Finally

‖µNn
s,t − µNn+p

s,t ‖TV ≤ sup
‖f‖∞≤1

‖Nn
s,tf −Nn+p

s,t f‖∞

≤ 2σ0e
2σ0
1−J t

(1− J)2

[
J log

(
1 +

h

n(1− 2h)

)
e

3σ0
1−J t +

∫ t

s

‖µNn
τ,t − µNn+p

τ,t ‖TV dτ
]

and by the Grönwall’s lemma

‖µNn
s,t − µNn+p

s,t ‖TV ≤
2σ0J

(1− J)2
log

(
1 +

h

n(1− 2h)

)
exp

(
5σ0

1− J t+
2σ0e

2σ0
1−J t

(1− J)2
(t− s)

)
.

We deduce that for all t ∈ [0, T ∗) the sequence (µNn
0,t)n∈N∗ ⊂ P([0, 1]) is a Cauchy sequence, hence

convergent to a limit µt ∈ P([0, 1]), and additionally

sup
0≤t<T∗

‖µNn
0,t − µt‖TV ≤

2σ0J

(1− J)2
log

(
1 +

h

n(1− 2h)

)
exp

(
5σ0

1− J T
∗ +

2σ0e
2σ0
1−J T

∗

(1− J)2
T ∗
)
.

This allows to pass to the limit in Lemma 5.4, and the proof is complete.
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The last step consists in proving that any solution to Equation (1) satisfies a Duhamel formula.

Lemma 5.6. Let (µt)0≤t<T be a solution to Equation (1). Then for any σ > 0 the following Duhamel
formula is verified

∀f ∈ C([0, 1]), ∀t ≥ 0, µtf = µ0Mtf +

∫ t

0

(σ(s)− σ)µsBMt−sf ds (14)

where (Mt)t≥0 is the semigroup generated by Aσ (see Section 3).

Proof. Using the semigroup (Mn
t )t≥0 defined in Section 3.1 we have

d

ds

(∫ s

0

µτM
n
t−sf dτ

)
= µsM

n
t−sf −

∫ s

0

µτAnMn
t−sf dτ

= µ0M
n
t−sf +

∫ s

0

µτ (Aσ(τ) −An)Mn
t−sf dτ

= µ0M
n
t−sf +

∫ s

0

µτ (σ(τ)B − σBn)Mn
t−sf dτ.

Integrating between 0 and t we get∫ t

0

µτf dτ =

∫ t

0

µ0M
n
s f ds+

∫ t

0

∫ s

0

µτ (σ(τ)B − σBn)Mn
t−sf dτ ds.

Differentiating with respect to t we obtain (by using dominated convergence, Fubini’s theorem, and a
change of variable)

µtf = µ0M
n
t f +

∫ t

0

µr(σ(r)B − σBn)f dr +

∫ t

0

∫ s

0

µr(σ(r)B − σBn)AnMn
t−sf dr ds

= µ0M
n
t f +

∫ t

0

µr(σ(r)B − σBn)f dr +

∫ t

0

µr(σ(r)B − σBn)

(∫ t

r

AnMn
t−sf ds

)
dr

= µ0M
n
t f +

∫ t

0

µr(σ(r)B − σBn)

(
f +

∫ t−r

0

AnMn
s f ds

)
dr

= µ0M
n
t f +

∫ t

0

µr(σ(r)B − σBn)Mn
t−rf dr

and then passing to the limit n→∞

µtf = µ0Mtf +

∫ t

0

(σ(r)− σ)µrBMt−rf dr.

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. With Lemma 5.5 we have proved for any µ0 ∈ P([0, 1]) the existence of a local
solution, on [0, T ∗∗). But since T ∗∗ is independent of µ0, we can iterate the procedure to get a global
solution. The uniqueness is a consequence of the Duhamel formula (14). Let (µt)0≤t<T and (µ̃t)0≤t<T̃

two solutions. Then for any t ∈ [0,min{T, T̃}) we get from the Duhamel formula with σ = σ0
1−J

‖µt − µ̃t‖TV ≤ ‖µ0 − µ̃0‖TV + 2

∫ t

0

|σ(s)− σ̃(s)| ds+
2σ0

1− J

∫ t

0

‖µs − µ̃s‖TV ds

≤ ‖µ0 − µ̃0‖TV +
2σ0

(1− J)2

∫ t

0

‖µs − µ̃s‖TV ds

and by the Grönwall’s lemma

‖µt − µ̃t‖TV ≤ ‖µ0 − µ̃0‖TV e
2σ0

(1−J)2
t
.
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6 Global exponential stability when J � 1

The Duhamel formula (14) combined with the exponential contraction of (Mt)t≥0 allows to get the
uniqueness of a steady state and its global exponential stability for the nonlinear equation for J small
enough. It is a consequence of the following proposition.

Proposition 6.1. Let (µt)t≥0 be a measure solution to Equation (1). Then for all t ≥ 0 we have

‖µt − µ̄‖TV ≤
eωt

1− c‖µ0 − µ̄‖TV

where c = σ0
2

(
h
4

)σ0 and ω = 2σ0J
(1−c)(1−J)2

+ log(1−c)
log 4

h

.

Proof. The proof relies on the Duhamel formula (14). First for µ ∈M([0, 1]) define the measure µB by

∀f ∈ C([0, 1]), (µB)f := µ(Bf).

The conservation property B1 = 0 ensures that for any µ ∈ M([0, 1]) we have (µB)([0, 1]) = 0. This
allows to deduce from Proposition 3.10, using also that B is bounded by 2, that for all µ ∈M([0, 1]) and
all t ≥ 0

‖µBMt‖TV ≤ e−a(t−t0)‖µB‖TV ≤ 2 e−a(t−t0)‖µ‖TV ,

where t0 = log 4
h

and a = − log(1−c)
t0

. Using this inequality in the Duhamel formula (14) with σ = σ̄ we
get

‖µt − µ̄‖TV ≤ ‖(µ0 − µ̄)Mt‖TV + σ0J

∫ t

0

∣∣∣∣ (µs − µ̄)([1− h, 1])

(1− Jµs([1− h, 1]))(1− Jµ̄([1− h, 1]))

∣∣∣∣ ‖µsBMt−s‖TV ds

≤ ‖µ0 − µ̄‖TV e−a(t−t0) +
2σ0J

(1− J)2

∫ t

0

‖µs − µ̄‖TV e−a(t−s−t0)ds.

Denoting θ(t) = ‖µt − µ̄‖TV eat this also reads

θ(t) ≤ ‖µ0 − µ̄‖TV eat0 +
2σ0Jeat0

(1− J)2

∫ t

0

θ(s) ds =
1

1− c‖µ0 − µ̄‖TV +
2σ0J

(1− c)(1− J)2

∫ t

0

θ(s) ds

and the Grönwall’s lemma ensures that

θ(t) ≤ e
2σ0J

(1−c)(1−J)2
t

1− c ‖µ0 − µ̄‖TV .

Proof of Theorem 2.4. From Proposition 6.1 we only have to check that if J < (5 − 2
√

6)
(
h
4

)σ0+1
then

2σ0J
(1−c)(1−J)2

< − log(1−c)
log 4

h

.

Using that log(x) ≤ x− 1 we have

−(1− c) log(1− c)
2σ0 log 4

h

≥ c(1− c)
2σ0 log 4

h

=
1− c

4 log 4
h

(h
4

)σ0
≥ 1

4

(h
4

)σ0+1

(1− c).

Since J0 := 5− 2
√

6 ∈ (0, 1) satisfies J0
(1−J0)2

= 1
8

we have for all J < J0

(
h
4

)σ0+1

J

(1− J)2
<

1

8

(h
4

)σ0+1

.

The conclusion follows from the bound

c ≤ 1

2e log( 4
h

)
≤ 1

6e log 2
<

1

2
.
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Conclusion

The mean-field model considered along this paper is a standard equation capturing the spiking population
rate of a local neural circuit [16]. While not specifically a model of any particular brain region, it
describes a population of self recurrent excitatory LIF neurons receiving stochastic Poisson spike trains.
Although the mean-field equation (1) is widespread among physicists, it has received only little attention
by mathematicians, and there is nowadays, no identified mathematical framework to study its solution
properties, see [18, 19] for a first step in that direction. It has thus become necessary to investigate
systematically the conditions under which the solution to the mean-field equation exists and to understand
its stability properties.

In the mean-field limit, the level of recurrent excitation is control by a parameter J which reflects
the average number of connexion per cell. Interestingly, this parameter plays a critical part in the
emergence of a finite time blow-up of the solution [19]. This effect was first noticed in [17] for the
perfect integrate-and-fire, observed numerically with leaky integrate-and-fire neurons [35, 36], and soon
theoretically explained in [19] using similar ideas to [11]. There is extensive numerical evidence that
the blow-up of the mean-field equation is nothing but the emergent synchrony patterns of firing across
neurons.

An important result that has been proved in [17] is the existence and stability of a unique stationary
state for a moderate coupling scenario, i.e. for moderate values of J , the connectivity parameter. When
the average number of connexions is not too big (J < 1), the asynchronous state of a network of perfect
integrate-and-fire neurons is stable. Our paper extends the stability property to networks with cells
having a leaky membrane potential. Unfortunately, if we have been able to extend the existence of a
steady state, the uniqueness and stability only hold for weak coupling (J � 1).

Mean-field equations have gain intensive visibility over the past decades, however, most of the work
has been done with the diffusion approximation equation. Assuming h small enough, formal computations
give:

p(t, v)− p(t, v − h) = h
∂

∂v
p(t, v)− h2

2

∂2

∂v2
p(t, v) + o(h2).

Plugging this second order approximation into the mean-field equation (1) leads to the diffusive PDE
presented in [6, 5] and studied mathematically in a sequel of papers [11, 14, 12, 10]. Although the diffusion
equation is more common in the literature - several textbooks dedicate a chapter to it [24, 3, 20, 25] - and
has the advantage to offer a clear expression of the steady state, recent modeling discussions suggested
that it is not an appropriate description for most neural networks [30]. In any case, it seems crucial to us
to relate our theoretical findings to the mathematical results established for the diffusion approximation.

We first note that we get the same type of results for the stability of the steady state equation in
the weakly coupled case (J � 1). A difference should nonetheless be noted, for the diffusion equation,
the exponential stability in only local [14], while it is global in our case. Furthermore, with the diffusion
equation, the global stability can not arise since it may blow up for a certain class of initial condition
[11]. On the other hand, similar open issues hold for moderate coupling, where no precise conclusion can
be formulated. Nonetheless, in the diffusion case, it can be shown that for some particular connectivity
regimes, there exist at least two steady states. Numerically, both in the diffusion or non-diffusion scenario,
the same steady state is always observed, suggesting that there is only one stable fixed point. Note that
for strong coupling, for both mean-field equations, the steady-state does not exist, and obviously its
stability property is not an issue [11, 19].

Probably, the most straightforward discussion that we should be having is about the stability and
uniqueness of the steady state for moderate coupling. While the existence of a unique stable steady state
has been addressed for an excitatory network of non leaky cells [17], it is still an open issue for the LIF.
Another important discussion should address the discontinuous mechanism proposed by [17] to restart
the flow of the solution after the blow-up. While there is no intuitive difficulties in proposing a similar
discontinuous mapping for the PDE considered along this paper, defining a solution at the blow-up time
and extending it beyond the blow-up is not a trivial task and it will be the subject of a new research.
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