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ERGODIC BEHAVIOR OF NON-CONSERVATIVE SEMIGROUPS VIA
GENERALIZED DOEBLIN’S CONDITIONS

VINCENT BANSAYE, BERTRAND CLOEZ, AND PIERRE GABRIEL

ABsTrACT. We provide quantitative estimates in total variation distance for positive semi-
groups, which can be non-conservative and non-homogeneous. The techniques relies on a
family of conservative semigroups that describes a typical particle and Doeblin’s type condi-
tions inherited from [11] for coupling the associated process. Our aim is to provide quanti-
tative estimates for linear partial differential equations and we develop several applications
for population dynamics in varying environment. We start with the asymptotic profile for a
growth diffusion model with time and space non-homogeneity. Moreover we provide general
estimates for semigroups which become asymptotically homogeneous, which are applied to an
age-structured population model. Finally, we obtain a speed of convergence for periodic semi-
groups and new bounds in the homogeneous setting. They are are illustrated on the renewal
equation.
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1. INTRODUCTION

The solutions of the Cauchy problem associated to a linear Partial Differential Equation
(PDE) can be expressed through a semigroup of linear operators. In the present work, we
are interested in the ergodic properties of positive semigroups (Ms,t)tzszo acting on measures,
and their application to the study of the asymptotic profile of populations evolving in varying
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2 VINCENT BANSAYE, BERTRAND CLOEZ, AND PIERRE GABRIEL

environment, which can be described by linear (nonautonomous) PDEs. Roughly speaking, for
any t > s > 0, M, is both a positive linear operator on a space of measures (u +— uM, ) and on
a space of measurable functions (f — M, f), and the family (M ;)¢>s>0 satisfies the semigroup
property

Vs <u<t, Ms,t = Ms,uMu,t-
For a measure p and a measurable function f, we denote by u(f) the integral of f against u. We
establish ergodic approximations of the following form

M = 7 ¢ pu(hs) e,
when ¢t — oo, where (rs+):>s is a family of positive real numbers describing the growth of the
“mass”, h, is an harmonic-type function providing the long term impact of the initial distribution

i, and <y is the asymptotic probability distribution. In the homogeneous setting M, ; = M;_,
and provided a topology on the space of measures, spectral theorems suggest the behavior

pM; = p(h)ery + O(eP =9,

where vy and h are the eigenvectors of the infinitesimal generator of the semigroup, A is the asso-
ciated eigenvalue, and (A—¢) is the spectral gap. This is an immediate consequence of the Perron
Frobenius Theorem [42, 23] in finite state space setting. In a general Banach lattice the existence
of the eigentriplet (A,~,h) is ensured by the Krein-Rutman Theorem [33] when the semigroup
(or the resolvent of its generator) is positive, irreducible, and compact. A refined variant of the
Krein-Rutman theorem, with spectral gap, is proved in [10] in the setting of a Banach lattice
of functions. The proof relies on a spectral analysis and applies to positive semigroups with
a generator which satisfies a strong maximum principle and admits a decomposition verifying
a power compactness condition. In contrast with these approaches, our method is based on a
contraction argument and can be applied to time-inhomogeneous semigroups. In particular for
periodic semigroups it allows to get a quantitative exponential rate of convergence to Floquet
elements [22].

The bound for the speed of convergence is expressed in the total variation norm (see Section 2.1
for the definition), which is the natural distance for coupling processes in probability. The proof
relies on an auxiliary conservative semigroup P(®), defined for every bounded function f and any
times u > s > 0 by

Ps(fif = 7M5’1;(1{Tu’t)a where ms ;= M1,

for which ergodic behaviour can be obtained through coupling arguments. This auxiliary semi-
group describes the trajectory of a typical particle and has been used recently for the study of
branching Markov processes in discrete and continuous time [4, 5, 2, 34] and processes killed
at a boundary [L1, 18, 35]. We come back in Appendix A on the link between these topics in
probability and ergodic estimates for semigroups.

Doeblin and Lyapounov techniques (or petite sets) [19, 37] provide then a powerful tool to con-
trol the ergodic behavior of this auxiliary Markov process. More generally, the constructions of
auxiliary Markov processes derived from a typical or tagged particle have been well developed
in probability and play a key role in the asymptotic study of stochastic processes. They appear

in Feynman-Kac formula [16] and in spine technics via many-to-one formulae [30] for the prob-
abilistic study of branching processes [7, 15, 20] and fragmentation processes [(], to name but a
few.

When working on a compact state space or benefiting from an atom or a compact set uniformly
accessible for the whole state space, one can hope to check Doeblin conditions on the auxiliary
semigroup. Recall that a conservative, positive and homogeneous semigroup (Q:):>o satisfies the
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Doeblin condition if there exist a constant ¢ > 0, a probability measure v and ¢y > 0 such that
for all positive and bounded function f,

Qi f = cv(f).

This condition is equivalent to a contraction in total variation distance and then provides a
convenient tool of analysis for non-homogenous models. Sharp assumptions expressed in function
of M have recently been obtained in [11] to get a Doeblin condition for the auxiliary semigroup in
a context of absorbed Markov process. These conditions are weaker that the classical conditions
using Birkhoff contraction [3, 41, 25] and equivalent to uniform exponential convergence. We
slightly adapt and extend [11, 12] to general semigroups in non-homogeneous environment to
prove that Doeblin condition hold for the semigroup P®). In particular, this provides an explicit
bound for the decrease of

Msif(x)  Msqf(y)
Ps(t) ) — P;t) _ s,t . s,
,t f( ) ,t f(y) ms,t(x) ms,t(y)
as t — oo and the ergodic behavior of the auxiliary semigroup, see Lemma 2.5. Then, we need to
control the approximation of the mass mg () by v(ms )hs(x), where the existence of hy arises

here from additional but related assumptions.

Let us now informally describe the general result and the applications to quantitative estimates
for linear PDEs issued from population dynamics. In Definition 2.1, we introduce a coupling
capacity Cq g, (t) associated to the semigroup, inherited from the assumptions invoked just
above. They consist in a uniform lower bound of the semigroup M := (M; ;);>s>0 on some finite
time intervals and on uniform upper bounds of the whole mass m for large times. Assuming that
Ca,p,u(t) = 00 as t — oo, we prove that there exists h : X — (0, 5] and a family of probabilities
(vt)¢>0 such that for any signed measure p and ¢ large enough

Mo — p(h)v(mo.)yel| gy < 8(2 4 @) [ul(h)v(mo.r) e Capv(t),

This result ensures that the asymptotic profile 7; of the semigroup does not depend on the
original measure pu. Moreover the dependence of the growth of the mass of the semigroup on y is
given by an harmonic function h. See Theorem 2.3 and Section 2 for details. Let us stress that
in general the profile v; does not converge, due to the time inhomogeneity of the semigroup and
different behavior will be considered in the applications in Section 3.

The examples in Section 3 are intentionally simple and aim at illustrating the main result in
different contexts. We avoid too much technicality but provide some new estimates and explain
the way assumptions can be checked. We first consider in Section 3.1 a model of population grow-
ing in a non-homogeneous and diffusing in a varying environment, which is illustrated by ergodic
random environment. Intuitively, if the variation of parameters in the model is not vanishing in
large times, one does not expect the convergence of «;. In the case of homogeneous or asymp-
totically homogeneous semigroups, we prove that the asymptotic profile is given by a constant
probability measure «y; see Section 3.2 and Section 3.3 respectively. Finally, when the semigroup
evolves periodically we prove that the asymptotic profile ; is periodic; see Section 3.4. Results
of Section 3.2 (homogeneous semigroups), Section 3.3 (asymptotically homogeneous semigroups)
and Section 3.4 (periodic semigroups) are illustrated on the renewal equation. In these three
settings, we obtain new sharp conditions for convergence with explicit rate of convergence.
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2. GENERAL STATEMENT AND PROOF

2.1. Preliminaries on measures and semigroups. We start by recalling some definitions
and results about measure theory, and we refer to [45] for more details and proofs.

Let X be a locally compact Hausdorff space and denote by B,(X) the space of bounded Borel
functions f : X — R endowed with the supremum norm || f||oc = supy |f|. We denote by M(X)
the space of regular signed Borel measures on X ', by M, (X) its positive cone? and by P(X)
the subset of probability measures. For two measures p, i € M(X), we say that p is larger than
i, and write p > i, if g — p € M4 (X). The Jordan decomposition theorem ensures that for
any p € M(X) there exists a unique decomposition p = 4 — p— with g4 and p_ positive and
mutually singular. The positive measure |u| = gy + p— is called the total variation measure of
the measure pu, and its mass is the total variation norm of p

[ullry = [pl(X) = py (X) + p- (X).
Clearly we have the identity®

[ullrv = sup |u(f)l;
[I£lleo<1

where the supremum is taken over measurable functions. By virtue of the Riesz representation
theorem, this supremum can be restricted to the continuous functions vanishing at infinity (i.e.
f € Co(X)). The Riesz representation theorem also ensures that (M(X), || - ||rv) is a Banach
space, as a topological dual space. It is worth noticing that the inequality |u(f)| < ||ullv | f]lso
which is valid for any p € M(X) and f € By(X) can be strengthened into |u(f)| < 1||ullrv| flleo
when p(X) =0 and f > 0.

For any Q2 C X we denote by 1 the indicator function of the subset 2. And we denote by 1
the constant function equal to 1 on X, i.e. 1 = 14.

Now we turn to the definition of the (time-inhomogeneous) semigroups we are interested in.
Let (X;)i>0 be a family of locally compact Hausdorft spaces. A semigroup M = (M )o<s<t
is a family of linear operators defined as follows. For any ¢t > s > 0, M, is a bounded linear
operator from M(X;) to M(X;) through the left action
M(X) = M(X)

My -
* po e pMgy
and a bounded linear operator from By(X;) to By(Xs) through the right action

Bb(Xt) — Bb(Xs)
f = Msf

Moreover, we make the following assumptions.

Ms,t .

Assumption 2.1 (Basic semigroup assumptions). We assume that for all t > s > 0 we have

Vu € [s,t], Vf € By(X), Msif = Mg ou(Myrf), (semigroup property)

INotice that if X C R™ is equipped with the induced topology, any signed Borel measure on X is regular.
2;.¢. the set of regular finite positive Borel measures.
3We see here that the definition we use for the total variation norm differs from the usual probabilistic definition

of a factor 1/2.
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(FeB(X), f20) = My, f>0, (vositivity)
Ve € Xy, mgi(x) = (Mg, 1)(x) > 0, (strong positivity)
Y, f) € M(Xs) x Bp(Xy), (uMs)(f) = p(Ms i f). (compatibility)

Due to the compatibility condition, we can denote without ambiguity pMs ¢ f = (uMs)(f) =
w(Ms+f), and (i, f) — pMs . f is a bilinear form on M(X;) x By(X:). Notice additionally that
the compatibility condition allows to transfer the semigroup property and the positivity to the
left action, i.e. for all t > s > 0, we have

Yu € [s,t], Yu e M(Xs), uMs s = (WMs ) My t,
n e M+(Xs) — ,U/Ms,t S M.;,_(Xt)

2.2. Coupling constants. Let a, 8 > 0 and v € P(X;).

Definition 2.2 (Admissible coupling constants). For any N > 1, we say that (¢;,d;)1<i<n €
[0,112N are (o, B,v)-admissible coupling constants for M on [s,t] if there ewist real numbers
(ti)ogz'gN satisfying s < tg < ... <ty <t and probability measures v; on Xy, such that for all
t=1,...,Nandx € &, ,,

0o My, 4, > cimy,_, 4, (2)Vi, (A1)
and for allie {l,....N—1}, 7 >ty and x € X},,
dimy, - (x) < vi(my, +) (A2)
and for oll T >ty and x € Xy,
My () < aenvn(mey ) (A3)
and for all T >ty and x € X,
ms,(x) < Br(ms.). (A4)

In the conservative case, Assumption (Al) is the classical Doeblin assumption. It is a strong

irreducibility property : whatever the initial distribution is, the semigroup between the times
t;—1 and t; is lowerbounded by a fixed measure v;. This condition is then sufficient (and even
necessary) for uniform exponential convergence.
But this condition is no longer sufficient for non-conservative semi-group. First, the mass of the
process has to be added in (A1), as will be seen in examples when the mass vanishes. Moreover
The mass of the semi-group has to be essentially the same for any starting distribution. This is
the meaning of Assumptions (A2), (A3) and (A4).

The two first assumptions allow to get the contraction of the auxiliary semigroup P® in the
total variation norm following [11, 12], see Lemma 2.5. The two additional assumptions are
needed to prove the existence of harmonic-type functions and control the speed of convergence
in the general result, see forthcoming Lemma 2.7. Assumptions (A2), (A3), (A4) all involve the
control of the mass m for large times and will be proved in the same time by a coupling argument
in applications of Section 3. The associated constants may change in varying environment, see
Section 3.1.

We denote by Ha,g,.(s,t) the set of (o, 8, v)-admissible coupling constants (c;, d;)1<i<n for M
on [s, t]. It can be easily seen from Definition 2.2 that for this set to be nonempty, the constants «
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and g have to be at least greater than or equal to 1. We are interested in the optimal admissible
coupling and we set

N
Capu(s,t)= sup - Zlog(l —cidy) ¢, (2.1)
H@,B,U(S7t) i=1

where by convention sup @ = 0. We observe that ¢ — Cy 3., (s, ) is positive and non-decreasing.

2.3. General result. Here we state the general result we obtain about the ergodicity of semi-
groups M which satisfy Assumption 2.1.

Theorem 2.3. Let s > 0 and o, 8 > 1, and let v be a probability measure on Xs.

Assume that Cq 5., (s,t) = 00 ast — oco.

Then there exists a unique function hg : X5 — [0,00) such that for any p € M(Xs), v € M(Xs,)
with sg € [0, s], and for any t such that Cy ., (s,t) > log(4a),

VMo 1 —Ca g (s:)
——= <8(2+ a)|pl(hs) v(ms,) e” " or B,
W(mSo,t) TV

Moreover hs(x) € (0, 8] for any x € Xs and v(hs) = 1.

HuMs,t (e (ma)

Before the proof, let us make two remarks. First, under the assumption of Theorem 2.3, we
also prove that for all ¢t > s,

M
TSl < 202+ a)Bllulry v(me ) O (0,
V(mSoyt) TV

This bound is thus valid for any time. Second, we can change the measure v as follows.

H:U/Ms,t - M(hs)y(ms,t)

Remark 2.4. Suppose that for all u € M(Xs) the function t — p(ms,) is continuous and the
Assumptions of Theorem 2.8 hold. Then for all v € P(X,) there exists a constant E such that
(A4) is still valid if we replace v and 8 by v and E Indeed Theorem 2.3 applied to u = v ensures
that v(ms)/v(ms.) — U(hs) > 0 when t — co. Since t — v(ms,)/V(ms,) is continuous, it is
bounded on [s,+00). Using (A4), we deduce that for all T > ty,

sz ]loo < Bv(mar) < Bsup <”(m”)> U(mer) = BU(mar).

t>s g(ms,t)

2.4. Proof of Theorem 2.3. We recall from the introduction the definition of P*). For any
t > u > s >0, the linear operator P§2 : Bp(Xy) — Bp(Xs) is defined by

Pé(tgf _ Ms,u(fmu,t)

Mmst

By duality we define a left action P§‘2 s M(Xs) = M(X,) by

WFEBR P = (P = [ tan Pl

We recall that this is a positive conservative semigroup. Indeed we readily check that P§‘2 1=1
and P§‘2 f>0if f > 0. Moreover

(1 T )
P(PEf) = Mo Boofimu) _ Zowl” e Y _pwy.

S, s,V
’ Mmst Mmst ’
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It is also worth noticing that for all ¢t > s > 0 and all x € X
51Ms,t

5, P =
s,t ms,t(-r)

(2.3)

The first key ingredient is the following lemma, which gives the ergodic behavior of the auxil-
iary conservative semigroup under assumptions (A1) and (A2). This is an almost direct general-
ization of [11], which holds for homogeneous and sub-conservative (or sub-Markov) semigroups;
namely My = M;_, and M1 < 1, for all ¢t > s > 0. These semigroups are associated to the
evolution of absorbed (or killed) Markov processes (see Section A). This is also related to [17,
Chapter 12] or [16, Chapter 4.3.2]. The proof is given here for the sake of completeness.

Lemma 2.5 (Doeblin contraction). Let 0 < s <t and (¢;,d;)1<i<n satisfying (Al) and (A2)
for the time subdivision s <tg < ... <ty <t. Let 7 > tyn.

(i) For anyi=1,..., N, there evists ji; € P(Xy,) such that for all x € Xy,
5th(f,)l,ti > cidiu;.

(ii) For any w, it finite measures on X,

|uPT) — BP) |ry < H (1= cidi)|| 2 = | -
i<N

(iii) For any non-zero u, i € M4 (X;),
‘ MMS,T ﬁMS,T

u(ms,T) B ﬁ(ms,T)
Remark 2.6 (Sharper bound). In view of the proof below, one can replace Lemma 2.5 (iii) by
’ MMS,T ﬁMs,T

where W 1, is a Wasserstein distance (see for instance [19]) defined by

Wmes)  Tilmer)
Wt 1) = igf s [ (9 ()L 1, dy)

in (s ) = in — Mgty (Y)Ms 1y (T x, dy).

T (e () Sy, TN

and the infimum runs over all coupling measures Il of u and j1; a coupling measure is a positive
measure on X2 whose marginals are given by u and fi. Even if the right-hand side of (2.4)
vanishes now when pu = [, this bound depends on ty and incalculable quantities. However if
there exists Ag, Bs > 0 such that Ay < sup,> vms - /pms > < Bs then Equation (2.4) entails
that

TV i<N

S 2 H (1 - Cidi) Ws,tN (,U/,/j), (24)
TV i<N

MMS T ﬁMs T B? ~
ST <2-5 1 —cdi) |p = pllrv.
Hl‘(ms,r) fi(ms.2) [l py A3 zlg_]Iv

See Section 3.1 and Inequality (3.6) for an example.

Proof of Lemma 2.5. Proof of (i). Let i < N and f be a positive function of By(AX;,). Using
(A1), we have

Mt 1t (:C)

Mt 4,7 (‘T)

5IMti—lyti (fmtin) > Ciyi(fmtiy‘r)mtiflqti (1') = CiVj (fmtin) mtifl,T(:w' (25)
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Let us find pu; satisfying

Vi(fmti,r)% > dipi(f). (2.6)

Using (A2), the semigroup and positivity properties ensure that

dimti—lq"'(x) = diathi—lqti (mti,‘F) <Myt (x)VZ (mti,T)'

Thus (
my,_y (@)
Vi(fmti,r)ti > dipi(f),
mti 1,7 X
where pu; defined by
_ Vi(fmti,‘l'>
Ml(f) - Vi(mti,'r)

is a probability measure. Recalling (2.2), (i) follows from (2.5) and (2.6).

Proof of (ii). We consider the conservative linear operator U; on By(X:,), defined by

sz(l') = tl 17t fl(_);dcz z,uz(f)7

for f € By(X:,) and x € &y, _,. It is positive by (i) and ||U; flco < ||f|loo- Using

5P f—8,P ) f=06,P7) P f—6,P7) Pt

Syti—1t ti—1, S,ti—1 tw 1,

= (1—cid) (6P, (U:f) = 8,7 (Ui f)),

Syti—1
we get
5, P — 5, P oy < (1 — ¢;d)||6, P —5,P7)
H T s,t; Y S,tiHTV —( Ci Z)H T st Y S,ti71||TV

since ||Ui flloo < || f]loo- Using that P.7

+ is also contraction since it is conservative, we obtain

16, P = 6,PDlrv <2 T (1 = cids). (2.7)
i<N

To conclude, we now check that for any conservative positive kernel P on some X, any pu, i €
M(X) such that pu(X) = u(X) < oo,

1
|wP — P v < 5 S, 102 P = 6y Pllrvip— allov < sup (|6 = 6y Pllov.  (2.8)

T,y€

Indeed, pP — iP = (p— )P = (u — 1)+ P — (5 — p)+ P and (p — )+ (X) = (11 — p) (&),

~ 1 ~ ~
(uP —pP)(f) = m/XZ(uu)+(dz)(uu)+(dy)(5zpf5fo),
so we get

[wP — 1P|ty < sup [|6:F — 0y Plrv(p — 1)+ (X).

T,y€
This proves (2.8) since, by definition, 11— illy = (1 — i)+ (X) + (7 — 1) (X) = 2(1 — )+ (X)
and yields (i7).

Proof of (ii). Using now (2.7) and recalling (2.3), for any z,y € X, we have
H 5 Ms T 5yMs,T

M 7 ( ms - (y)

<2 H(1 — ¢;dy).
TV i<N
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Then for any nonzero u € M (Xs),

M - o M, - 1 s,T
H Prler D ’ = H’MS,T — Hs, 5yMs,'r
,u(ms,T) mS,T(y) TV ums, - mS,T(y) ™V
1 / ms,(x)
< — wu(dz)||0,Ms » — : 0yMs »
w(ms,r) Xs M, (Y) Y TV

_ 1
:u(mS,T)

51Ms,'r 5yMs,'r

Mmer ()  ms.(y)

TV i<N

/XS p(dw)ms 7 ()

The inequality can be similarly extended from 6, to a finite measure v, which proves (i¢7). O

Now (A3) is involved to get the following non-degenerate bound for the mass.

Lemma 2.7. Let 0 < s < t and (c;,d;)1<i<n Satisfying (Al), (A2) and (A3) for the time
subdivision s <tg < ... <ty <t. For any T > tn and any measure i € My (X;), we have

P01 <| Tin.r ) > 21 (2.9)

HMes t N ‘mtz\z,‘r”oo «

and for any x € X,

msr(x)  ms(T)

M(ms,‘r) N(ms,t)

Ms,tn (SC) H (1 _ Czdz) (210)

M(msﬂfN) i<N

If furthermore 2a ][, N (1 — ¢id;) < 1, then for any x € Xj,

< msi(z) 20 HiSN(l — cid;)
= ms) 1= ooy (1= cidi)’

ms(x)  mse(x)

W) ilmey) 2.11)

Proof. First, using (A1),

,UMs,tN _ MMs,tN,lMtN,l,tN
M(msytN) :u(mS,tN)

Moreover (A3) ensures that for any 7 > ty,

,U/MS,tN—l (thflvtN)
,U(msﬁtN)

Z CN UN = CNVUN.

My, rlloc < acnvn(mey ).
This proves (2.9). Now, the semigroup property yields

00 Ms ¢
msﬂ'(‘r) _ 6IMS7tNMtN17'1 _ Msin ('T) msytw(g) (th’T)

M(msﬂ') B lu’MsatNMtNaTl :u’(ms,tN) Mo, (thﬂ-).

N(mSWtN)
Then
6mMs,tN _ H]\/Is,tN
Moz (@) (@) _ oy (2) [ty ~ ooy ] Omex.)
- Mg :
wmsz)  p(ms,ey) (s ) JET::]J\V,)(th‘)

Dividing by ||y - |lcc and using my, » > 0 and recalling that v(X) = 0 and f > 0 implies that
YOI 5TV flloos we get

1 5::Ms,tN o wMs ¢
< Mgty (.T) 2| ms,ey () w(ms,en) ||y
Tl py)  AMaiy ( TN )

m(msen) \Nlmey - lloo

s, (2) Mty (2)
,U(msrr) U(mS,tN>
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Now combining Lemma 2.5 (ii¢) and (2.9) yields

ms,r () _ Mty (2)

(msr)  (mssy) (1 —cidi) (2.12)

and using twice this bound proves (2.10) by triangular inequality.

Finally, (2.12) also gives, for 7 = ¢,
Ms,in () _ mse(x) 1
p(msey) = plmse) 1 — O‘HigN(l — cid;)
Then (2.10) implies (2.11). O

Using the previous results, we now prove the existence of harmonic functions and Theorem 2.3.

Proof of Theorem 2.3. We fix s > 0, v € P(X;s) and 8 > 0. We begin by proving that there
exists a function hg positive and bounded such that for any = € X5 and any ¢ > s,

—Cap(st) s ms,¢(z) 1
< 2ae” %P min {ﬂ, V(mar) (1 aefCa,s,u(s,t))_‘_ . (2.13)

ms,¢(T)
u(ms,t)

— hg(x)

First, optimizing Inequality (2.10) over all the admissible coupling constants yields
Morl@)  mau(@)
vims:) v(msg)

by recalling Definition 2.1 and that (A4) guarantees ms ¢y (z)/v(Mms iy ) < B.
Using that Cy 5, (s,t) — 00 as t — oo, Cauchy criterion ensures that the following limit exists

< 2Bae”Casw(st) (2.14)

hs(x) = lim M
=00 V(Mg r)

(2.15)

Moreover, letting 7 — oo in (2.14) shows that

M ()

< Qﬁae_ca’ﬂ"’(s’t).
v(ms.t)

— hs(z)

Optimizing now similarly over coupling constants in (2.11) and letting 7 — oo yields

msyt(x) _ ( ) msﬁt(:c) 2ae~Ca.p.v(st)
v(ms.t) 5 = U(msy) 1 — ae=Casn(st)’

for any ¢ such that aexp(—Cq. 5,.(s,t)) < 1. Combining these two bounds proves (2.13).

Integrating (2.13) over some p € My (X;), we get
, m _ ,
|M(ms,t) - :u(hS)V(ms,t)‘ < 2amin § Bu(X)v(ms,), 'u,( =) e Cupr(t), (2.16)
(1 — ae=Capr(sb)

Moreover (2.5) (i4i) yields (after optimization over coupling constants) for non-zero u,
MMs,t - VMs,t
w(mse) — vimsge) |lpy —
and combining the two previous inequalities gives

I/Mst
Mg — p(hs)v(msg :
it = vt ) ot

< 2e7Casw(st) (2.17)

TV
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VMs,t

v(ms)

+ |m,e) — plhs)v(m,))|

v M
S H,U/Ms,t - ,U/(ms,t) ot
TV

v(mss)

TV

. p(ms, _ (s,
<2 <u(m51t) + amin {ﬂu(?()y(msyt), = ae(ca,;?u(syt))Jr }) e~ Ca.pw(st)

Using again Inequality (2.17), with p = yMj, s, we obtain
,YMSo,t

M — p(hs)v(mg ) ———
Hu = b, ) Ze

(2.18)
TV

. p(ms, _ s
S 2 (M(ms,t) + :u’(hs)y(ms,t) + amin {ﬁ:u(x)y(ms,t)a (1 Oée_(c“‘ ;?/(87,5)) }) e Capow 1t)'
- ” +

To conclude it remains to control pu(ms ) and p(hs). First, we notice that hs is bounded by S
using (A4) and (2.15). Using again (A4), we have
p(ms,e) < Bu(X)v(ms)
and the first bound of (2.18) yields
Moot || < 22 4 @) () e Corrro0),
V(Mo ) TV '

Moreover, if Cy, 5,,(s,t) > log(3a), using the second part of (2.16) and the fact that |a —b| < 7|b]
and n € [0,1) imply that |b] < |a|/(1 —n) ensures that

1— ae_ca,ﬂﬂ/(sat)

\MMmumowmm>

plmse) < T 3aefca,g,u(s,t)“(hS)”(ms’t)’

so that the second part of (2.18) becomes

2+ a — dae~Casw(st)
71— 3ae Caprist)

VMot
¥ (Mo )
This proves the estimate stated in Theorem 2.3 when Cy 5, (s,t) > log(4a). Finally, this estimate
applied to p = §, ensures that

Imst(x) — hs(z)v(ms)| < 8(2 4 a)hs(x) v(ms,) e” Cun(s)

() (g g )e=Con (50,

HMMs,t - M(hs)y(ms,t)

TV

and then
(1+8(2+ a)e Comv D) (z) > maa(@)
v(ms)
so that hs > 0. The fact that v(hs) = 1 follows directly from (2.15) and dominated convergence
theorem, while uniqueness of hy is derived letting ¢ go to infinity. ]

3. APPLICATIONS

In the present section, we develop different applications of Theorem 2.3. They are intentionally
rather simple. We aim at illustrating the main result and show how to check the required
assumptions. Nonetheless we obtain here new estimates and mention that the models can be
made more complex.

We first consider the heat equation with growth and reflecting boundary on the compact set
[0,1] and time space inhomogeneity. The coupling capacity is then expressed in terms of the
function describing the diffusion coefficient.
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Then we prove general statements when the semigroup is homogeneous, asymptotically homoge-
neous, and periodic. The results are illustrated by asymptotic estimates for the renewal equation.

3.1. A growth-diffusion equation with reflecting boundary and varying environment.
In this section X; = X = [0, 1] for every ¢ > 0. We consider a population of particles which re-
produce and move following a diffusion varying in time. The evolution of its density is prescribed
by the following PDE

Opus () = %O—tAus,t(x) + r(x)us (), 0<x <,
Dus,t(0) = Dpus (1) =0, (3.1)
us,s(x) = ¢(z),

for some ¢ € L'([0,1]). As usual, we do not stress the dependence on ¢ of u. This equation
is the nonautonomous Heat Equation with growth under Neumann boundary conditions. More
precisely, particles diffuse with coefficients (o;);>0 on the space [0,1]. The growth rate r(z) is
the difference between birth and death rate at position « € [0, 1].

In this example, ¢ is time-dependent but not space-dependent and conversely for r. Our
coupling methods provide a relevant approach for estimating the speed of convergence in this
varying environment case. This analysis could be easily generalized for both time-dependant
and space-dependant parameters but would provide tedious computations, so it is left for future
works.

Let us work with another representation of the solution of (3.1). Let (X,)¢>s be a reflected
Brownian motion on [0, 1] starting from x at time s, with diffusion coefficient oy at time ¢, see
(3.3) below for a construction. We define the positive semigroup M by

M,.f =E, [f(X;t)efstr(Xsm,u)du} (3.2)

for every bounded Borel function f on [0,1], and ¢ > s > 0. Then pM, , is defined by setting for
all f € By([0,1])
(1Ms,)(f) = (M f).

Feynman-Kac formula [14, Chapter VII Proposition (3.10) p.358] states the duality relation of
this semigroup with the solution w of (3.1):

/O1 ¢(x) M o f (x)dx = /O1 Ut (2) f (2)de

for every bounded measurable function f. This property allows to see the mapping t — pM; ; as
the unique solution to Equation (3.1) when the initial density ¢ is replaced by a measure pu.

3.1.1. Statements.

We assume that ¢ — oy is a non-negative and cadlag function, r is continuous and

—oco < r:= inf r(x); 7= sup r(z) < +oc.
16[071] $€[0,1]

Introduce the function g with value in R U {400} to measure the coupling capacity in function
of the parameters

g:(s.0) = (F—)(t —5) —log (1= 4/001),. )
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where (z)4 = max(z,0) is the positive part and

t
Ot 1= 27T/ o2du.
S

These functions allow to control the coupling capacity in this model by considering

N
& p(s,t) = sup ) { Zlog (1 —exp(—(g(ti-1,t:) + g(ti, ti+1)))} ,

Tr,p(s,t
where 7, ,(s,t) is the set of subdivisions (;)/ 5" such that N > 1, s =1y < --- < ty41 < ¢ and

t1—to<p, tn —tn—1 <7, tyt1 —tn <7 and foriec {O,N—1,N}, o4+, > 5.

i+t1 =
Indeed, €, ,(s,t) is a lower bound of (2.1). The constant 5 may be improved and replaced
for instance by 4 + ¢, but we restrict ourselves here to this value which allows to get a simple
expression of the coupling constants o and 3, namely a = 72, 3 = YpV+ Where

~vs = 5exp((F — r)s) € [5,00).

The first time interval of size p is involved in the control of the mass and the expression of 5.
A general quantitative bound can now be given as follows, writing A the Lebesgue measure on
[0,1].

Theorem 3.1. Let s > 0 and 7 > 0. Assume that €; ,(s,t) = 00 as t = co. Then there exists
a function hs : [0,1] = (0,7,7v+] and probabilities (m¢)ier4 such that

< 8(2 4|l (hs) Mg )e~ Ere (st
TV

for any p € M([0,1]) and t such that €; ,(s,t) > 2log(2) + 2log(v-).

HuMs,t ~ u(h)A ()

The proof of Theorem 3.1 is postponed to Subsection 3.1.2. Let us now illustrate this result
by constructing a relevant lower bound of €, ,(s,t). Let s > 0,7 > 0 and set

t1(s,7) = inf{u > s: 05, > 10.}
and the sequence (tx(s, 7)) defined by induction :

tet1(s,7) = inf{u > tx(s,7) + 7 : Oyusr > 10} (k>1),

using again the convention inf @ = +oo. Using the time subdivision s, t1 (s, 7), ..., tx (s, 7), t}.(s, 7), tx (s, T)+
7, ... (k> 2) such that
Tty (s,m),t (s,r) = O and 0w (s 0y i (s,m)+7 = D,
we get an upper bound for g(t) (s, 7) — tx(s, 7)) and g(tx(s,7) + 7 — t}.(s,7))and
Crty(sr)—s(8,1) = —log(1 = 1/77) max{N : tn41(s,7) <t —7}.
We derive then immediately a speed of convergence from Theorem 3.1.

Corollary 3.2. Let s > 0 and 7 > 0. Assume that ty(s,7) < oo for any k > 1.
Then there exists a positive bounded function hs and probabilities (m)i>0 such that

k
— u(hs)m > —log(1 —1/~2). likminf —

1
liminf — = log
i n —oo tr(s,T)

—00

’ :U/Ms,t
/\(msﬁt)

TV

uniformly over p € P([0,1]). Moreover hy is bounded by vz, (s,7)—s-
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As soon as lim sup;, t;(s,7)/i < oo, we obtain an exponential speed. Note also that superexpo-
nential or subexponential speed could be obtained by alternative constructions of time sequences.

As an application for exponential convergence in random environment, let us consider a Feller
cadlag Markov process (¢, w) € [0,00) x Q — o(w) € [0,00) on a probability space (£, F,P). We
assume that the process (0¢)i>0 is Harris positive reccurent with stationary probability = # dg.
For each w € Q, we write M, = M ,(w) the semigroup defined by (3.2) and associated to
the diffusion coefficient (o4(w));>0. By a Birkhoff Theorem (see [38, Theorem 8.1] and [38,
Theorem 3.2]), we obtain that max{N : ty41(s,7) < t — 7} grows linearly as t — oo with a
deterministic speed. It yields the following quenched estimate: there exists v > 0 such that

1
P [ liminf — = log sup >v | =1
oo b \per(o) v

and the convergence is uniform and (at least) exponential. Let us observe that the diffusion may
be zero for arbitrarily large time intervals.

:U/Mst
ot hs
‘ )\(m&t) ,U/( )7Tt

3.1.2. Proof of Theorem 3.1. We begin by the construction and some useful estimates for pro-
cess (X ;)s,t, which is associated to a nonhomogeneous diffusion [0, 1] with Neumann boundary
condition. Let (B;)i>0 be a classical Brownian motion on R, and set (W{,;):>s>0 defined for all
x€l0,1]]and t > s >0 by

t
Wi =x —|—/ 0udBy,. (3.3)

The random variable W7, is distributed according to a Gaussian law N (z,0s¢). The reflected
process (X{;) can now be defined by

Vt>s>0, X[ = Z(Wft — 271)1W;te[2n,2n+1] + (2n — W:t)1W;t€[2n71,2n]-
nez

Lemma 3.3 (Bounds on the density for the diffusion). For any t > s > 0, there exists ¢ > 1
such that for any Borel set A of [0, 1],

4
<Cs,t - > AA) <P(XT, € A) <ot M(A),
Jr

Os,t

with the convention 1/0 = co

Proof. We define
st (y) =

the density of W, . Using that

1 < (y — w>2)
_ L (S
Nezzw 201

Po(Xep € A) =Y PWF € (A+2n)N[2n,2n+1]) + PW € (2n — A)N[2n — 1,2n]),
neZ
we obtain
dg (A)A(A) < Po(Xsp € A) < ¢ ,(A)A(A), (3.4)
with

C?,t(A) = Z (Sup ¢5t + Sup ¢ ) )

nez At+2n
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d;t(A) = Z (Ai_lgn Qﬁt + Q%IifA (iﬁt) .
nez

Using (3.4), these constants verify

cst:= sup c,([0,1]) > %, (A)>1> d, (A) > inf dgt([o 1)) =: ds -
zef0,1] ' z€[0,1]

It remains to prove an upperbound of the difference ¢, ; — ds+ and conclude. Decomposing the
sum following n = 0,7 > 1 and n < —1 shows on a first hand that

Cs,t = Sup Z sup ¢, = S?P}( St +Z¢ n—x),

z€(0, 1]n€Z[n n+1] neZ

and on the other hand

ds; = inf inf ¢%, = inf [ ¢?,(max(x,1—x))+ (n—x
M A e AP M
Combining
Cot <83,(0)+ D sup Y, (n—x) =265,(0)+ > ¢, (n
nez z€[0,1] ne
and
dst > Ieu[hfl 99 (max(z,1 — z)) + Z Iél&)fl] @9 1 (n — )
neZ\{0,1}
= ¢g,t(1) + Z g,t(”) = Z g,t(n)’
neZ\{-1,0,1} neZ\{—1,0}
we obtain ¢g; — dsy < 4¢2 (0). This ends the proof. O

We give now the coupling constants and introduce

Lemma 3.4 (Coupling constants). Let s =ty < -+ <ty <ty < t.
(i) Assumptions (A1) and (A2) are satisfied with the constants

¢ = Etiihtiefﬁfr)(tift“l), i=1,...,N+1.

and

= —(F=r)(tit1—t; e
di:CiJrl:Ut-t € (F=r)(tit1 ), Z—l,...,N,

iy5bi+41
andv; =\ fori=1,...,N + 1.
(ii) If oto,0, >4, Oty 1in >4 Otytngs > 4, then (A3) and (A4) hold with

) (tnt1—tn-1) e(T—r)(t1—t0)

o= — — 5 /8 = T =
Otn_1,tnOtN EN+1 Oto .ty

and v = \.

Proof. Lemma 3.3 and Equation (3.2) ensure that for any probability measure p, ©w > v >0
du,veﬁ(viu)A < ,UMu,v < Cu,ve?(viil‘)/\v
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where dy, » = (Cyp — 4/ou7v)+. Then
FuoCuwe™ P TIN < My < ey pe” UTYN, (3.5)
recalling that ¢, , > 1. In particular
Eu,vcu,veﬂ(vfu) < p(my,p) < cu,veﬂvfu). (3.6)
Combining the two last bounds, we find
UM > TaoCawe™ TN > Ty e TTDET pi(my, )

and obtain the expected value of ¢;, with u = t;,_1,v = t;.
Moreover for all w € (u, v] such that d, , > 0, we also have by integration of (3.5)

FuwCu,we™ ™ "IN M) < (M) < cuwe” T A(Maww).-
Taking respectively p = d, and p = A for the second (resp. first) inequality,
T DO, (@) < A (3.7)

and we get the value of d;, with u = t;,w = t;41,v = T.

Let us turn to the proof of (i7). Using again (3.7) with now u = ty,w = ty41,v = 7 yields

1 _
My 7(z) < _76_(T_1)(tN+1_tN)A(thﬂ—).
OtnN,tN+1
Recalling the expression of ¢y from (i) provides the expected value of «. Finally, using (3.7)

with u = s,w = t1,v =ty yields B. O

Remark that the previous proof could be achieved, without probabilistic notation. Indeed,
bounding r, one can build sub and super solutions, which, up to renormalization, satisfy Equation
(3.1) with » = 0. It is then enough to use Lemma 3.3 which is only based on the explicit solutions
of (3.1) with constant r.

Proof of Theorem 3.1 . Consider a sequence (ti)fV:ng such that N > 1, s =tg < - <tnyy1 <t
and

to—t1<p, In—tn-1 <7, tINy1 —IN ST and fOTiE{O,N—l,N}, Otiyr,ts > 5.

By Lemma 3.4, the following constants

c = e*g(tiflyti)

— a—9(titita
;= , di—e g(tistiy1)

are (a, 3,)\) admissible coupling constants for M on [s,t], with « = 72 and 8 = ~,. Then,
optimizing over admissible coupling constants yields

Ca,57>\(55 t) > Q:‘r,p(sa t)7

and applying Theorem 2.3 ends the proof. 0

3.2. Homogeneous semigroups and the renewal equation. First, we specify the general
result in the homogeneous setting, which simplifies the assumptions. Second, we develop an
application to the renewal equation.
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3.2.1. Euxistence of eigenelements and speed of convergence. In this subsection we consider a semi-
group (Ms +)o<s<¢ which is homogeneous, meaning that the sets X; = X are time-independent
and that there exists a semigroup (My);>o set on X such that My, = M;_ for allt > s > 0. In
this case Assumptions (A1), (A2), (A3) and (A4) can be simplified as follows.

First, there exist constants ¢ > 0, » > 0 and a probability measure v such that for any z € X,

0z M, > cm,.(x)v. (H1)
Second, there exists a constant d > 0 such that for any ¢ > 0,

v(mi) = djm|oo, (H2)
where we recall the notation m; = M;1. These assumptions have been obtained in [12] for the

study of process conditionned on non-absorption. Let us note that [12] also prove that they are
necessary conditions for uniform exponential convergence in total variation distance. Additionally
the main result can be strengthened, provided an additional assumption:

The function t — ||m¢||eo is locally bounded on R;. (H3)
Notice that this last assumption is satisfied by classical semigroups appearing in applications.
Theorem 3.5. Under Hypotheses (H1), (H2) and (H3), there exists a unique triplet (v, h,\) €
P(X) x By(X) x R such that v(h) =1 and for all t > 0,

yM; =er~y  and M;h = eMh. (3.8)
Additionally h is bounded and positive on X and there exists C > 0 such that for all t > 0 and
p€ M(X),
e My — u(h)y||py < C llpllry (1 — cd)’"

Theorem 3.5 strictly extends the main result of [11]. For instance their theorems do not apply
for the semigroup of Section 3.2.2 below. This semigroup cannot be written as a the semigroup
of a killed Markov process, even up to exponential normalisation.

Remark 3.6. By differentiating (3.8), the triplet (v, h, ) is a triplet of eigenelements for the
infinitesimal generator of (My)i>o, that is yA = Ay and Ah = Ah where the (unbounded) opera-
tor A is defined by A = lim;_q %(Mt —1I).

Remark 3.7. With Lemma 2.5 (iii), we also recover (as expected) the statement from [12] :
i
p(me)

<2(1—cd)'".
TV

Proof. Assume (H1) and (H2) and consider (¢;)o<i<n defined by ¢; = ér. Then Assumptions
(A1) - (A4) hold with, for every 0 <i < N,

This implies
Cop(0,t) > [ (t —7)/r|log(1 — cd).
By Theorem 2.3 applied to M on [0, ¢], there exist C > 0 and hg : X — [0, 00) such that for any
p, fi € M(X)
M,
HﬂMt — ,Lt(ho)l/(mt)ft—t

Zmi || S Cvmlulry (1= e, (3.9)

TV
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Moreover, taking p = d,
mr

ho = lim
T—oo v(mr)

for the supremum norm and hg is positive, bounded by 1/d, and v(hy) = 1. By the semigroup
property we have my4s(z) = 0, Mymg from which we deduce that

S M S S
Megs(x) vMym =5th( m )
v(megs) v(ms) v(ms)
Letting s — oo, we get
(VMth())ho = Mtho.
This means that hg is an eigenvector of M; associated to the eigenvalue vMhg. Since the semi-
group property yields
VMtJrSh/O = I/MtMShO = (I/Mtho).(I/Msh())
and ¢ — vMhg is locally bounded (by assumption (H3), because 0 < vMihg < ||m¢|lo/d), we
deduce the existence of A € R such that

vM;ho = eMu(hg) = eM.

Let us now show the existence of a left eigenvector . Applying (3.9) to p = v and g = v M
we get that
VMt VMt+s

v(my) - v(Mits)

<C(1-cd)’".
™V

This ensures that the family (U”(%Z) ) 1~ satisfies the Cauchy property and we deduce the existence
of a probability measure v such that
M,
el <O(1—cd)/".
v(mg) v

Then we use the semigroup property to write that for all s,z > 0 we have

VMS Mt:VMt< ms ) VMSth
v(ms) v(ms) ) v(msit)

and letting s tend to infinity we find
YM; = (vM;ho) y = e M.

Now we set h = hg/7v(ho), so that y(h) = 1. Applying (3.9) to u = & = v and dividing by
v(my) yields

oM y
—— —~v(hy)| < C(1 —cd)"".
S (k)| < -
Finally, using (3.9) with @ = v, we write for p € M(X) and t > 0
M, eM
“MuM, — p(h < M LZL  n )|y (ho) — —
le™ uMy — p(h)y[lry < v(my)e () p(ho)y A lu(h)]|v(ho) o)

< C'v(my)e ™ |ufov (1 — cd)'/".

The conclusion follows from the fact that the function ¢ +— v(m;)e~* is bounded. Indeed it is
locally bounded due to (H3), and it converges to 1/v(hg) when t — +o0. O
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3.2.2. Example: the renewal equation. We consider an age-structured population of proliferating
cells which divide at age a > 0 according to a division rate b(a), giving birth to two daughter
cells with age zero. The evolution of the age distribution density w; is given by the so-called
renewal PDE

Orue(a) + Oqui(a) + b(a)ui(a) =0, t,a >0,

oo 3.10
ut(0) = 2/0 b(a)ut(a) da, t>0. (3.10)

This model has been introduced by Sharpe and Lotka [40] in a more general context, namely
with a “birth rate” not necessarily equal to twice the “death rate”. Since then, it has become a
very popular model in population dynamics (see for instance [1, 31, 36, 43, 48, 51]).

Following [241] we associate to Equation (3.10) the homogeneous semigroup (M;);>o defined
as follows. For any f € By(R, ), we define the family (M, f)i>0 C By(R+) as the unique solution
to the equation

t
M,f(a) = f(a+ t)e™ Jo blatmdr 4 o / e Jo ¥atTA b 4 )M, f(0) dr. (3.11)
0
The proof of the existence and uniqueness of a solution to (3.11) is postponed in Appendix B,
Lemma B.1. We also refer to Appendix B for the rigorous definition of uM;, which provides
the unique measure solution to Equation (3.10) with initial distribution p. In particular if 4 has
a density uo with respect to the Lebesgue measure, we get that u; = uM; is the unique L!
solution to Equation (3.10) with initial distribution ug. Appendix B also contains a verification
of Assumption 2.1 for the family (M;)i>o.

Now we can use Theorem 3.5 to obtain the long time asymptotic behavior of the solutions to
Equation (3.10).

Theorem 3.8. Assume that b is a non-negative locally bounded function on R4, and suppose
the existence of ag > 0, p > 0, 1 € (p/2,p], and b > 0 for which

Vk € N,Va € [ag + kp,ao + kp + 1], b(a) > b.
Then there exists a unique triplet of eigenelements (v, h,A) € P(Ry) x Bp(Ry) x Ry wverifying
v(h) =1 and
YVt >0, M, =e My, Mh=eM.
Moreover there exist C > 0 and an explicit p > 0, given by (3.13), such that for all p € M(Ry)
and all t >0
e by — p(h)y || oy < Cllplley e

The convergence of the solutions to a time-independent asymptotic profile multiplied by an
exponential function of time, sometimes referred to as asynchronous exponential growth, was first
conjectured for the renewal equation by Sharpe and Lotka [16] and was then proved by many
authors using various methods, see for instance [21, 26, 28, 29, 32, 43, 47, 50]. Moreover it is
known that the so-called Malthus parameter X is characterized as the unique real number which
satisfies the characteristic equation

1= 2/ b(a)e™ Jo AFbla)da’ gq
0

the asymptotic probability measure has an explicit density with respect to the Lebesgue measure

v(da) = ke Jo O+bla)da’ g,
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where £ is a normalization constant which ensures that v € P(Ry), and the harmonic function
h is explicitly given by

hla) =2h(0) [ blaye™ SO0 gy
where h(0) is chosen so that v(h) = 1.

The existing results about asynchronous exponential growth for the renewal equation hold
for birth and death rates which are not necessarily related by a multiplicative factor, as we
assume here. But in these previous works the birth rate is assumed to be bounded or integrable,
a condition which is not required in our situation. In Equation (3.10) if the division rate is
unbounded, then the unboundedness of the birth rate 2b is “compensated” by the unboundedness
of the death rate b. Thus our result is new in the sense that the assumptions on the division rate
are very general, but also because it provides an explicit spectral gap in terms of the division
rate and a convergence which is valid for measure solutions.

The assumptions on the division rate b include some functions which are not bounded neither
from above nor from below by a positive constant when a tends to infinity. The only assumption
is that, outside a compact interval, b is larger than a crenel function with period p and a crenel
width . The condition I > p/2 is only a technical assumption which simplifies the computations.
It can be removed to the price of a larger number of iterations of the Duhamel formula in the
proof.

Before proving Theorem 3.8, we define the probability distribution of age of division
®(a) 1= b(a)e Jo bla)da’
and we give a useful property of m; = M;1.

Lemma 3.9. For any a > 0 the function t — my(a) is non-decreasing.

Proof. First we check that m;(0) > 1 for all ¢ > 0. By definition ¢ — m,(0) is the unique fixed
point of

t
Tg(t) = e Jo b(Mdr 4 2/ ®(r)g(t —7)dr
0
and if g > 1 then for all ¢t > 0

t
Pg(t) > e J P47 19 / B(r)dr =2 — o~ F v 5
0

So the fixed point necessarily satisfies m;(0) > 1, since T' is a contraction for small times (see
Lemma B.1).

In a second step we prove that ¢ — m;(0) is non-decreasing. Let € > 0. For all ¢ > 0 we have
by definition of m.(0)

t+e t+e
Mite(0) — me(0) = — /t O(7)dr + Q/t D (T)myqe—r(0)dr

+2 / () (meser(0) — my_(0)) dr

t+e
= /t O(7)(2myppe—r(0) —1)dr + 2 | D(7)(Mmppe—r(0) — my—,(0)) dr.
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So t — myy(0) — m(0) is the unique fixed point of
¢
Tg(t) = fo(t)e Jo b 1 9 / ®(1)g(t —7)dr
0

with fo(t) = f:ﬂ e ST (1) (2myy - (0) — 1) dr > 0. We deduce from the positivity prop-
erty in Lemma B.1 that m:;(0) — m:(0) > 0 for all ¢ > 0.

The last step consists in extending the result of the second step to t — m;(a) for any a > 0.
Let a > 0 and € > 0. For all ¢t > 0 we have

t+e
Mite(a) —me(a) = / e SOt g 4 1) (2myye— 1 (0) — 1) dr
t

t
+2 / e ST et b 4 7)Y (myse—r (0) — my—r(0)) dr > 0.
0

Corollary 3.10. For all t,a > 0 we have my(a) < 2my(0).

Proof. Starting from the Duhamel formula (3.11) and using Lemma 3.9 we have

t
mt(a) — e fot b(a+T7)dr + 2/ e~ Jg bla+7) drb(a + s)mt,s(()) ds
0

t
< e S b T 4o, (0) / o SO M Th(a + 5) ds
0

—e fot b(a+7)dr + 2mt(0) |:1 e fot b(a+T) d'r:|

= 2my(0) + e~ Jo Y@+ AT (1 _ 2, (0)) < 2m,(0).

We are now ready to prove Theorem 3.8.

Proof of Theorem 3.8. We prove that Assumptions (H1), (H2), and (H3) are satisfied by the
renewal semigroup and then apply Theorem 3.5.

We start with (H1). For o > 0, we define the probability measure v by

I3 M £(0) ds
VfeCo(Ry), =0T
We want to prove that for o small enough (to be determined later), there exists a time tg > 0
and ¢ > 0 such that for all f > 0 and a > 0,

Mtof(a’) > Cy(f)mto (0,) (312)
Iterating the Duhamel formula (3.11) we have for all f > 0 and all ¢,a > 0,

t
Mtf(a) _ f(a+t)eff0tb(a+'r)d'r+2/ effo" b(a+7,)d7,b(a+7'>f(t77')ei f(;"" b(') dr’ dr
0

t t—T1
+ 4/ e~ Jo Yot AT g 4 1) / O(T"YMy_r 1 f(0) dr'dT
0 0
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t t—T1
> 4/ e~ Jo Yot AT g 4 1) / Dt — 7 — s)M, f(0) ds dr.
0 0

Let tg > 0, o € [0,%0], and 0 < t; <t < tg — . We have

t2 «
M, f(a) > 4/ e~ Jo blatTdr g 4 7')/ D(tg — 7 — )M, f(0) ds dr.
t1 0
This inequality means that for bounding My, f from below we only keep the individuals which:
do not divide between times 0 and ¢1; divide a first time between ¢; and t2; do not divide between

to and ty — «; divide a second time between ty — o and tg.

Let us check that we can choose tg,t1,t2 and « such that b and then ® have a lower bound
on [tg — ta — a, tg — t1] and then give a lower bound for

t atty
/ 2 e~ foT b(a+7") d'r'b(a + 7_) dr — o~ faa+t1 b(T) d'r(l —e a;rttl b(T) d'r)

ty

and obtain (3.12). For that purpose, we define n = Lao / pJ + 1 the smallest integer such that
np > ag. Let a € (0,21 — p) and to = ag + np + [. The choice of ¢; and t5 depends on whether
a < ag or a > ag.

For a < ag we choose t; = np and to = np+1—a. We have b > bon [t—t2 — o, t—t1] = [ag, ag+1],

so that ® > be~ Jo” " BT on [t — 5 — a,t — 1], and

to
/ e Jo et ATy 4 ) ds > e Joor b(T)dT(l - efb(Qlfpfo‘)) > 0.
t1

For a > ap we choose t1 = 0 and ¢t = — a. We have ® > be™ S b(rydr >0on [t —ty —
a,t —t1] = [ag + np, ap + np + 1], and

to
/ e f(f b(a+7) dTb(a -+ s) ds=1—e" f;+t7a b(r)dr Z 1— e—Q(Ql—p—O() > 0.
0

As a consequence, (3.12) is satisfied with

_ 4foCY m;(0) ds b (1 — e b@pme)y o2 f5 " bryar
1722 [l oo

which gives Assumption (H1).

m¢(a) for allt,a > 0,

Now we turn to (H2). Since we know from Corollary 3.10 that m;(0) > %

it suffices to find d > 0 such that for all t > 0,
v(my) > 2dm(0).

Lemma 3.9 ensures that for all £ > 0,

1 « «
v(me) = ai/ Myy5(0)ds > —g————m;(0)
fo ms(0)ds Jo fo ms(0)ds
and the constant d = W suits.
0 S

It remains to check (H3). In that view, we define

b(a) :==supb
0,a]
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and we write for t > s> 0
mg(0) = e~ Jo b dr 4. 2/ e~ Jo TP (g — ym(0) dr < 142 b(t)/ m.(0) dr.
0 0

Applying the Gronwall’s lemma we get m(0) < e2°®s for all s € [0,], so m:(0) < e2*® and
using Corollary 3.10 we obtain
”ﬂ%”Oo < 2e2b(t)t.

Finally we can apply Theorem 3.5 which ensures the exponential convergence with the rate

20 _ Cp—a _o reotnptly g
—log(1 — cd) *10g(1fml_)(1fe b(2l—p ))e 2 fy b(r)d )

to - ap +np+1 =P
where
—log (1 —ab (1 — e b@l=p=a)) g=2 J5*0 T b<f>dr—2<2ao+p+z>b<2ao+p+z>)
P= 2a0 +p + | (3:13)
and the result follows by choosing o =1 — p/2. U

3.3. Asymptotically homogeneous semigroup and increasing maximal age. In this sec-
tion, we present a general theorem for semigroups which become homogeneous when time tends
to infinity. We then apply this theorem to an age structured population where the state space
has a maximal age which increases with time.

3.3.1. Convergence of the profile and evolution of the mass. We consider the situation of a semi-
group which becomes homogeneous when time goes to co. For the sake of simplicity and in view
of our application, we restrict ourselves to the case when the state space is increasing :

Vs <t, X, C X, X = UXS.
s>0

We say that a semigroup (M ¢)o<s<t is asymptotically homogeneous if there exists a homoge-
neous semigroup (Ny);>o defined on X and satisfying Assumption 2.1, such that for all s > 0

lim sup H(Sth,t—i-s - 6stHTV =0 (H'0)

t—00 TEX,

In our framework, the assumptions (A1)-(A4) rewrite as follows. There exist sg,r > 0, ¢,d > 0
and some probability measure v on Xs, such that for any ¢ > sp and =z € A%,

e My tyr > cmyir(z) v, (H'1)
and for any 7 > 0,

dmi 7 () < v(Mmetsr). (H2)
As for the homogeneous case, writing n:(z) = 6, N1, for © € X and ¢ > 0, we need that

t — ||n¢]loo is locally bounded on R, . (H’3)

Theorem 3.11. Let s > 0. Under Assumptions (H'0), (H'1), (H’2) and (H’3), there exists a
probability measure v on X and a positive bounded function hs on Xs such that

MMs,t

=0.
v(mss)

TV

lim  sup — pu(hs)y

t—o0 HEP(X,)
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Notice that the TV norm above is the TV norm on the state space X, the measure M, €
M(X;) being extended by zero on X'\ A;.

Notice also that in Theorem 3.11 we do not provide a speed of convergence. It could be
achieved by taking into account the speed of convergence of M to N.

Proof. Following (2.3), we set

Ox Ny
51 (t) _ Y% t s.
Qs,t nt—s(x)

for any z € X, t > s > 0. Fix 29 € X. First, using (H0), for any u > 0, we obtain
tl;rg) M t1u(T0) = ny(xg) >0
and then using again (H’0),

t+u t+u
6I0Pt(,t+u) - 510 E,tJru)

lim =0. (3.14)
t—o0 TV

Now we note that (H’1) and (H’2) ensure that (A1)-(A4) are satisfied for any regular subdi-
vision of [s,t] with step r (i.e. t; —t;—1 =) and tg > s, for the constants
¢ = c, d; =d, v, = U, a=1/(cd), g =1/d.
We apply then Theorem 2.3 to M with v = §,,, which ensures that, for every s > 0,

. M ¢ )
lim sup — p(hg)dz, P, =0, (3.15)
t—00 HLEP(X,) u(ms,t) 0" 0.t ™V
while Lemma 2.5 (i) guarantees
lim sup [|6.BT - 6, P v =o. (3.16)

U0 >0, x,yEX;

Using (H’0) and letting ¢ — oo in (H'1), (H’2) and (H’3), we obtain that the semigroup N satifies
(H1), (H2) and (H3). Then by Theorem 3.5, there exists a probability measure 7 such that
lim sup [l6.QLL —ylrv = 0.
U0 2 X,t>0
Hence, (3.14) becomes
P(t+u)

lim 11128;110 620 Pt — VllTv = 0.

Using now (5I0P0(ft-:_13 = (6I0P0(ft+u))Pt(;:Z) and (3.16), we get

. (t+u) (t+u) _
uh~>ngo igﬁ) 1820 Po sy — Oz Prgy lrv = 0.

Combing the two last bounds yields

limsup (|35, Py — ey = lim sup [da, P55 = v]lrv
t—o0 U=0 >0
. t+ t+ . . t+
< Jim sup 1620 Poreys) = Ona Pt llrv + lim. lim sup 1820 PO — 5]lpy = 0.

Plugging this in (3.15) concludes the proof. a
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3.3.2. Example: the renewal equation with maximal age. We consider the renewal equation on
a domain bounded by a maximal age which increases along time. When an individual reaches
the maximal age, he dies. We denote by a; the maximal age, which grows from ag to a., when
t — +o0o. To avoid pathological situations we assume that ¢ — ¢ — a; is strictly increasing.
Inside the domain [0, a;) the individuals reproduce with a birth rate b(a) bounded from below
by b > 0 and from above by b. The partial differential equation which prescribes the evolution of
the density us¢(a) of individuals with age a at time ¢ (starting from a distribution u,(a) at time
s € [0,t)) writes

Orus t(a) + daus,(a) =0, t>s 0<a<ay,
at
us,(0) = / b(a)ust(a)da, t> s, (3.17)
0
us,s(a) = us(a), 0<ac<a,.

The motivation of such a model comes from [3] which studies a related branching model for the
bus paradox problem.

The details of the construction of the associated semigroup are postponed to Appendix C. Here
we only give the main steps. For ¢t > s > 0 we define the operator M, : By([0, a;)) — Bu([0, as))
as follows: for any f € By([0,a¢)) the family (M . f)i>s>0 is the unique solution to the equation

M;:f(a) = f(a+tfs)+/ br(a+7—s)M;+f(0)dr, (3.18)

where we have denoted b;(a) = b(a)1jg,4,)(a) and f has been extended by 0 beyond a;. Then for
pw € M(X;) the measure pM,, is defined on [0,a;) in such a way that (uM)(f) = p(Ms.f)
for all f € By([0, az)).

Using Theorem 3.11 we prove the following ergodic result for the semigroup (M :)i>s>0. It
provides the long time asymptotic behavior of the measure solutions (uMs ¢)i>s to (3.17).

Theorem 3.12. Let s > 0. There exist v € P([0,a00)), ¥ € P([0,as)), and a positive hs €
By([0,as)) such that for all i € M([0,as)),

uM,
~— u(hs )y

=0.
v(mss)

TV

lim sup
t—o0 HEP(XS)

Before proving this theorem we start with a useful lemma.

Lemma 3.13. For any s <t and any f € Cy([0,a:)), we have
[Moeflloo < 2 flloo-
Proof. By definition of M, .f(0) we have

t _ t
|Ms,tf(0)| = ’f(t - S) +/ b‘r(T - S)Mr,tf(o) dr| < HfHOO + b/ |M‘r,tf(0)| dr

and the Gronwall’s lemma gives | M, . f(0)] < £ lloe€®@=%). Then for a > 0 we write

t _ _
Mot f(@)] < 1 lloe + Bl flloo / S=)dr = =) .

S
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Proof of Theorem 3.12. We start by verifying (H’0) with X = [0, an,). The homogeneous semi-
group N on M(X) x By(X) is defined by the following Duhamel formula

Nif(a) = fla+1t) +/O boo(a + T)Ni—r f(0) dr.

Existence, uniqueness and Assumption 2.1 can be proved in the same way as for the homogeneous
renewal equation (see Appendix B).

Fixt>0,a € X, =[0,a;), and f € Co([0,a;)) such that || f|l < 1. For any r > as we have

t+r
My f(a) = / br(a+7—t)M:4rf(0)dr
t
and
t+r
N, f(a) = / boo(@a+ 7 — t)Nigr—r f(0) dr.
t
We start by comparing My 4+, f(0) and N, f(0). We have, using Lemma 3.13,
[Ny f(0) = My,e4 f(0)]|

S/

boo(T — t) — b,,-(T — t)’ |Nt+r7'rf(0)| dr
t+r
n / bo(7 — )| Nysr—r F(0) — My gy, £(0)] dr
ttr K B t+r
< / BlaTS'rftSaaoeb(tJrriT)dT + Z_)/ |Nt+rf‘rf(0) - M"'thFTf(O” dr
t t

- _ t+r
<O (= ) 4T [ [Neer o f(0) = Mo f0) dr,
t
which gives by Gronwall’s lemma
[N £(0) = My s f(0)] <D™ (00 — ay).
Now we come back to a € [0,a;) and we have similarly
- _ t+r
[N, f(a) = My pir f(a)] < be™ (a0 — ar) + b/ |Nigr—7f(0) = Mr 10 f(0)] dT
t

< Eeg’”(aOo —ay) + Z;QTeQET(aOO —ag)

< max (EeET, (EeET)Qr) (Goo — ag).
We deduce that for all 7 > aq,

sup |[0a Mt t1r — 0o Ny ||Tv < max (Eegr, (Eegr)2r) (aoo —ar) — 0.
0<a<at t——+oo
Now we turn to (H’1). Iterating the Duhamel formula (3.18), we get for f > 0,
¢
Msif(a) = fla+t—s)+ / br(a+7—8)M;f(0)dr
ot
:f(a+t—s)+/ brla+7—38)f(t—71)dr

Jr/ bT(a+T—s)/ b (7 = 1) f(t —7')dr'dT + (> 0).
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Thus
¢ t
M;+f(a) > / br(a+T1— s)/ b (T — 1) f(t —7')dr'dr.
S T

We counsider s large enough so that A := a — as < as/2. We set o := % and take t — s = 2A.

Fors<7 <7 <twehave 7 —7<t—s=2A<as <al, and so b/ (7' —7) =b(7' —7) > b.
We deduce that \ ,
M.+ f(a) ZQ/ bf(a+7*5)/ ft—7")dr'dr.

We consider separately a < a; — « and @ > a5 — . For a < a5 —a et 7 € [s,8 + a] we have
a+17—s8<as<arandsob(a+7—3)=bla+7—35)>b Thus we can write

M+ f(a) Zb/th(a—i—T—s)/tf(t—r')dr'dT

Y

° s+ta t T «
b2 / f(t—7"Ydr'dr > 0@2/ f(r)dr = (ab)?v(f),
s t—a 0

where v(f) = L [ f(r) dr. Now for a > a, — a we have that if 7 >t —a then a +7 — s >

T«

as + A = as and so b, (a + 7 — s) = 0. We deduce that
t t
Ms,tf(a)z_/ bT(a—l—T—s)/ ft—7")dr'dr
st Tt t
2@/ b,,—(a+7'78)/ f(tT’)dT’dTaQ</ bT(a+7'S>dT>l/(f).
s t—a s

To conclude that (H'1) is satisfied it remains to compare these lower bounds with m; +(a). We
start from the Duhamel formula

ms,(a) = Loti—s<a, + /t br(a+7—s)m.(0)dr
and use Lemma 3.13 which ensures that m, ;(0) < Pt=7) If q < as — a, we write that
ms(a) <1 —l—l_)/t N
For a > as — o we use that a—l—t—sZas—i—As:aoo > a; to write

t gt
ms,(a) < / br(a+7—8)m.(0)dr < ebA/ br(a+7—s)dr.

Finally we get
My, f(a) > min (abe™2, (abe™"2)%) my 4 (a) v(f).

For (H'2) we start by comparing ms(a) to ms(0). We have
¢
mst(a) = Lott—s<a, + / br(a+7—8)mr+(0)dr
o o
< 1t—s<at + b/ 1a+‘r—s§a,-m7',t(0) dr < 1t—s<at + b/ ]-T—sga,-mT,t(O) dr

< ]-tfs<at + mS,t(())'

IS o

/ b — sy (0) dr <

IS <
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Then we compare ms¢(0) to v(ms). We consider separately the cases s < t < s+ a and
t>s+a. For s <t< s+« wehave, since a +t—s < 2a=A <a(0) < a,

« «
/ ms.t(a)da > / loti—s<a,da > o
0 0

and we have already seen that ms .(0) < eg(t_s), o)

s 1(0) < ePu(my.y)

and

Z:)e_o‘meS,tHOO < v(mgy).

For the case t > s + « we split into two steps. We start by comparing ms ((0) to m,(0) for
s <r < s+ . The semigroup property allows to decompose ms(0) = doM; ,m, ;. Lemma 3.13

ensures that |6 Ms r||Tv < eb(r=s) so, using again the bound m, ;(a) < %mnt(()), we get

IS o

b
ms,t(o) = 6OMS,7‘m’I‘,t < ||6OMS,T||TVZ_)mT,t(O) < e mr t(o)

To conclude we write

/ ms,(a da>—/ / (a4 7 —s)m..(0)drda

v o3
>b / M (0) dr > O‘T—e—abms,t(()).

Finally, we have proved that for all ¢t > s + a we have
ab® _ z
—e O(bllnﬁbs,tlloo < V(ms,t)-

Finally, (H’3) comes from similar computations and a generalisation of Lemma 3.13 for N. O

3.4. Periodic semigroups and the renewal equation. In this section, we establish the con-
vergence to a periodic profile for periodic semigroups. This generalizes the Floquet theory [22]
for periodic matrices. We apply this result to the renewal equation and obtain an explicit ex-
ponential rate of convergence. Let us mention that it provides an exponential decay to Floquet
eigenelements for a periodic PDE, which up to our knowledge has not been achieved so far.

3.4.1. Exponential convergence for periodic semigroups. We start by a definition of the so-called
Floquet eigenelements.

Definition 3.14 (Periodic semigroup and Floquet eigenelements). We say that a semigroup
(M.t )o<s<t is periodic with period T if for all t > 0 we have Xy = Xy and for allt > s > 0,

Moy 47 = M.
We say that (Ap, s, b

5,8)t>5>0 1S @ Floquet family for (Ms¢)e>s>0 if for all t > s > 0 the triplet
FyVs,ty st € X x B , JOT Q s 2 we have vs s € s) an s,s\Ils,s) = 1, JOT
A h R ./\/l X for all 0 h s €P(X d s s(hss) =1, f
allt>s>0,
Vs+TA+T = Vs,t = Vs t+T and hs+T 147 = ot = s 141,
and

Vs,s Mt = e/\F(tis)’Ys t and My hiy = e/\F(tfs)hs,t-

)
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We state the general periodic result, recalling Definition (2.1) of the coupling capacity Cy 3...(s, t).

Theorem 3.15. Let (Mst)i>s>0 be a T-periodic semigroup and let o, f > 1 such that for all
s > 0, there exists v € P(Xs) such that Cq g, (s,t) = +00 when t — +oo. Assume also that
the function (s,t) — ||ms tl|eo is locally bounded. Then there exists a unique T-periodic Floquet
family (Ap,7vs.t, hst)i>s>0 for (Ms)i>s>0 and there exist C,p > 0 such that for allt > s > 0
and all p € M(Xs),

||ei/\F(tis)MMS,t - M(hS,S)'YS,tHTV < Ceip(tis)HMHTV'
Notice that in general the exponential rate of convergence p can be quantified.

Proof. We start by the construction of (vs,t)¢>s>0. From Theorem 2.3 there exist C' > 0 and
hs : Xs — (0, 8] such that v(hs) =1 and for any p,y € M(Xs) and all t > s,

VM, -C (s,t)
—_ < Cv(mgy)||pl|Tve™ 7orris?, 3.19
’Y(ms,t) v ( t)” ” ( )

Considering t = s + kT for k € N, p = v and v = vM, 547 for [ € N and using the periodicity
of M, we get

HuMs,t — u(hlme)

VM stir VM sy (k+0)T < (o= Cop(ssHhT)

TV

V(ms,erkT) V(ms,s-i-(k-i-l)T)
vMs, s4kT

~Tm +kT))k€N is a a Cauchy sequence in (M(Xs),| - ||Tv). We denote the
limit -y, 5, which belongs to P(X;). Using again (3.19) with u = v we have that for all v € M (X),

which ensures that (

’YMs,erkT
V(M s4kT) k300

For f € By(Xs) we have, using the periodicity of Mg .,

Vs,s- (3.20)

78,5M575+(k+1)Tf = Ys,s Ms,s-i—kT Ms,s—i—Tfa
which gives
Vs, (Mg st (bt 1)T) Vs,s Mo svbrryrf Vo, sMs spnr

= M o7 f. (3.21)
'Ys,s(ms,erkT) ’Ys,s(ms,s-i-(k-i-l)T) ’Ys,s(ms,erkT)
Letting f =1 in (3.21),
. Ys,s(Ms sy (kr1)T)
As = lim - é( sot (kD) = VS,s(ms,s-l-T)
k—o0 'Ys,s(ms,erkT)
and letting k — oo,
Ass,s(f) = Vs, Ms s+7f- (3.22)
We check now that A, is independent of s. To do so we start by proving that for any s’ > s,
Vs sMs s’
’ 5 = %_ 3.23
Vs 3S 7515(m575/> ( )

By the semigroup property we have on the one hand, using (3.20) with v = s s M s,
Ws,sMs,s’-i-kT (Ws,sMs,s’)Ms’,s’-l-kT

= Vs’ s’
Vs,sMs,s' +kT (FYS,SMS,S/)mS/,S/JrkT k—o0
and on the other hand using (3.22)
k
Vs,sMs,s’JrkT o 75,5M5,5+kTMs+kT,s/+kT AS'YS,SMS,S/ o FYS,SMS,S/

Vs,sMs,s' +kT 78,5M5,8+kTms+kT,s’+kT Alg'}/s,s(ms,s’) Vs,s(ms,s’)
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This proves (3.23) which gives, using again (3.22) and the semigroup property,
78,5M8,8’+T _ Asvs,sMs,s’
'Ys,s(ms,s’> Vs,s(ms,s’>

Testing this identity against 1 and using that v, s are probabilities we get that Ay = A, and we
denote this constant by A. Now we define Ap = (log A)/T and for all ¢ > s,

Vs,t = VS,SMs,tei/\F(tis) .

As”ys’,s’ = Vs s Mgt s/ 4T =

The definition of Ap implies that v = s ++7, and the identity vys47,s47 = 7s,s, Which is clear
on the definition (3.20) of « s, ensures the periodicity Yot+r, 47 = Vs,t-

For the uniqueness we suppose the existence of another Floquet family 7, ; = %75Ms7te_5‘F (t=s),
First using that s stxr = s,s, the convergence (3.20) applied to v = 75 s guarantees that

Ys,s = Vs,s- Then the identity ¥s s17 = 7s,s ensures that A\p = Ap.

Now we turn to the family (hs¢)¢>s>0. Using remark 2.4 we have that Theorem 2.3 is valid
for v = v, and it ensures the existence of a harmonic function
hes = lim &’

t—+o0 Vs,s(ms,t)
which satisfies vs s(hs,s) = 1. Now we define for s <,
sy = e UM hy s

It only remains to check that (hs¢)i>s>0 thus defined is T-periodic. By definition of hs s and
using the T-periodicity of M, ; and ~,; we have

Ms,s+kT Mt T s+ (k+1)T

hes = lim ——"2  — lim = hspr st
k—o0 Vs,s(ms,s-i-kT) k—o00 Ys4+T,s+T (merT,er(kJrl)T)
Then we write
. Ms 4T . My syTms ¢ . M syrms ¢ _
hs,s = lim — T lim 5,541 s, = lim /\F;S# =e MM, o rhys,
t—o0 Vs,s(ms,t—i-T) t—o0 Ws,s(Ms,s-i-Tms,t) t—oo e Vs,s(ms,t)

where we have used the dominated convergence theorem for the last equality. And finally

ArT —ArT

s,erTherT,erT =e s,erThs,s = hs,s-

For the uniqueness we assume the existence of (hs;)¢>s>0 which satisfies the same properties as
(hs,t)t>s>0 and we use Theorem 2.3 with v = = v, 5, = 5, t = s + kT and the test function

hs,erT =e

hs,s - herkT,erkT to get

|]~1878($) — hs,s(@)] = ‘Bs,s+kT($) - hs,s(x)%,s(ﬁs,s-i-kT)‘ — 0.

k—o0

The last step is to check the convergence result. Applying Theorem 2.3 with v =y = v, 5, we
get that there exists C' > 0 such that for all ¢ > s > 0 and all u € M(Xj),

< Cat)lllry €= Cno o).
TV

‘MMS,t e Mrlt=e) /L('YS,S)'YS,t et (=)

By periodicity we have v, ¢(1) = e (¢=5)~, (m ;) < SUPg<s<T s<t<s+T ||Ms,tlloo- Still by peri-
odicity, for all n € N and all ¢ > s + nT', we have Co g, (s,t) > Ca,p,.,(0,nT)| 5 |. Using that
Ca,8,,(0,t) = 400 when ¢ — 400 we can choose n € N large enough so that Cy 5, (0,nT) > 0
and this gives the result with p = Cy 3., (0,nT")/nT. O
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3.4.2. Example: the periodic renewal equation. We consider the renewal equation with a time-

periodic division rate, which is used as a model for circadian rhytms (see [14, 13] and the references
therein). More precisely the equation is
Qs 1(a) + Ogus,t(a) + b(t, a)us (a) =0, t>s, a>0,
us+(0) = 2/ b(t,a)us(a)da, t>s, (3.24)
0
us,s(a) = us(a), a >0,

and we assume that there exists T' > 0 such that b(¢t + T, -) = b(t, -) for any ¢ > 0. Additionally b
is supposed to be non-negative and globally bounded (in time and age) by a constant b > 0. Simi-
larly as in the homogeneous or asymptotically homogeneous case we associate to Equation (3.24)
a semigroup (M ¢)o<s<¢ defined on By(R4) by the Duhamel formula

M, f(a) = fla+t—s)e JsbratT=s)dr (3.25)
t
+2/ e~ T et T =) (g 4 — )M, £(0) dT

and on M(Ry) by setting (uM)(f) = p(Ms.f) for all f € Bp(Ry). As for the homoge-
neous case, this semigroup is well defined and satisfies Assumption 2.1. Mimicking the proof of
Lemma 3.9 we can prove the following monotonicity result.

Lemma 3.16. For all s,a > 0, the function t — ms(a) is nondecreasing.

Notice however that the function s — mg(a) is not nonincreasing in general. Yet, since
(Ms,1)o<s<t is T-periodic we have, using Lemma 3.16, msy7(a) = ms—r(a) < ms(a).

The aim of the current section is to provide sufficient conditions on b so that we can apply
Theorem 3.15. In Theorem 3.17 we give a general such result, and in Theorem 3.18 we optimize
the rate of convergence in the case when the division rate depends only on time. Let us point out
that in this latter case the mean number of individuals ms +(a) does not depend on a and satisfies
a simple differential equation. Classical Floquet theory [22] then easily applies for proving that it
tends to a periodic solution. However it is no longer the case for the age repartition described by
the semigroup which remains an infinite-dimensional object. Its asymptotic periodicity cannot
be deduced from those of m ;.

The convergence of the solutions of the periodic renewal equation to the Floquet elements has
been obtained in [39] by the way of entropy techniques. Here, we provide an explicit exponential
rate of convergence.

Theorem 3.17. Let b be a time-periodic function with period T' > 0, non-negative and globally
bounded by b > 0. Assume that there exist A > 0 and b > 0 such that

vVt >0, Va > A, b(t,a) >b.
Then there exists a unique Floguet family (Ap, Vs, hs t)o<s<t for the semigroup (Ms¢)o<s<t and
a constant C' > 0 such that for allt > s >0 and all p € M(Ry),

Hei/\F(tis)MMS,t - /L(hS,S)'VS,tHTV <Cllplrv emr(t=)

-1, ( 20T e~ PBEA+ST)
p= og{l-———= 1 )
A+2T 2E—T+T+3+1767QT

where
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Proof. We will use several times the inequality
s lloc < &™),

whose proof follows Lemma 3.13. In particular it ensures that the function (s,t) — ||ms ¢]|co is
locally bounded.

Now we exhibit constants for the assumptions in Definition 2.2. We start with (Al). Let
s > 0 and define n := |2 |, so that (n+1)T € (A, A+ T)]. From the Duhamel formula (3.25) and
using the periodicity of the semigroup we get that for any f > 0 and any a > 0

s+(n+2)T

Ms,s+(n+2)Tf(a) 2 2 / e~ f;’ b(T/1a+T,75)dT,b(T, atr— S)MT7S+(n+1)Tf(O) dr
s+(n+1)T

_ s+T
> 2beb(A+2D) / M, o7 f(0)dr.

We have m 4 (ny2)r < e2b(A+2T) and Lemma 3.16 ensures that f:JrT mr s+1(0)dr > T. So (A1)
is satisfied with

s+T
M; s 0)d ~
v(f) = I, T w7 f(0)dr and ¢ = QbTe—3H(A+2T).
fs m‘r,s-i—T(O) dT
We treat the last three assumptions (A2)-(A4) together by proving that there exists d > 0 such

that for all ¢t > s,

d[mstlloc < v(ms ).
If t —s < A, we have ||ms¢]|co < eQEA, and from Lemma 3.16 vs(ms ) > 1, so it remains to treat
the case t — s > A. Keeping n = L%J and setting N = LFTSJ > n, we have from (3.25)

t
mgﬂf(g) — e JEb(ratr—s)dr + 2/ e 7 b(Tl’aJrTLs)dle(T,a +r— 5>mr,t(0> dr

IN

L s+(k+1)T ~ , , ,
1+ QbZ/ e ST b(r;a+7'—s)dr mr,t(()) dr
k=0 s+kT

N s+(k+1)T ., , ,
+2b Z / e~ J 0Tt —s)dr m,+(0)dr
k=n+1 s+kT

t
+ 21_7/ e I b(T/’aJrTLS)dT/mT,t(O) dr
s+NT

n s+T
<1+ QbZ/ Mr4+x7,4(0) dT
k=0""%
N

#B S [ T o)
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)

k=0
1 A - 2b s+T
< (f ro(B+8)h e ) [ mar

On the other hand we have

N 1

)

_ s+T s+T
< (1/T+2b(n+2))/ m.+(0) dr + 2b e kblta— tl)/ mr:(0) dr

1 s+T
V(i) = V(s ier) = — ‘/‘ ir 7 (0) dr
f T mr s+7(0) dT

1
fss+T e2b(s+T=7) dr

s+T _ _ s+T
/ mr(0)dr > 2b672bT/ m,+(0) dr,

which gives
1 A 1 =
ms,i(a) < (f tpt3t W)G%Tvs(ms,t)

and ends the proof. O

Theorem 3.18. Assume that b(t,a) = b(t) is a continuous T-periodic function, which is not
identically zero. Then there exists a unique Floquet family (Ap,¥s,t, hst)o<s<t for the semigroup
(Ms,1)o<s<t and a constant C > 0 such that for allt > s >0 and all 4 € M(Ry)

X ot
He_/\F(t_é)MMs,t _ M(hs,s)'Ys,tHTV < Clplrve 2 [] b(r)dr

Proof. Since B does not depend on a we have the explicit formula
Mg 4(a) = el b7, (3.26)

In particular it ensures that the function (s,t) — ||ms.¢||co is locally bounded.

Now we prove (Al). Lett > s+ T,k € N,n= |22 > 1, and N = (n — 1)k + 1. For all
0<i<N-1lwesett;=s+ i%, and ty = s + nT. From the Duhamel formula (3.25) we have
forany 1<i<N-—1land f >0

[ti—1,ti]

ti T ’ ’
A@A@ﬂ@zz/’e—%A“””bvﬁm—TMTz%wwwk min b) / fr
ti—1

For i = N we write
s+nT

MmmmﬂWZQ/ e Sra-nr Ty s 4 (n = 1)T — 7) dr
s+(n—1)T

> 9¢~ [IblleT /T b(T —1)f(r)dr.
0

So (A1) is verified for 0 < i < N — 1 with v;(f) = 2 [, f(r) dr and
oT

Z e IBlet min b
[ti—1,ts]

C; =

and for i = N with vy (f) = % and
0 T T

T
eN = Qe_HwaT/ b(T) dr.
0
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From (3.26) we deduce that Assumptions (A2)-(A4) are trivially verified with

=1, a=—, B=1.

Thus the coupling capacity satisfies, for all k € N,

N-1 oT
Copuw(sit) > =Y log(1— e Pl~% min b).
Bu(st) > 2 og< . e k [tmln

i—1,t4]

Letting k — oo we get

S“r(’nfl)T t T
Copulsit) 2 2/ b(r)dr > 2/ b(t)dr — 2/ b(t) dr.
S s 0

O

Remark 3.19 (About optimality). In the constant case b = const > 0, we recover the spectral
gap 2b. Indeed, we know that the spectral gap of the operator

Af(a) = f'(a) = bf(a) + 2bf(0)

cannot be larger than 2b because the dominant Perron eigenvalue is b, and —b belongs to the
spectrum of A (the operator A+ b is not surjective on Cyp(Ry) since all the solutions to the
equation f'(a) = —2bf(0) + 1-1%1 for instance are unbounded).

Remark 3.20 (Eigenvalue). From the periodicity of (Vs :)i>s>0 and (3.26), we easily get that

1 7
AF = T/o b(T)dr.

APPENDIX A. BRANCHING MODELS, ABSORBED MARKOV PROCESS AND SEMIGROUPS

The techniques by coupling used in this paper have been extensively developed in probability,

in particular for the study of branching processes and killed process, see the introduction for
references. Let us present here informally the probabilistic objects and the interpretation of the
auxiliary semigroup.
For that purpose we consider a population of individuals with a trait belonging to the space X.
This population can die or give birth to some offsprings with a rate which depends on their trait
and independently one from each other (branching property). Moreover the trait may vary in
an homogeneous way and without memory (Markov property). Let us also assume that some
subspace S of X is absorbing, meaning that each individual whose trait reaches this set stop
dividing and keeps a constant trait. Writing V; the set of individuals at time ¢ and (X} : i € V;)
the set of their traits, the branching and Markov properties and the absorbing property of S
ensure that

62 M4 (f) =E (Z F(X)1xigs | Xs = 61)
i€Vy

is a semigroup. In general, it is not conservative, since its mass

msi(x) =0 M A =E#{i €V, : X{ ¢S | Xs =6,})
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can decrease by absorption in § or death of individual or created by births. The trait of a typical
non-absorbed individual is then given by the auxiliary conservative inhomogeneous semigroup

0xMyo(fn:) E (Ziev,, f(Xi)lxggs‘Xu =6,)

5, P f = = .
w0l Myt () E(#{i € Vi : X{ € S} Xy = 62)

=E(f(Y,)Y" =),

where X! is the trait of the ancestor of i at time v and Y® is the inhomogenous Markov process
associated to P®). Thus, Y® is the process describing the dynamics of the trait of a typical
individual, which is alive at time ¢ and non-absorbed. Proving that it is ergodic ensures the er-
godicity of 6, M ;1/ms () as t goes to infinity. In this paper, we make a coupling for that, with
Doeblin conditions which ensure exponential uniform ergodicity. Thanks to [12], this Doeblin
condition can be rewritten in terms of coupling constants on the original semigroup M.

In homogeneous-time setting, two particular classes of processes have attracted lots of atten-
tion. First, if we make S = @, then X is a branching process and

i€V

is its first moment semigroup which provides the mean number of individuals with a given trait.
The auxiliary process describes the dynamical of the trait along the ancestral lineage of an
individual chosen uniformly at random, when the population is becoming large. More generally,
the genealogical tree of the population can be constructed from this typical lineage, which is
called spine construction.

Second, if the individuals neither die nor give birth, we get a Markov process in the space trait
X and

51Ms,t(f> = E(f(Xt>1Xt€$ | XS = ZL')

Assume that X; is eventually absorbed as ¢ goes to infinity a.s. and consider the distribution of
the process conditioned on non-absorption :

51M0,t

P, (X, € . |Xt¢8):m0t(x)

5.

The ergodic behavior of P® and its convergence to a distribution v yields the convergence of
the conditioned distribution (Yaglom limit) to the quasistationary distribution. At fixed time ¢,
P® describes the dynamic of the trait for trajectories non-absorbed at time ¢.

APPENDIX B. MEASURE SOLUTIONS TO THE RENEWAL EQUATION

We give here the details about the construction of the homogeneous renewal semigroup. It is
based on the dual renewal equation

O ft(a) — Oa fi(a) + bla) fr(a) = 2b(a) £(0), t,a > 0. (B.1)

Integrating this equation along the characteristics, we obtain the mild formulation (also called
Duhamel formula)

t
fila) = fola+ t)e™ Jo blatmdr 4 o / e Jo batTNAT b 4 7Y £, (0) dr. (B.2)
0

The first result is about the well-posedness of this equation in By(R4).
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Lemma B.1. For all fo € By(Ry) there exists a unique family (fi)i>0 C Bo(Ry) solution
o (B.2). Additionally if fo > 0 then f > 0 for allt > 0.

Proof. First we use the Banach fixed point theorem on a truncated problem. For T > 0 and
fo € By(R4) we define the operator I': B,([0,T]) — By ([0, T]) by

t
Tg(t) = fo(t)e™ Jo b 4 9 / ®(1)g(t — 1) dr.
0
We easily have
T
Werhﬁm§2/ B(r) dr (g1 — golloc,
0

so I is a contraction if 2 fOT ® < 1 and there is a unique fixed point in By([0,T]). Additionally
since I" preserves non-negativity when fy > 0, we get that the fixed point g is non-negative when
fo is non-negative. Since the contraction constant 2 fOT ® is independent of fjy, we can iterate to
obtain a unique function g € By(R) which satisfies

mwh@mf“@”+zé¢wmuﬂm

for all t > 0. Now we set for all £,a > 0

t
fula) = fola + t)e™ Jo blatmdr 4 2/ e STt b(a 4 7)g(t — 1) dr,
0
which is a solution to (3.11) since by definition f;(0) = Tg(t) = g(t). The uniqueness is a direct
consequence of the uniqueness of g. The non-negativity follows from the non-negativity of g when
fo >0, and the boundedness is given by the inequality

[felloo < lfolloc +2 sup [g(s)].
0<s<t

O

Lemma B.1 allows to define for all ¢ > 0 the operator M; on By(R) by setting M;fo := f:
for all fo € Bp(Ry). Then for p € M4 (R;) we define the positive measure uM; by setting for
all Borel set A C R

(uM)(A) == p(Mi14).

The axioms of a positive measure are satisfied. First it is clear that (uM;)(@) = 0 and that
(uM)(AU B) = (uMy)(A) + (uMy)(B) when A and B are two disjoint Borel sets. The last
axiom deserves a bit more attention. Let (Ay),>0 be an increasing sequence of Borel sets and
A =J,~0 An. We want to check that (uM;)(A) = limy o0 (uM¢)(Ar). The sequence (14, )n>0
is an increasing sequence of Borel functions which converges pointwise to 14. By positivity
of the semigroup, (M;14,)n>0 is an increasing sequence of Borel functions bounded by M;1.
Thus this sequence admits a pointwise limit f; € By(Ry) which clearly satisfies the Duhamel
formula (3.11) with fo = 14. By uniqueness of the solution to the Duhamel formula we get
that M;14, — M;14 pointwise. Then by dominated or monotone convergence we deduce that
(pM)(A) = p(M14) = limy, oo w(Mila,) = limy, oo (uM;)(A,,). Finally for a signed measure
uw € M(R;) we set obviously uMy := py My — p— M.

The family (M;):>o defined above satisfies Assumption 2.1 with X = Ri. The semigroup
property is a consequence of the uniqueness of the solution to the Duhamel formula (3.11). The
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positivity has been proved in Lemma B.1. For the strong positivity it follows from the Duhamel
formula (3.11) that for all ¢,a >0

my(a) > e~ Joblatnydr - g,

The compatibility (uM;)(f) = u(M;f) follows directly from the definition of pM; and the defi-
nition of Borel functions.

It is claimed in Section 3.2.2 that the family (uM;);>0 is a measure solution to the renewal
equation. Measure valued solutions to structured population models drew interest in the last few
years [29, 9, 10, 27, 24]. They are mainly motivated by biological applications which often require
to consider initial distributions which are not densities but measures (Dirac masses for instance).
For us it is additionally the suitable framework to apply our ergodic result in Theorem 3.5. We
refer to [24] for the proof that the family (1M ):>0 is a measure valued solution to Equation (3.10)
for any u € M(R;). Here we only give a heuristic argument which consists in differentiating the
semigroup property pM;f = pMsM;_sf with respect to s € [0,¢]. The chain rule gives

as(,uj\4s)]\4t—sf + MMsas(Mt—sf) =0
and since M, f is a solution to the dual Equation (B.1) this gives
as(MMs)Mt—sf - ,U/MSA(Mt—Sf) =0

where A is the unbounded operator defined on C*(R4.) by Af(a) = f'(a) —b(a) f(a) +2b(a) f(0).
Taking s = t we get that for all bounded and continuously differentiable function f

Oy (uMy f) = pM(Af),

which is a weak formulation of Equation (3.10).

APPENDIX C. THE MAX-AGE SEMIGROUP

As for the homogeneous renewal equation, to build a solution to Equation (3.17) we use a
duality approach. We start with the (backward) dual equation

s fs,t(a) + Oafs,t(a) + bla) f5,:(0) = 0, s<t 0<a<a,,
fsi(as) =0, s <t, (C.1)
fri(a) = fi(a), 0<a<ay.

Integrating this equation along the characteristics we get the Duhamel formula

t
fsi(a) = fila+t—s) + / br(a+7—5)f-(0)dr (C.2)
where we have denoted b;(a) := b(a)1jo,q,)(a) and f; has been extended by 0 beyond a;.

Lemma C.1. For allt >0, f, € By([0,a¢)), and s € [0,1], there exists a unique fs; € By([0, as))
which satisfies (C.2). Additionally if fi > 0 then fs; > 0.



38 VINCENT BANSAYE, BERTRAND CLOEZ, AND PIERRE GABRIEL

We do not repeat the proof of this result since it follows exactly the strategy of the proof of
Lemma B.1. As for the homogeneous renewal equation we define the semigroup (Ms +)o<s<¢ On
(X)i0 = ([0, a1)) 5 first on the right hand side by setting for all f; € By([0,ar))

Ms,tft = fs,t

where fs; is the unique solution to Equation (C.2), and then on the left by setting for all
€ M([0,as)) and all Borel set A C [0, at)

(WM ) (A) = pp (Mg 14) — p— (Mg 1 4).

For any p € M([O, as)) the family (uMs;)s<; is a measure solution to Equation (3.17). As for
the homogeneous case a non rigorous justification is obtained by differentiating the semigroup
property uMs i f = pMs M, f with respect to r € [s,t] and using that M, . f is solution to (C.1).

The family (Mj+)i>s>0 satisfies Assumption 2.1. The semigroup property is a consequence of
the uniqueness of the solution to the Duhamel formula (C.2). The positivity has been proved in
Lemma C.1. For the strong positivity it suffices to check that mg;(0) > 0. Indeed if m;(0) > 0
for all 0 < s <t the Duhamel formula ensures that for a < a,

t t
ms(a) = Loti—s<a, —|—/ br(a+7—s)m.(0)dr > I_)/ lotr—s<a, Mmr(0)dr > 0.

The positivity of ms¢(0) is clear if t — s < a; since
ms,¢(0) > 14_s<q,-

Consider now the case t — s > a;. The function r — m, ,(0) is continuous on [s, t — a;] since for
r <t — a; we have

my(0) = / br (T —r)m..(0)dr.

Assume by contradiction that there exists rg € [s, ¢ — a;] such that m,,(0) = 0 and m,+(0) > 0
for all r € (19, t]. Then the equality above would give for r = g

t
0= / bT(T — To)mﬂt(O) dT,

To

which is not possible since the integrand on the right hand side is positive for 7 close to r¢.
Finally the compatibility condition readily follows from the definition of p1 M ;.
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