
HAL Id: hal-01617045
https://hal.science/hal-01617045

Submitted on 8 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Capacity acquisition for the single-item lot sizing
problem under energy constraints

Christophe Rapine, Bernard Penz, Céline Gicquel, Ayse Akbalik

To cite this version:
Christophe Rapine, Bernard Penz, Céline Gicquel, Ayse Akbalik. Capacity acquisition for
the single-item lot sizing problem under energy constraints. Omega, 2018, 81, pp.112-122.
�10.1016/j.omega.2017.10.004�. �hal-01617045�

https://hal.science/hal-01617045
https://hal.archives-ouvertes.fr

Capacity acquisition for the single-item lot sizing
problem under energy constraints

Christrophe Rapine 1, Bernard Penz2, Céline Gicquel3, Ayse Akbalik1

1 Université de Lorraine, Ile du Saulcy, Metz, F-57012, France
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, F-38000 Grenoble, France

3 Université de Lorraine, Ile du Saulcy, Metz, F-57012, France

Abstract

We study a single-item lot sizing problem integrated with some en-
ergy constraints, called energy-LSP in the rest of the paper. We consider
a production system composed of identical and capacitated machines in
parallel. One has to decide how many machines to start and how much
to produce to serve the demand and/or to replenish the inventory. In
addition to the production capacity limit in each period, induced by the
machines on, we have a limit on the energy that can be consumed by the
start-ups of the machines and the production of units. We first provide
a mixed integer programming formulation for the problem in the general
case. We then develop efficient polynomial time algorithms running in
O(T log T), with T the length of the planning horizon, for several sub-
problems: (i) energy-LSP where all energy parameters are set to 0, (ii)
energy-LSP where only the machine start-ups consume energy, (iii) energy-
LSP where only the production of units consumes energy. We show that,
in all these special cases, energy-LSP can be seen as an extension of the
integrated capacity acquisition and lot sizing problem. This allows us, as
by-product of our approach, to significantly improve the existing result
proposed for the capacity acquisition problem without energy constraint
nor subcontracting.

Keywords: Energy-efficient manufacturing ; lot sizing ; capacity acquisition ;
energy constraints ; polynomial time algorithm.

1 Introduction

Due to the rarefaction of natural resources, the hardening of environmental
public legislation and the growing customer awareness for green products, in-
dustrial companies are increasingly under pressure to reduce the environmental
impact of their industrial operations. In particular, the availability and afford-
ability of energy is becoming a critical parameter affecting the whole life cycle of
an industrial product, including its production phase [Salonitis and Ball, 2013].
This translates into a growing attention of both researchers and practitioners
on energy-efficient manufacturing.

Energy efficiency in manufacturing can be achieved by designing more eco-
efficient products and by carrying out technological improvements of the produc-
tion processes, but this usually requires large long-term financial investments. In

1

contrast, energy-efficient production planning, by adjusting managerial param-
eters of the existing production processes, can be seen as a relatively inexpen-
sive organizational measure whose benefit can be visible in the short-term (see
[Biel and Glock, 2016] and [Gahm et al., 2016]). Energy-efficient production
planning is defined by Biel and Glock [Biel and Glock, 2016] as the computation
of production plans which takes into account not only economic objectives (such
as production costs or completion time minimization) but also energy-related ob-
jectives (e.g. energy cost minimization) or energy-related constraints (e.g. com-
pliance with a maximum contracted consumption). It is particularly relevant
for energy-intensive production processes as can be seen from the numerous case
studies reported in the literature such as tile curing [Özdamar and Birbil, 1999],
melting shops and hot rolling mills for steel production [Castro et al., 2013,
Tang et al., 2012], pulp and paper mills [Santos and Almada-Lobo, 2012, Waldemarsson et al., 2013]
or thermal cracking for ethylene production [Zhao et al., 2016]. Note that en-
ergy efficiency is also becoming a crucial element in the short-term planning of
server farms activities [Chen et al., 2005, Mitrani, 2013].

Biel and Glock [Biel and Glock, 2016] provide a recent literature review on
decision support models for energy-efficient production planning. They show
that most papers focus either on long-term aggregate planning or on short-term
scheduling problems but that energy-efficient dynamic lot-sizing problems have
been scarcely studied. Moreover, most papers make use of energy-related objec-
tives aiming at minimizing either the energy cost or the energy consumption but
implicitly assume that the energy is available in an unlimited quantity. However,
due to the development of renewable energy sources and the difficulty to store
electric energy on a large scale, energy providers have to increasingly rely on
measures such as demand side management programs to shift demand for energy
to off-peak periods and balance the electric grid [Paulus and Borggrefe, 2011,
Schultz et al., 2015, Shoreh et al., 2016]. For the manufacturers, this means in
practice that electric energy cannot be considered anymore as a limitless resource
and that they should seek not only to minimize their energy consumption but
also to synchronize it with the available energy supply. Note that production
scheduling under power availability restrictions has been investigated among
others in [Artigues et al., 2013, Bruzzone et al., 2012, Mitra et al., 2012]. In
this work, we consider production planning at a more aggregate decision level.
We namely study a dynamic lot-sizing problem and introduce an energy con-
straint setting a limit on the total quantity of energy consumed in each time
period rather than on the maximum instantaneous power demand.

More precisely, we investigate the single-item multi-resource Continuous
Setup Lot sizing Problem (CSLP) with energy-related constraints. The CSLP is
a small-bucket lot-sizing problem introduced by Karmakar and Schrage [Karmarkar and Schrage, 1985].
In the CSLP, a production lot on a machine consists of a set of consecutive plan-
ning periods in which the item is produced, and start-up costs are incurred at
the first period of a production lot to take into account the costs related to start-
up operations. Note that the term ”Continuous Setup” refers here to the fact
that the quantity produced on a machine in a given period can take any value
between 0 and the machine capacity. This contrasts with another small-bucket

2

lot-sizing problem, the Discrete Lot-sizing and Scheduling Problem (DLSP),
where an all-or-nothing production policy enforcing that, in a given period, a
machine is either idle or producing at full capacity is assumed. We consider a
multi-resource extension of the CSLP involving a set of identical parallel capac-
itated machines. The optimization problem thus consists in deciding, for each
period over a finite horizon, the number of machines to start-up, the quantity
of the item to be produced and the quantity to be kept in inventory so as to
satisfy the customer demand. In each period, these decisions have to satisfy two
capacity constraints: one coming from the limited capacity of the production
resources and one coming from the limited amount of energy. The objective is
to minimize the start-up and inventory holding costs over the planning horizon.
Similarly to [Karmarkar and Schrage, 1985], we assume null setup costs, i.e. the
costs to maintain the resource in the producing state are assumed to be negligi-
ble. Note that, with positive setup costs, the same problem becomes NP-hard
since it is a special case of the Capacitated Lot Sizing Problem (CLSP) with
time-dependent capacities, which was shown to be NP-complete by Florian et
al. [Florian et al., 1980] and Bitran and Yanasse [Bitran and Yanasse, 1982].

The main contributions of the paper are threefold. First, we extend the
CSLP in order to explicitly take into account energy efficiency via a set of con-
straints limiting the energy consumption in each period. To the best of our
knowledge, this is the first attempt at introducing energy-related constraints in
a small-bucket lot-sizing model. Second, we propose an original combinatorial
algorithm to solve very efficiently the lot-sizing problem with energy constraints
under some rather general assumptions on the energy parameters and cost func-
tions, when either the start-up or the unit production energy consumption is
negligible. Third, as a by-product of our approach, we improve the complexity of
the capacitated lot-sizing problem with capacity acquisition. For this problem,
Atamtürk and Hochbaum [Atamtürk and Hochbaum, 2001] propose an O(T 3)
algorithm, allowing subcontracting, where T denotes the length of the planning
horizon. Without subcontracting, we are able to solve the capacity acquisition
problem in time O(T log T) for concave aquisition cost function.

This paper is organized as follows. A literature review is presented in Sec-
tion 2. In Section 3, the lot-sizing problem with the general energy constraint is
formulated as a mixed-integer program. In Section 4, an algorithm in O(T 2) is
proposed for a pure capacity acquisition problem. Although the energy param-
eters are not taken into account in this first model, it allows us to introduce the
main concepts in a simple setting. An improvement of this algorithm is given
in Appendix, with a time complexity in O(T log T). In Section 5, we extend
our algorithm to deal with energy constraints. We consider two special cases of
energy-LSP, where only the start-up of machines consumes energy, on one hand,
and only production of units consumes energy, on the other hand. We show that
in both cases we can adapt our algorithm, preserving its low time complexity of
O(T log T). In Section 6, other extensions are given for more general start-up
cost functions, namely convex or piecewise function, with a mix of convex and
concave pieces. The overall time complexity of the algorithm is only slightly
increased for these latter cases. The paper is concluded with some perspectives

3

in Section 7.

2 Literature review

The classical lot-sizing problem aims at deciding, for a finite horizon subdivided
into discrete periods, how much to produce in each period in order to satisfy a
deterministic time-varying demand, with the objective to reach the best possible
trade-off between production costs and inventory holding costs. We refer the
reader to the seminal paper of Wagner and Whitin [Wagner and Whitin, 1958]
and to the survey of Brahimi et al. citeBrahimi for a general introduction to
this field. This work is mostly related to a small-bucket variant of the lot-
sizing problem known as the Continuous Setup Lot-sizing Problem (CSLP).
Industrial applications of the CSLP to plan production on a set of unrelated
parallel machines can be found in a variety of environments such as tile produc-
tion [de Matta and Guignard, 1994], injection molding for healthcare products
[Dastidar and Nagi, 2005], packaging lines for dairy products [Marinelli et al., 2007]
or glass melting furnaces [Almada-Lobo et al., 2010]. In case of identical par-
allel machines, symmetry issues can arise during the solution phase due to
the existence of many alternative optimal solutions obtained by renumber-
ing the machines (see e.g. [Jans, 2009]). In order to avoid that, in small
bucket models, it is useful to use an aggregate representation of the machines
and to introduce integer rather than binary start-up variables. This has been
exploited in a variety of real-world cases such as [Jans and Degraeve, 2004,
Lasdon and Terjung, 1971] for tire manufacturing, [Sawik, 2009] for electronic
devices production and [Kaczmarczyk, 2011] for mobile phone production. Note
that the modeling of all the industrial applications mentioned in this paragraph
does not include fixed setup costs to be incurred to keep a machine producing
a given item once it has been started up for it, but only start-up costs to be
incurred each time the setup state of the machine is changed from one item to
the other.

As can be seen e.g. in the literature review provided by Jans and Degraeve
[Jans and Degraeve, 2008], the research on lot-sizing has mainly focused on ex-
tending the basic problem in order to better model operational aspects or to
integrate it as a substructure into larger tactical planning problems. However,
it seems that only a limited effort has been done towards taking into account
the growing pressure to establish sustainability in manufacturing and to comply
with stricter environmental standards. In particular, as shown by the literature
review provided by Biel and Glock [Biel and Glock, 2016], research on integrat-
ing energy efficiency in the lot-sizing problem appears to be only in its early
stages.

A first situation in which energy should be explicitly taken into account
is found when the energy needed by the production system is not only ob-
tained from an external energy provider but is also produced internally, for
instance by converting by-products of the process into steam or electrical en-
ergy. In this case, one has to simultaneously plan the activities of the pro-

4

duction system with the activities of the energy system in order to coordinate
them. Such problems are considered among others by Santos and Almada-Lobo
[Santos and Almada-Lobo, 2012], Waldemarsson et al. [Waldemarsson et al., 2013]
and Zhao et al. [Zhao et al., 2016]. However, most often, the energy needed for
production is obtained entirely from an external provider. In this case, a possi-
ble way to integrate energy in the lot-sizing problem consists in taking explic-
itly into account its cost in the objective function: see e.g. Özdamar and Bir-
bil [Özdamar and Birbil, 1999], Uzel [Uzel, 2004], Heck and Schmidt [Heck and Schmidt, 2010]
and Tang et al. [Tang et al., 2012]. Note that these approaches all assume
that the energy is available in an unlimited quantity. We found a single ap-
proach integrating energy-related constraints in a lot-sizing problem. Masmoudi
[Masmoudi et al., 2017] consider a single-item multi-stage multi-resource lot-
sizing problem and introduce constraints setting a strict limit on the maximum
instantaneous power demand used in each period. They propose two heuristic
solution approaches for their problem and compare their performance to the
one of the mathematical programming solver CPLEX. In contrast, we focus on
providing structural results of the optimal solutions and on developing exact
polynomial time algorithms.

A simplified version of the energy-LSP problem is very similar to the single-
item lot sizing problem with capacity acquisition and subcontracting studied by
Atamtürk and Hochbaum [Atamtürk and Hochbaum, 2001]. The authors pro-
pose an exact algorithm running in O(T 3) time for the case with nonspeculative
linear production costs, nonspeculative linear subcontracting costs and concave
capacity acquisition costs. We show (see Section 4 and Appendix) that the same
problem can be solved with a reduced time complexity of O(T log T) in case of
infinite subcontracting costs. Note that Li and Meissner [Li and Meissner, 2011]
also study an integrated lot sizing and capacity acquisition problem in which
subcontracting is not allowed but, in contrast to our work, they assume time-
independent fixed-charge production costs and focus on developing a heuristic
polynomial time algorithm rather than an exact polynomial time algorithm. In
the literature one can find many papers dealing with capacity planning in supply
chains, but most of them focus on strategic decisions such as integrated facility
location and capacity planning. For more details on the mathematical models
proposed in capacity planning in manufacturing, see the review from Mart̀ınez-
Costa et al. [Mart́ınez-Costa et al., 2014]. To the best of our knowledge, in the
literature, such a capacity acquisition problem has not been yet studied under
energy constraints.

3 Problem formulation

The energy-LSP consists in planning the production of a single-item, assuming
a deterministic demand (dt in each period t) over a finite horizon of T periods.
The production takes place on parallel and identical machines, each one with
a maximum capacity U . The energy available in period t, Et, is used both for
the production of units and for the start-up of the machines. We denote pt

5

the amount of energy needed to produce one unit of product in period t and
wt the amount of energy needed to start-up one machine in period t. The cost
to start m machines in a period is f(m). The start-up cost functions f() are
assumed to be concave and stationary. The concavity of f() allows us to capture
in our model economies of scale that can be encountered in industry. We also
assume that f(m) can be evaluated in constant time O(1) for any value of m.
The production and inventory holding costs are linear: we denote ct the unit
production cost and ht the unit holding cost for storing one unit between periods
t and t + 1. Notice that we have no classical setup cost (paid in each period
with a positive production amount), but only start-up costs to be incurred when
one or several machines are switched on in compliance with small bucket multi-
resource CSLP we consider. We summarize below the different parameters of
the problem:

ct unit production cost in period t
ht unit holding cost from period t to t+ 1
f(m) cost of turning on m machines
pt unit energy consumption in period t
wt energy consumption to start one machine in period t
Et amount of energy available in period t
dt demand in period t
U capacity of a machine

The decision variables are given as follows:

mt the number of machines on in period t
m+

t the number of machines started-up at the beginning of period t
st stock level between t and t+ 1
xt production quantity in t

The energy-LSP is formulated as the following mixed-integer program:

min (
∑T

t=1 f(m+
t) +

∑T
t=1 ctxt +

∑T
t=1 htst)

s.t. st−1 + xt = st + dt ∀t ∈ {1..T} (1)

xt ≤ Umt ∀t ∈ {1..T} (2)

ptxt + wtm
+
t ≤ Et ∀t ∈ {1..T} (3)

m+
t ≥ mt −mt−1 ∀t ∈ {1..T} (4)

st ≥ 0, xt ≥ 0,mt ∈ Z+,m+
t ∈ Z+ ∈ Z+ ∀t ∈ {1..T} (5)

The objective function aims at minimizing the overall cost of machine start-
up, production and inventory. Constraints (1) are the balancing constraints
linking inventory, ordering quantities and demand over T periods. Constraints
(2) ensure that, in each period, the production quantity stays below the total
production capacity which depends on the number of machines on. Constraints
(3) guarantee that the energy consumed by both production and starting-up
activities is limited by the available energy in each period. Constraints (4) link

6

the number of machines started-up at the beginning of period t to the number of
machines on in periods t and t− 1, thus ensuring that the start-up costs f(m+

t)
are correctly incurred in the objective function. The remaining constraints (5)
define the feasibility domain of each decision variable.

In the following of the paper we assume that production costs follow Wagner-
Whitin cost structure, also called non-speculative motives. It implies that
for any period t of the time horizon, we have ct + ht ≥ ct+1. Notice that,
without loss of generality, we can consider that the holding costs are null,
by substituting unit production costs ct with c̃t = ct +

∑T
u=t hu, see for in-

stance [Pochet and Wolsey, 2006]. The non-speculative production cost assump-
tion implies that c̃t ≥ c̃t+1 holds for all periods, that is, modified unit production
costs are non-increasing over time. Finally, recall that we focus on the case of
stationary and concave start-up cost function f(). In the next section, we relax
the energy constraints (3) of the problem to focus on what we call the pure
capacity acquisition problem. We develop a very efficient algorithm for this case
in Section 4, and we extend it in Section 5 to two cases with only one non-null
energy parameter at a time (either start-up or production consumption).

4 Pure capacity acquisition problem

We begin with the study of a simplified version of the energy-LSP in which
all energy consumption parameters are assumed to be null, that is, wt = pt =
0 for all periods t, and propose an algorithm in O(T 2) for this special case.
This algorithm will be generalized to deal with positive energy parameters in
Section 5. In Appendix, we also show that it can be implemented to run in time
complexity O(T log T).

4.1 Preliminaries

When all energy consumption parameters are null, energy-LSP reduces to a pure
lot-sizing problem with capacity acquisition. Namely, the machines on do not
incur any cost in a given period if they do not produce at that period. Thus,
it is dominant to start-up all the necessary machines at the beginning of the
planning horizon and to keep them on till the end. As a consequence, one simply
has to decide the optimal value of m+

1 and set mt = m+
1 ,∀t, m

+
t = 0,∀t = 2...T .

The main decision thus consists in deciding how many machines to start-up at
the beginning of the planning horizon, i.e. in determining the capacity to be
acquired at the beginning of the planning horizon.

The energy-LSP problem with w = p = 0 is a special case of the problem
investigated by Atamtürk and Hochbaum [Atamtürk and Hochbaum, 2001] in
which there is no subcontracting option. Atamtürk and Hochbaum [Atamtürk and Hochbaum, 2001]
consider a continuous capacity model in which capacity can be acquired at any
non-negative level. They show that, under the assumptions of non-speculative
linear production and subcontracting costs and of concave capacity acquisition

7

costs, the problem is polynomially solvable in time O(T 3). In this section, we
show that there exists an efficient algorithm in O(T 2) to solve the special case
with no subcontracting option under the same assumptions. The time complex-
ity of our algorithm can even be improved into an O(T log T) algorithm, using
more sophisticated data structures (see Appendix).

We thus consider in what follows energy-LSP with w = p = 0. The prob-
lem is a capacitated lot-sizing problem: in each period, the amount produced
cannot exceed the production capacity of the system. However, the production
capacity C = Um+

1 is not a given parameter but is itself a decision variable of
the problem. It means that we have to simultaneously determine the capacity
C to be acquired (i.e. the number of machines m+

1 to start at the beginning
of the planning horizon) and the production plan which should be feasible with
respect to this installed capacity C. For the sake of simplicity, we consider in
the description of the proposed algorithm a continuous capacity C and concave
acquisition cost f(C). As explained at the end of Subsection 4.2, our results
can be applied without any difficulty to the discrete capacity problem in which
the value of C would be restricted to the set of integer multiples of U . Note
that the problem may become infeasible if the production capacity C chosen is
too small. We denote by Cmin the smallest capacity value for which the prob-
lem is feasible. Clearly, there exists a feasible planning for any given capacity
C ≥ Cmin. Though the value of Cmin can be easily determined, the algorithm
we propose does not need to compute it explicitely.

We now provide some insights of the ideas underlying the proposed algo-
rithm.

• Since there are no setup costs and production costs are assumed to be non-
speculative, one should seek to plan production using a lot-for-lot strategy
in order to reduce the inventory holding costs. However, as the production
level is limited by the installed capacity C (which makes part of the deci-
sion), the demands exceeding C should be anticipated and smoothed to the
previous periods. The optimal production plans have a particular struc-
ture: in all the periods of a subplan, except the first one, production occurs
at full capacity, that is, xt = C. For a given value of the installed capacity
C, determining the optimal production plan can be done in linear time
O(T), see Atamtürk and Hochbaum [Atamtürk and Hochbaum, 2001].

• Searching for the optimal solution can thus be reduced to the search of the
optimal value of the installed capacity C. In their approach, Atamtürk
and Hochbaum studied the polyhedral structure of the problem, and estab-
lished that the number of extreme points can be bounded by O(T 2). Since
each extreme point can be evaluated in linear time, it leads to an O(T 3) al-
gorithm. In our approach, we show that among the O(T 2) extreme points,
only a small number needs to be considered to find an optimal solution.
Specifically, we focus on the function OPT (C) representing the cost of an
optimal solution for an installed capacity C, and show that OPT (C) is a

8

piecewise concave function comprising at most T breakpoints. Hence, the
number of values of C to be considered for finding the minimum value of
OPT (C) and the corresponding optimal solution is bounded by T , leading
to an O(T 2) time algorithm.

4.2 Structure of an optimal solution

Clearly, a solution is entirely specified by its vector x = (x1, . . . , xT) of produc-
tion. For the ease of the presentation, we also use the associated vector s of
inventory levels, where
st ≡ (x1 + . . .+ xt)− (d1 + . . .+ dt) represents the amount of products in stock
at the end of period t. We focus on solutions with a particular structure. For a
given capacity C, we call a period t a full production period if xt = C. A period
t with a null entering stock (st−1 = 0) is called in the literature a regeneration
period. We introduce the following definition :

Definition 1 We say that a solution x is no-slack if and only if st−1(C−xt) = 0
holds for each period t = 1, . . . , T . That is, each period of the planning horizon
is either a full production period or a regeneration period.

In addition, we say that solution x is dominant if it is feasible and sT = 0,
that is, its final inventory is null.

Such a no-slack solution x defines in particular a subset B = {t|xt = C} of
periods, corresponding to the periods where the capacity constraint is saturated.
We will establish that conversely, each subset B defines a no-slack solution, and
that only a small number of subsets need to be considered to find an optimal
solution.

For a set B of periods, let us define A = {t | t /∈ B and (t+1) ∈ B}. Set A
is thus the set of periods immediately preceding a sequence of saturated periods.
If a period t belongs to A , by definition period (t+ 1) belongs to set B. Hence
we can define v(t) as the largest index such that t + 1, · · · , v(t) belongs to B.
We call set {t, · · · , v(t)} the block associated with a period t ∈ A . We denote

by Di,j ≡
∑j

t=i dt the demands to satisfy over the periods i upto j. For a given
set B of periods, we define the associated no-slack solution x(B, C) as follows:

xt(B, C) =

 C if t ∈ B
Dt,v(t) − (v(t)− t)C if t ∈ A
dt otherwise

We illustrate the definition of a no-slack solution on the following example.
We consider a planning horizon of 6 periods with demand d = (10, 12, 6, 20, 8, 14)
to satisfy. The no-slack solution x(B, C) associated with capacity C = 13.5 and
set B = {4, 6} is represented in Figure 1a. The full production periods (set B)
are represented in red and periods in set A are represented in grey. The network
flow representation of this solution is given in Figure 1b, where the saturated
arcs are represented by bold red arrows. In accordance with the definition of

9

x(B, C), there is no entering stock in periods {1, 2, 3, 5}. It is easy to see that
this solution is feasible and has a null ending stock level : It is also a dominant
solution.

(a) (b)

Figure 1: (a) The no-slack solution x(B, C) associated with capacity C = 13.5
and set B = {4, 6} and (b) Its network flow representation.

Notice that solution x(B, C) may be infeasible, since the production in a
period t /∈ B may exceed capacity C. It may also be feasible but not dominant
if it produces too much, for instance if C is a large value and set B = {1, . . . , T}.
However, if x(B, C) is dominant, that is, is feasible and produces exactly the
demand, we have the following property:

Property 1 If solution x(B, C) is a dominant no-slack solution, then it is an
optimal solution for the problem with capacity C.

Proof. Recall that c̃t represents the modified unit production cost after the
addition of the linear holding cost. Since unit production costs c̃t are non-
increasing, a solution producing “at latest” is clearly optimal. For short, let us
denote simply by x the solution x(B, C) and let Xt = x1 + · · ·+xt−1 denote its
cumulative production up to period t − 1. It is sufficient to prove that for any
feasible solution z, the cumulative production Zt is greater than or equal to Xt

for all periods. For a period t that does not belong to set B, this is immediate,
since st−1 = 0 implies that Xt = D1,t−1. For a period t ∈ B, let v be the last
period of its block. By construction, if v < T , we have sv = 0 since (v+ 1) does
not belong to set B. Notice that sv = 0 also holds if v = T , since we assume
that x is dominant. Hence, we have Xt+(v−t+1)C = D1,v. Flow conservation
imposes for any feasible solution that D1,v ≤ Zt+zt+· · ·+zv ≤ Zt+(v−t+1)C.
The result follows. �

Recall that we denote by OPT(C) the cost of an optimal solution relatively to
an installed capacity C. For a set B of periods, Property1 shows that OPT(C)
is realized by solution x(B, C) if it is dominant. Next property will allow us to
establish that OPT(C) is a piecewise concave function:

Property 2 Let B be a set of periods and [a, b] a real interval. If for all
capacities C in [a, b] the solution x(B, C) is dominant, then OPT(C) is concave
with respect to C over [a, b]. As a consequence, its minimum over [a, b] is reached
at one of the extremities of the interval.

10

Proof. Consider C and C ′ two capacities of interval [a, b]. Let x = x(B, C)
and x′ = x(B, C ′) be the solutions associated to C and C ′, respectively. Notice
that x and x′ differ only by their production in periods of set A ∪B. Precisely,
we have:

OPT(C ′)−OPT(C) = f(C ′)− f(C) +
∑

t∈A c̃t(x
′
t − xt) +

∑
t∈B c̃t(C

′ − C)

= f(C ′)− f(C) +
∑

t∈A

(
c̃t(v(t)− t)(C − C ′) +

∑v(t)
u=t+1 c̃u(C ′ − C)

)
= f(C ′)− f(C)− (C ′ − C)

∑
t∈A

∑v(t)
u=t+1(c̃t − c̃u)

The term
∑

t∈A

∑v(t)
u=t+1(c̃t − c̃u) is fixed for a given set B, which means

that the modified production costs vary linearly with C over [a, b]. Writing the
expression OPT(C ′)−OPT(C) for the particular value C = a, we obtain :

OPT (C ′) = OPT (a)− f(a) + f(C ′)− (C ′ − a)
∑
t∈A

v(t)∑
u=t+1

(c̃t − c̃u)

The quantity OPT (a)−f(a) being fixed, OPT is the sum of a concave function
and of a linear function and thus is itself a concave function. The result follows.
�

Next section describes how the capacity breakpoints of OPT (C) can be
found very efficiently.

4.3 Description of the algorithm

Our algorithm constructs a series of capacities C(1) ≥ C(2) ≥ · · · ≥ C(k) and
a series of subsets B(1) ⊂ B(2) ⊂ · · · ⊂ B(k) such that the no-slack solution
x(B(i), C(i)) is dominant for each capacity value in [C(i+1), C(i)]. The algorithm
stops when the first period is a full production period, that is, 1 ∈ B(k). We
claim that the capacity C(k) is then equal to the smallest capacity value, Cmin,
such that the problem is feasible. Indeed, a necessary and sufficient condition
for the problem with a capacity C to be feasible is that D1,t ≤ tC for all periods
t = 1, · · · , T . If a subset B contains the first period and solution x(B, C) is
feasible, then we have D1,v = vC for v = v(1). This implies that C = Cmin. As
a consequence, any capacity C admitting a feasible plan belongs to (at least)
one of the intervals [C(i+1), C(i)]. We will demonstrate that at most T different
capacities C(i) need to be considered, that is, k is bounded by T .

Let us define capacity C(1) = maxt{dt} and B(1) = {t|dt = C(1)}. Clearly
the no-slack solution associated with B(1) is dominant, and thus realizes OPT(C(1)).
Consider now that we have determined a capacity C(i) and a subset B(i) such
that x(B(i), C(i)) is dominant, and that 1 /∈ B(i) (otherwise the algorithm
stops). With immediate notation, we denote by A (i) the set of A periods asso-
ciated with B(i). We want to determine the smallest value C ≤ C(i) for which
x(B(i), C) is dominant. Consider a capacity C ≤ C(i). Using its definition,

11

solution x(B(i), C) is dominant if and only if the two following conditions hold:

(i) ∀t /∈ A (i) ∪B(i), C ≥ dt
(ii) ∀t ∈ A (i), C ≥ Dt,v(t)/|{t, . . . , v(t)}|

We define

C(i+1) = max

{
max

t/∈A (i)∪B(i)
dt, max

t∈A (i)

Dt,v(t)

|{t, . . . , v(t)}|

}
(6)

Notice that by construction, x(B(i), C(i+1)) is dominant. However, in this so-
lution, at least one period is both a full production period and a regeneration
period. That is, there exists a full production period not belonging to B(i). We
define:

B(i+1) = {t | x(B(i), C(i+1)) = C(i+1)}
By construction we have B(i) ⊂ B(i+1). As a consequence, set B(i) contains
at least i periods, and thus the algorithm stops after at most T steps. Since
each step can be performed in time O(T), determining the C(i)’s and the B(i)’s
takes O(T 2) time.

To output the optimal solution, we use Property 2. Since OPT(C) is concave
over each interval [C(i+1), C(i)], the optimal value is reached at one of the ca-
pacities {C(1), · · · , C(k)}. Notice that determining the optimal cost OPT(C(i))
for a given capacity can be performed in linear time O(T). Hence, the algorithm
runs in time complexity O(T 2). We can state the following theorem:

Theorem 1 An optimal solution OPT for the pure capacity acquisition problem
can be found in time O(T 2).

In case of a discrete capacity problem, where C is restricted to be a multi-
ple of U , we consider for each index i = 1, · · · , k the capacities bC(i)/UcU and
dC(i)/UeU . It represents at most 2k different values. Again, due to Property 2,
we can assert that the discrete capacity minimizing OPT(C) belongs to this set.
Evaluating all these 2k values to find the minimal value can be performed in
time complexity O(T 2).

In the next section we illustrate the idea of the algorithm on a simple exam-
ple.

4.4 Illustrative example

We consider the same instance as in Figures 1a and 1b : we have 6 periods with
demand d = (10, 12, 6, 20, 8, 14) to satisfy. In the Figures 2 to 6 below, we have
represented the optimal policy related with the current capacity C. We used
different colors to distinguish periods belonging to A or B: A red rectangle
corresponds to a period in B (saturated periods), a grey rectangle corresponds
to a period in A . Other periods are represented by white rectangles. Notice
that for these periods the production is equal to the demand. Finally, the red
circles indicate the periods that are saturated but not yet in the current set B.
Note that those periods will enter set B in the next step.

12

First step (i = 1)

The algorithm starts with an empty set B and finds the first capacity C(1) to
consider, which corresponds to the highest demand in period 4, here C(1) =
maxt{dt} = 20. By construction, period 4 is saturated (red circle in Figure 2)
and it enters set B. Thus, we have B(1) = {4}. Clearly x(B(1), C(1)) is
dominant (hence optimal for C(1)).

Figure 2: First step (i=1): Search
of C(1) and B(1)

Figure 3: Second step (i=2): Search
of C(2) and B(2)

Second step (i = 2)

We search now the lowest capacity C(2) ≤ C(1) for which solution x(B(1), C(2))
is dominant. We compute C(2) using Equation (6). Note that A (1) = {3}. We
obtain:

C(2) = max

{
max

t/∈{3}∪{4}
dt,

D3,4

4− 3 + 1

}
= max

{
14,

26

2

}
= 14

This value corresponds to the demand of period 6, hence, the new capacity C(2)

is obtained by hitting the second highest demand. See Figure 3. The new B(2)

is thus B(2) = B(1) ∪ {6} = {4, 6}.

Third step (i = 3)

Again, using Equation (6), we find C(3) = max
{

12,max
{

26
2 ,

22
2

}}
= 13. This

time, a period of set A (2) becomes saturated, here, period 3 (red circle in
Figure 4). Hence, B(3) = B(2) ∪ {3} = {3, 4, 6}.

Fourth step (i = 4)

C(4) = max
{

12,max
{

38
3 ,

22
2

}}
= 12.66. Period 2 in set A (3) becomes saturated

(red circle in Figure 5). Thus, B(4) = B(3) ∪ {2} = {2, 3, 4, 6}.

13

Figure 4: Third step (i=3): Search
of C(3) and B(3)

Figure 5: Fourth step (i=4): Search
of C(4) and B(4)

Fifth step (i = 5)

C(5) = max
{

10,max
{

48
4 ,

22
2

}}
= 12 and B(5) = B(4) ∪ {1} = {1, 2, 3, 4, 6}.

Notice that period {1} enters set B, which stops the algorithm. No feasible
solution exists for a lower capacity. See Figure 6. The optimal value is thus
reached for one of the following capacities C ∈ {12, 12.66, 13, 14, 20}.

Figure 6: Fifth step (i=5): Search of C(5) and B(5)

In the next section, we generalize this algorithm to energy-LSP when only
one of the energy consumption parameter is null. We also show that it can be
implemented to run in time complexity O(T log T).

5 Polynomial time algorithms for energy-LSP

In this section we extend the algorithm presented for the pure capacity acquisi-
tion problem and give two polynomial time algorithms, for the cases when one
of the consumption energy parameters of our model, either start-ups or unit
production, is time-varying and the other is negligible. In both cases, we show
that the problem is equivalent to a capacity acquisition problem with additional
production restrictions. That is, in addition to the nominal capacity C to be
acquired, in each period t we also have a restriction on the production quantity,
due to the limited energy availability. We will call this limitation Ft. Hence,
in each period t, the production is limited by the minimum between C and Ft.
We show that with null setup costs and under non-speculative motive, we can
find the nominal capacity C to install and the optimal production plan in time

14

O(T 2), using the same approach as the one presented in the previous section
for the pure capacity acquisition problem.

5.1 Case with w = 0, pt > 0, Et > 0: Production energy
consumption

We consider that the unit energy consumption pt and the available energy Et

may vary from one period to another and that the energy needed to start a
machine is negligible, that is, wt = 0 for all periods t. Hence, whatever the
installed capacity C, i.e. whatever the number of machines started up in period
1, the production quantity xt in period t is limited by Et/pt. We thus have
to decide on a nominal capacity C for the system, that is on the number of
machines to start at period 1, and on a production plan where the production
quantities comply with the restrictions imposed by both the installed capacity
C and the energy availability Et/pt. In case the acquisition cost function f
is concave in C, the resulting problem can be seen as a capacity acquisition
problem with additional production restrictions Ft ≡ Et

pt
.

5.2 Case with p = 0, wt > 0, Et > 0: Start-up energy
consumption

We now assume that the start-up of a machine is the operation requiring the
greatest amount of energy (think for instance of furnaces), and that unit pro-
duction energy consumption is negligible compared to it. More precisely, we
consider that the start-up energy consumption wt and the available amount of
energy Et are time-varying, and that the unit production energy consumption
is null for all periods t. This problem seems to significantly differ from prob-
lems described in Sections 4 and 5.1 since it may not be possible to install the
nominal capacity C, i.e. to start all the machines needed, in the first period of
the planning horizon due to the energy constraints.

However, under the assumption of a linear acquisition cost f , that is, if
f(C) = fC, the problem can be seen as a special case of the problem described
in 5.1. For the ease of the discussion, we focus on the discrete capacity case, that
is, when we have to choose the number m+

t of machines to start in each period.
Since the production energy consumption is null and the acquisition cost f is
linear and stationary, it is dominant to start as many machines as possible in
each period, till the desired nominal capacity of the system is obtained. In a
period t, we can start at most bEt/wtc machines. We define:

Nt =

t∑
u=1

bEu/wuc

Clearly, in any solution, at most Nt machines can be available for production
in period t. Hence xt ≤ UNt is a dominant inequality for the problem, that
is, production in period t is limited by Ft = UNt. Again, we have a capacity
acquisition problem with additional production restrictions Ft.

15

5.3 Extension of the pure capacity acquisition algorithm

We consider the capacity acquisition problem with additional production capac-
ities Ft. These additional capacities are imposed by the energy parameters, as
explained in 5.1 and 5.2. As a consequence, in each period t, the production
is limited by Ct ≡ min{C,Ft}. Notice that this production capacity is time-
varying. We show how the algorithm described in Section 4 can be adapted to
deal with these additional constraints. As in the previous section, we assume
null setup costs, non-speculative motive, and a stationary and concave acquisi-
tion cost function f(). Recall that for start-up energy consumption parameters,
the acquisition function is restricted to be linear, see Section 5.2.

Again, we start by considering the case of a continuous nominal capacity:
C can be any real positive value. To deal with the time-dependent capacities
Ct = min{C,Ft}, we extend the definition of the no-slack solution x(B, C) given
in the previous section as follows:

xt(B, C) =


Ct if t ∈ B

Dt,v(t) −
∑v(t)

u=t+1 Cu if t ∈ A
dt otherwise.

It is easy to check that Property 1 still holds with this definition for our case
of energy-LSP. To extend Property 2 to Property 3 below, we need the notion
of F−interval. For a given nominal capacity C, we define F (C) = {t|Ft <
C} as the set of periods whose capacity is limited by Ft. Let us denote by
F (1) ≤ · · · ≤ F (l) the l ≤ T distinct values appearing in set F . We also add
the dummy value F (0) = 0. We call an F−interval a real interval of the form
[F (j), F (j+1)]. Notice that set F (C) does not change inside an F−interval. We
have the following property:

Property 3 Let [a, b] be an interval included in an F−interval. If there exists
a set B of periods such that x(B, C) is dominant for all capacities C in [a, b],
then OPT(C) is concave with C over [a, b]. As a consequence, the minimum of
OPT(C) over [a, b] is reached at one of the extremities of the interval.

Proof. Consider C and C ′ two capacities of interval [a, b]. Let x = x(B, C) and
x′ = x(B, C ′) be the solutions associated to C and C ′, respectively. Notice that
x and x′ differ only by their production in periods of sets A and B. Precisely
we have:

OPT(C ′)−OPT(C) = f(C ′)− f(C) +
∑

t∈A c̃t(x
′
t − xt) +

∑
t∈B c̃t(C

′
t − Ct)

= f(C ′)− f(C) +
∑

t∈A

(
c̃t
∑v(t)

u=t+1(Cu − C ′u) +
∑v(t)

u=t+1 c̃u(C ′u − Cu)
)

= f(C ′)− f(C) +
∑

t∈A

∑v(t)
u=t+1(c̃t − c̃u)(Cu − C ′u)

= f(C ′)− f(C) +
∑

t∈A

∑v(t)
u=t+1(c̃t − c̃u)(min{C,Fu} −min{C ′, Fu})

Now, since [a, b] is included in an F−interval, we have the same set of
periods where the capacity is limited by Fu for C and C ′. More precisely,

16

Cu ≡ min{C,Fu} is equal to Fu if period u belongs to F (b), and to C other-
wise. Hence, we can write that:

OPT(C ′)−OPT(C) = f(C ′)− f(C)− (C ′ − C)
∑

t∈A

∑
u∈{t,...,v(t)}\F(b)(c̃t − c̃u)

Hence, OPT is the sum of a concave function and of a term which varies linearly
with C. It is thus a concave function with respect to the capacities over the
interval [a, b]. �

In the same way as in Section 4, our algorithm constructs a series of capac-
ities C(1) > C(2) > · · · > C(k) and a series of subsets B(1) ⊆ B(2) ⊆ · · · ⊆ B(k)

such that the no-slack solution associated with B(i) is dominant for any capac-
ity in [C(i+1), C(i)]. However, contrary to the algorithm for the pure acquisition
problem, we can not assert that B(i) is a strict subset of B(i+1). But we will
prove the invariant that, either B(i) ⊂ B(i+1), or C(i+1) does not belong to the
same F -interval as C(i). It will allow us to establish that k ≤ 2T , that is, at
most 2T different capacities C(i) need to be considered.

To avoid straightforward cases, we assume that a feasible solution exists if
C ≥ maxt{Ft}. We can compute an initial no-slack optimal solution x(0) for ca-
pacities (Ft)t=1,···,T in time O(T) using a simple backward algorithm to shift the
demands. If St denotes the amount of demand which has to be shifted backward
(i.e. whose production should be anticipated) due to the limited production ca-

pacity, then for all period t = 1, . . . , T , we have x
(0)
t = min(St+1 + dt;Ft) and

St = St+1 + dt − xt, initializing the backward computation with ST+1 = 0.

Let us define capacity C(1) = maxt{x(0)t } and B(1) = {t|x(0)t = min{Ft, C
(1)}}.

Hence x(0) is the no-slack solution associated with set B(1), and by construction
it is optimal for capacity C = C(1) and its value is equal to OPT(C(1)).

Consider now that we have determined a capacity C(i) and a subset B(i)

such that x(B(i), C(i)) is dominant, and that 1 /∈ B(i). Using the same approach
as in Section 4, we want to determine the smallest value C ≤ C(i) for which
x(B(i), C) is dominant. For a capacity C ≤ C(i), solution x(B(i), C) is dominant
if and only if the two following conditions hold:

(i) ∀t /∈ A (i) ∪B(i) min{C,Ft} ≥ dt
(ii) ∀t ∈ A (i) min{C,Ft} ≥ Dt,v(t) −

∑v(t)
u=t+1 min{C,Fu}

To determine C, we strengthen our requirement by imposing that C must
be in the same F -interval as C(i). Let us define F̂ (i) = maxt{Ft|Ft < C(i)}. By
convention, we let F̂ (i) = 0 if all the additional capacities Ft are greater than or
equal to C(i). Clearly, interval [F̂ (i), C(i)] is included in an F−interval. Inside
this interval, solution x(B(i), C) remains dominant if and only if:

(C1) ∀t /∈ A (i) ∪B(i) C ≥ dt
(C2) ∀t ∈ A (i)

∑v(t)
u=t min{C,Fu} ≥ Dt,v(t)

(C3) C ≥ F̂ (i)

17

Namely, note that, as x(B(i), C(i)) is a feasible solution, we have: dt ≤ Ft ≤
C(i) for all periods t s.t. t /∈ A (i)∪B(i) and t ∈ F (C(i)). By construction, C is
restricted to stay within the same F -interval as C(i) so that F (C) = F (C(i)).
We thus have dt ≤ Ft ≤ C for all periods t s.t. t /∈ A (i) ∪B(i) and t ∈ F (C).
Hence, whatever the value of C ≥ F̂ (i), condition (i) holds for the periods
t /∈ A (i) ∪B(i) s.t. min(C,Ft) = Ft. It can thus be simplified into condition
(C1).

Moreover, observe that min{C,Fu} is equal to Fu if u ∈ F (C(i)) and to C
otherwise. Hence condition (C2) can be rewritten for a period t ∈ A (i) as:∑

u∈{t,...,v(t)}\F(C(i))

C ≥ Dt,v(t) −
∑

u∈{t,...,v(t)}∩F(C(i))

Fu

Notice that if Fu < C(i) for all the periods u of a block {t, . . . , v(t)}, certainly
solution x(B(i), C) remains dominant for any capacity C ≥ F̂ (i). Also, the right
hand side of the previous inequality must be negative in this case. With the
convention that the ratio of a negative number divided by 0 is equal to −∞, we
define:

C(i+1) = max

{
max

t/∈A∪B
dt, max

t∈A

Dt,v(t) −
∑

u∈{t,...,v(t)}:Ft<C(i) Fu

|{u ∈ {t, . . . , v(t)} : C(i) ≤ Ft}|
, max

t
{Ft | Ft < C(i)}

}
(7)

By construction, x(B(i), C(i+1)) is dominant. We define:

B(i+1) = {t | xt(Bi, C
(i+1)) = min(Ft, C

(i+1))}

That is, B(i+1) is constituted of the periods producing at full capacity in solution
x(B(i), C(i+1)). By construction we have Bi ⊆ Bi+1. We have two possible
situations, depending on which inequality (C1), (C2) or (C3) is saturated by
C(i+1):

• Either C(i+1) = F̂ (i). It implies that F̂ (i+1) < F̂ (i).

• Otherwise, in solution x(B(i), C(i+1)), at least one period is both a full
production period and a regeneration period. That is, there exists a full
production period not belonging to B(i). It implies that |B(i+1)| > |B(i)|.

Since a set B can contain at most T periods and there are at most T distinct
values Ft, the algorithm stops after at most 2T steps. Since each step can be
performed in time O(T), determining the C(i)’s and the B(i)’s takes O(T 2) time.

To output the optimal solution, we use Property 3. By construction, each
capacity interval [C(i+1), C(i)] is included in an F−interval, and x(B(i), C) is
dominant for any capacity C ∈ [C(i+1), C(i)]. As a consequence, for a contin-
uous nominal capacity, the optimal value is reached at one of the capacities
{C(1), · · · , C(k)}. Notice that determining the optimal cost OPT(C(i)) for a
given capacity can be performed in linear time O(T). Hence, the algorithm

18

runs in time complexity O(T 2). In Appendix, we show that this algorithm
can be implemented to run in time complexity O(T log T) using efficient data
structures. We have the following theorem:

Theorem 2 An optimal solution can be found in time O(T log T) for energy-
LSP with either null start-up energy consumption and concave start-up costs f()
or null unit production energy consumption and linear start-up costs f(). The
algorithm requires at most O(T) evaluations of function f().

In case of a discrete capacity problem, where C is restricted to be a multiple
of U , we consider for each index i = 1, · · · , k the capacities bC(i)/UcU and
dC(i)/UeU . It represents at most 4T different values. Again, due to Property 3,
we can assert that the discrete capacity minimizing OPT(C) belongs to this set.
Evaluating all these 2k values to find the minimal value can be performed in
time complexity O(T) as all the breakpoints of OPT(C) are already computed.
Hence, the complexity of the algorithm is not modified in the discrete capacity
case.

6 Extension to more general start-up cost func-
tions

In this section, we show that the algorithms presented in this paper can be eas-
ily adapted, by slightly increasing their time complexity, to deal with the case
where the start-up (capacity acquisition) cost function f is convex, or more
generally, is a piecewise function, with a mix of convex and concave pieces. We
restrict this discussion to the case of discrete capacities, that is, the admissible
values of C belong to set {0, U, 2U, . . . ,MU}, where M is an input and rep-
resents the maximal number of available machines. Several real applications
can motivate the use of convex start-up cost function. For instance, when the
existing capacity in a shop floor is not enough to cover the excess demand, it
may be necessary to call for external or remote resources. Those resources are
typically more costly due to the supplementary costs of transportation, material
handling, and the spot market costs. Another possible application corresponds
to capacity reservation contracts, where a certain capacity is reserved a priori at
the supplier to obtain a more advantageous price. Once this level is exceeded,
the cost to acquire additional capacities become more expensive.

Consider first the case where the start-up cost function f is a convex func-
tion of C. In the previous sections, f was assumed to be concave, and, as a
consequence, the optimal cost OPT(C) was a piecewise concave function of the
installed capacity C. Looking at the proof of Property 3, we know that on each
interval [C(i+1), C(i)], the optimum cost OPT(C) is of the form f(C)+(αC+β),
that is, we add an affine term to function f . Since the sum of two convex func-
tions is a convex function, we have now that OPT(C) is a piecewise convex
function, whose breakpoints are the capacities C(i) determined by our algo-
rithm. The only difference is that we can not assert that the optimum of

19

OPT(C) is realized at one of its breakpoints. However, since a convex func-
tion is in particular unimodal, we can use a Ternary Search algorithm (see [?])
to find the minimum value of OPT(C) on each interval [C(i+1), C(i)]. Ternary
Search algorithm is a divide & conquer algorithm, similar to a Binary Search for
monotonic functions, except that the search domain is divided into three pieces,
and at each step the domain is reduced by at least one third. Note that the
running time of a Ternary Search algorithm when restricted to integer values is
in O(log l+1) on an interval containing l integers. Hence, OPT(C) can be deter-
mined on each interval [C(i+1), C(i)] in O(logM) operations. As a consequence,
the overall time complexity of the algorithm is in O(T (log T + logM)), where
the first term O(T log T) corresponds to the determination of the breakpoints
C(i), and the second term O(T logM) corresponds to finding the optimum value
OPT. Hence the time complexity is only slightly increased. However, notice
that the number of evaluations of function f is now in O(T logM), while the
number of evaluations is linear for concave functions, see Theorem 2.

Now, let us consider a more general case where f is a piecewise function of
C, where each piece is either concave or convex. Let R be the number of pieces
and {b0, b1, ..., bR} be the set of corresponding breakpoints. We assume in the
following that the list b1 ≤ ... ≤ bR of its breakpoints are given in the inputs in
the description of f . We also assume that on each interval, f can be evaluated,
possibly through an oracle, in constant time O(1). As already discussed in
Section 5, OPT (C) is the sum of the start-up costs given by the piecewise
function f plus the production and inventory costs, which are a piecewise linear
function of the installed capacity. This can be exploited in order to find the
optimal solution in polynomial time thanks to the following algorithm:

• Step 1. Use the algorithm described in Section 5 to identify the set of
capacities C(1), . . . , C(k) where the block structure of the production plan
changes, that is, the set of breakpoints of the production/inventory holding
cost function, together with the values OPT(C(1)), . . ., OPT(C(k)). This
step can be performed in time O(T log T), and is independent of the start-
up cost function f .

• Step 2. Merge all the breakpoints {C(1), ...C(k)} and {b1, ..., bR} to obtain
an ordered list a0, ..., ar, ..., al. Since we assume that both the C(i)’s and
the bj ’s are indexed in non-decreasing order, this can be done in linear
time O(T +R)

• Step 3. On each interval [aj , aj+1], OPT(C) is either convex or concave
(depending if f itself is either convex or concave). Since each interval
[aj , aj+1] is included by construction in an interval [C(i), C(i+1)] for some
index i, we can evaluate OPT(C) in constant time using the expression :

OPT(C) = f(C)+OPT (C(i))−f(C(i))+
OPT(C(i+1))−OPT (C(i))

C(i+1) − C(i)
(C−C(i))

20

Hence the optimum on each interval can be determined in time complex-
ity O(1) if f is concave on the interval, and in time complexity at most
O(logM) if f is convex, using a Ternary Search algorithm.

• Step 4. Output the best value found in the course of the algorithm.

The overall time complexity of the algorithm is dominated by Steps 1 and
3 and is in O(T log T + l logM), with l the number of breakpoints to consider,
which is bounded by (T + R), and by M , since intervals that do not contain
an integer can be ignored. Hence, if M ≥ T + R, the time complexity is
in O((T + R) logM). Conversely, if M ≤ T + R, the time complexity is in
O(T log T + R logM). Notice that if f is piecewise concave, that is, without
convex pieces, then the complexity of the algorithm is reduced to O(T log T+R).

7 Conclusion and perspectives

In this paper we studied a single-item lot sizing problem integrated with en-
ergy consumption constraints. We showed that, without energy parameters,
the associated problem becomes a pure capacity acquisition problem, as stated
in Atamtürk and Hochbaum [Atamtürk and Hochbaum, 2001], but without the
subcontracting option. We developed an original solution approach and pro-
posed an O(T log T) time algorithm to solve this problem. The same algorithm
can be easily extended to some special cases of energy-LSP, with only one non
null energy parameter, without altering its time complexity. This algorithm
allows to tackle with quite general acquisition cost functions as well, such as
concave, convex, or piecewise functions with a mix of concave and convex pieces,
by slightly modifying its computational complexity.

We note that the same integrated energy & lot sizing problem can also be
seen in the context of a carbon cap to not exceed in each period, and the start-up
& production activities that emit carbon units. Another possible application
is a certain limited manpower to not exceed in each period, together with a
capacity limitation of parallel resources. Notice that the common property
of those systems is the existence of a non-storable and periodical capacitated
resources.

Among the possible research perspectives of this work, one can investigate
whether our approach can be successfully extended to the capacity acquisition
problem with subcontracting option or to more general cost structure, keeping
a low resolution time complexity. Regarding the energy-LSP problem, one open
question is the existence and the design of a polynomial time algorithm for the
case with both positive start-up and production energy consumption. Another
extension of the model would be to consider that a started machine consumes
energy not only while actively producing but also while being idle.

21

Acknowledgments.

This project was supported by Conseil Régional de Lorraine (2015-2016). We
are grateful to the anonymous referees, whose comments helped to improve the
presentation of this paper.

References

[Almada-Lobo et al., 2010] Almada-Lobo, B., Klabjan, D., Carravilla, M. A.,
and Oliveira, J. F. (2010). Multiple machine continuous setup lotsizing with
sequence-dependent setups. Computational Optimization and Applications,
47(3):529–552.

[Artigues et al., 2013] Artigues, C., Lopez, P., and Häıt, A. (2013). The en-
ergy scheduling problem: Industrial case-study and constraint propagation
techniques. International Journal of Production Economics, 143(1):13 – 23.

[Atamtürk and Hochbaum, 2001] Atamtürk, A. and Hochbaum, D. S. (2001).
Capacity acquisition, subcontracting, and lot sizing. Management Science,
47(8):1081–1100.

[Biel and Glock, 2016] Biel, K. and Glock, C. H. (2016). Systematic literature
review of decision support models for energy-efficient production planning.
Computers and Industrial Engineering, 101:243 – 259.

[Bitran and Yanasse, 1982] Bitran, G. R. and Yanasse, H. H. (1982). Computa-
tional complexity of the capacitated lot size problem. Management Science,
28(10):1174–1186.

[Bruzzone et al., 2012] Bruzzone, A., Anghinolfi, D., Paolucci, M., and Tonelli,
F. (2012). Energy-aware scheduling for improving manufacturing process
sustainability: A mathematical model for flexible flow shops. {CIRP} Annals
- Manufacturing Technology, 61(1):459 – 462.

[Castro et al., 2013] Castro, P. M., Sun, L., and Harjunkoski, I. (2013).
Resource-task network formulations for industrial demand side management
of a steel plant. Industrial & Engineering Chemistry Research, 52(36):13046–
13058.

[Chen et al., 2005] Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang,
Q., and Gautam, N. (2005). Managing server energy and operationnal costs in
hosting centers. In Proceedings of the 2005 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computers Systems, pages 303–
314, Banff, Alberta, Canada.

[Dastidar and Nagi, 2005] Dastidar, S. G. and Nagi, R. (2005). Schedul-
ing injection molding operations with multiple resource constraints and se-
quence dependent setup times and costs. Computers & Operations Research,
32(11):2987 – 3005.

22

[de Matta and Guignard, 1994] de Matta, R. and Guignard, M. (1994). Dy-
namic production scheduling for a process industry. Operations Research,
42(3):492–503.

[Florian et al., 1980] Florian, M., Lenstra, J. K., and Rinnooy Kan, A. H. G.
(1980). Deterministic production planning: Algorithms and complexity. Man-
agement Science, 26(7):669–679.

[Gahm et al., 2016] Gahm, C., Denz, F., Dirr, M., and Tuma, A. (2016).
Energy-efficient scheduling in manufacturing companies: A review and re-
search framework. European Journal of Operational Research, 248(3):744 –
757.

[Heck and Schmidt, 2010] Heck, M. and Schmidt, G. (2010). Lot-Size Plan-
ning with Non-linear Cost Functions Supporting Environmental Sustainabil-
ity, pages 1–6. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Jans, 2009] Jans, R. (2009). Solving lot-sizing problems on parallel identical
machines using symmetry-breaking constraints. INFORMS Journal on Com-
puting, 21(1):123–136.

[Jans and Degraeve, 2004] Jans, R. and Degraeve, Z. (2004). An industrial ex-
tension of the discrete lot-sizing and scheduling problem. IIE Transactions,
36(1):47–58.

[Jans and Degraeve, 2008] Jans, R. and Degraeve, Z. (2008). Modeling indus-
trial lot sizing problems: a review. International Journal of Production Re-
search, 46(6):1619–1643.

[Kaczmarczyk, 2011] Kaczmarczyk, W. (2011). Proportional lot-sizing and
scheduling problem with identical parallel machines. International Journal of
Production Research, 49(9):2605–2623.

[Karmarkar and Schrage, 1985] Karmarkar, U. S. and Schrage, L. (1985).
The deterministic dynamic product cycling problem. Operations Research,
33(2):326 – 345.

[Lasdon and Terjung, 1971] Lasdon, L. S. and Terjung, R. C. (1971). An effi-
cient algorithm for multi-item scheduling. Operations Research, 19(4):946–
969.

[Li and Meissner, 2011] Li, H. and Meissner, J. (2011). Capacitated dynamic
lot sizing with capacity acquisition. International Journal of Production Re-
search, 49(16):4945–4963.

[Marinelli et al., 2007] Marinelli, F., Nenni, M. E., and Sforza, A. (2007). Ca-
pacitated lot sizing and scheduling with parallel machines and shared buffers:
A case study in a packaging company. Annals of Operations Research,
150(1):177–192.

23

[Mart́ınez-Costa et al., 2014] Mart́ınez-Costa, C., Mas-Machuca, M., Benedito,
E., and Corominas, A. (2014). A review of mathematical programming models
for strategic capacity planning in manufacturing. International Journal of
Production Economics, 153:66 – 85.

[Masmoudi et al., 2017] Masmoudi, O., Yalaoui, A., Ouazene, Y., and Chehade,
H. (2017). Lot-sizing in a multi-stage flow line production system with en-
ergy consideration. International Journal of Production Research, 55(6):1640–
1663.

[Mitra et al., 2012] Mitra, S., Grossmann, I. E., Pinto, J. M., and Arora, N.
(2012). Optimal production planning under time-sensitive electricity prices
for continuous power-intensive processes. Computers and Chemical Engineer-
ing, 38:171 – 184.

[Mitrani, 2013] Mitrani, I. (2013). Managing performance and power consump-
tion in a server farm. Annals of Operations Research, 202:121–134.

[Özdamar and Birbil, 1999] Özdamar, L. and Birbil, S. I. (1999). A hierarchical
planning system for energy intensive production environments. International
Journal of Production Economics, 58(2):115 – 129.

[Paulus and Borggrefe, 2011] Paulus, M. and Borggrefe, F. (2011). The poten-
tial of demand-side management in energy-intensive industries for electricity
markets in germany. Applied Energy, 88(2):432 – 441. The 5th Dubrovnik
Conference on Sustainable Development of Energy, Water and Environment
Systems, held in Dubrovnik September/October 2009.

[Pochet and Wolsey, 2006] Pochet, Y. and Wolsey, L. A. (2006). Production
Planning by Mixed Integer Programming. Springer.

[Salonitis and Ball, 2013] Salonitis, K. and Ball, P. (2013). Energy efficient
manufacturing from machine tools to manufacturing systems. Procedia CIRP,
7:634 – 639.

[Santos and Almada-Lobo, 2012] Santos, M. O. and Almada-Lobo, B. (2012).
Integrated pulp and paper mill planning and scheduling. Computers & In-
dustrial Engineering, 63(1):1 – 12.

[Sawik, 2009] Sawik, T. (2009). Coordinated supply chain scheduling. Interna-
tional Journal of Production Economics, 120(2):437 – 451. Special Issue on
Introduction to Design and Analysis of Production Systems.

[Schultz et al., 2015] Schultz, C., Sellmaier, P., and Reinhart, G. (2015). An
approach for energy-oriented production control using energy flexibility. Pro-
cedia {CIRP}, 29:197 – 202. The 22nd {CIRP} Conference on Life Cycle
Engineering.

24

[Shoreh et al., 2016] Shoreh, M. H., Siano, P., Shafie-khah, M., Loia, V., and
CatalÃ£o, J. P. (2016). A survey of industrial applications of demand re-
sponse. Electric Power Systems Research, 141:31 – 49.

[Tang et al., 2012] Tang, L., Che, P., and Liu, J. (2012). A stochastic pro-
duction planning problem with nonlinear cost. Computers & Operations Re-
search, 39(9):1977 – 1987.

[Uzel, 2004] Uzel, E. (2004). A mathematical modeling approach to energy
cost saving in a manufacturing plant. Master’s thesis, Izmir Institute of
Technology.

[Wagner and Whitin, 1958] Wagner, H. M. and Whitin, T. M. (1958). Dynamic
version of the economic lot size model. Management Science, 5(1):89–96.

[Waldemarsson et al., 2013] Waldemarsson, M., Lidestam, H., and Rudberg, M.
(2013). Including energy in supply chain planning at a pulp company. Applied
Energy, 112:1056 – 1065.

[Zhao et al., 2016] Zhao, H., Ierapetritou, M. G., and Rong, G. (2016). Produc-
tion planning optimization of an ethylene plant considering process operation
and energy utilization. Computers & Chemical Engineering, 87:1 – 12.

Appendix: Improvement of the time complexity

We show in this appendix that the algorithm described in Section 4 and 5 can
be implemented to run in time complexity O(T log T), as stated in Theorem 2.

We focus on how determining OPT(C). Recall that OPT(C) is a (continu-
ous) piecewise concave function with k ≤ 2T breakpoints, C(1) ≥ C(2) ≥ . . . ≥
C(k). As a consequence, the optimum is realized at one of the breakpoints, and
thus it suffices to evaluate OPT(C(i)) for i = 1, . . . , k, where k is the number of
step of the algorithm. We will establish that the breakpoints C(i)’s can be de-
termined in overall complexity O(T log T) using efficient data structures. Notice
that evaluating an optimal solution for a given capacity C can be performed in
linear time. However, as we may have up to 2T values to evaluate in the course
of the algorithm, it is still a too large computational effort. Instead, we com-
pute the optimal cost OPT(C(i+1)) incrementally from the value of OPT(C(i)).
As established in Property 3, the optimum value OPT(C) is concave on each
interval [C(i+1), C(i)]. More precisely, let us denote by α(i) the quantity:

α(i) =
∑

t∈A (i)

∑
u∈{t,...,v(t)}:C(i)≤Fu

(c̃t − c̃u)

Then, following the proof of Property 3, we have:

OPT(C(i+1)) = OPT(C(i)) + f(C(i+1))− f(C(i)) + α(i)(C(i+1) − C(i))

25

As a consequence, value OPT(C(i+1)) can be computed in constant time, if
OPT(C(i)) and the slope α(i) are known.

We now show how these different values can be updated at each step of the
algorithm. For a given set B, recall that a block is a set of consecutive periods
{t, . . . , v} such that t ∈ A and v = v(t). This corresponds to a subplan of
the associated no-slack solution. We maintain in an array all the blocks of the
current set B. Initially, there is one block for each single period. In addition,
each period refers to the block where it belongs to, simply by using an index. For
a current capacity C and a current set B, each block B contains the following
data:

• Its first and last periods, t(B) and v(B), respectively.

• D(B), the total demand of the periods of the block, that is,
∑

t∈B dt.

• F (B), defined as
∑

u∈B:Fu<C Fu if set {u ∈ B : Fu < C} is not empty,
and 0 otherwise.

• Its pseudo-cost c̃(B), defined as
∑

u∈B:C≤Fu
c̃u if set {u ∈ B : C ≤ Fu} is

not empty, and 0 otherwise.

• Its pseudo-size n(B), defined as |{u ∈ B : C ≤ Fu}|, that is, the number
of periods of the block with an additional capacity Ft being greater than
or equal to the nominal capacity C. By convention, |∅| = 0.

We need these different quantities in order to be able to update efficiently the
slope α(i) of the current no-slack solution. Consider a block B and let t = t(B)
be its first period. If period t ∈ A (i), then B = {t, . . . , v(t)} and we have:∑

u∈{t,...,v(t)}:C(i)≤Fu

(c̃t − c̃u) = n(B)c̃t − c̃(B)

If period t does not belong to set A (i), then B = {t}, that is, t is a lot for lot
period where demand dt is produced. In this case, we clearly have n(B)c̃t −
c̃(B) = 0. Hence, we can rewrite the slope α(i) as:

α(i) =
∑

B:B a block of B(i)

(
n(B)c̃t(B) − c̃(B)

)
Now, consider a step of the algorithm. Suppose that we have found the

current breakpoint C(i). Finding the next breakpoint consists in:

(i) Determining C(i+1) according to Equation (7)

(ii) Updating the blocks of the new set B(i+1)

(iii) Evaluating OPT(C(i+1))

26

As step (iii) can be computed in constant time, we focus on the two first
steps.

For the first step (i), we need to find the largest value of C saturating one
of the constraints (C1), (C2) or (C3), see Equation (7). For constraints (C1)
and (C3), we can sort via a precomputation phase all the Ft and dt values
in non-increasing order. This precomputation phase can be performed in time
O(T log T). During the execution of the algorithm, we maintain an index of the
current position in each of the arrays. Clearly, at each step, we can find the next
Ft value lower than C(i) in constant time. Recall that each period stores the
block it belongs to, and hence can be determined in constant time if it belongs
to the current set A (i) or B(i) (by comparing its index with the values t(B) and
v(B) of its block). From the current position in the sorted array of dt values, we
scan the array until we encounter a period not in the current set A (i) or B(i).
Notice that it may require up to O(T) operations. Nevertheless, since a period
entering A ∪B does not leave this set in the following steps of the algorithm,
each period is scaned only once. Hence the overall time complexity is in O(T).
Finally, if C(i+1) saturates constraint (C2), we need to determine the largest
value of:

et ≡
Dt,v(t) −

∑
u∈{t,...,v(t)}:Ft<C(i) Fu

|{u ∈ {t, . . . , v(t)} : C(i) ≤ Ft}|

over all the periods t ∈ A (i). Notice that et is also equal, with our notations,
to:

et =
D(B)− F (B)

n(B)

with B = {t, . . . , v(t)} being the block beginning at period t. We note that for
a given block B, value et does not change if capacity C remains in the same
F -interval. Hence, at each step, we need to retrieve the largest value et and
to update (delete and re-insert) at most one et, corresponding to the block up-
dated in the current set B. In order to maintain the et values of the blocks in
a data structure H, we can use for instance a heap or a balanced binary tree
such that these operations can be performed in logarithmic time in the number
of elements in the structure. Notice that the number of periods of A is at most
T , and thus each operation can be performed in time complexity O(log T). In
conclusion, step (i) of the algorithm requires O(T log T) operations in total.

For the second step (ii), we need to update the blocks of the current set
B(i+1). We distinguish 3 cases depending which constraint (C1), (C2) or (C3)
has been saturated by C(i+1):

Case 1. Constraint (C1) is saturated. Let t be a period not in A (i)∪B(i) such that
dt = C(i+1). In this case period t belongs to the current solution B(i+1).
This corresponds to the merge of the block B = {t} with its preceding
block B′ = {t(B′), . . . , t − 1}. Block B′ can be found in constant time,
since period (t− 1) keeps track of its index. Merging B and B′ into a new

27

block B′′ = {t(B′), . . . , v(B)} can be done in constant time, since each
attribute (F (B′′), n(B′′), . . .) can be easily deduced from the attributes
of blocks B and B′. In order to update the new belonging of each period
of B′′ to this block, we chose to index B′′ with the index of B′, such that
only period t needs to be updated.

Case 2. Constraint (C2) is saturated. Let t be a period in A (i) such that et =
C(i+1). We are in a situation similar to the previous case when constraint
(C1) was saturated: this corresponds to the merge of the block B =
{t, . . . , v(t)} with its preceding block B′ = {t(B′), . . . , t−1}. We have the
same operations to perform. However, updating the index of its block for
each period of B′′ may now be the most costly part, since both B and
B′ may be large sets of periods. For that, we choose for the index of B′′

the index of the largest block between B and B′, such that we need to
reindex only the periods of the smallest block. Of course, we may still
have up to O(T) periods to reindex. However, we claim that the overall
complexity for the algorithm is bounded by O(T log T). To prove that,
let g(m) be the total number of reindexations incurred by the algorithm
from the beginning to obtain a block of size m. That is, for each period
of the block, we count for the number of times it has been reindexed by
the algorithm. We prove by induction that g(m) ≤ m logm. For m = 1,
this is true since no merging is performed for a block of a single period.
Consider now a block of m periods, requiring g(m) reindexation, obtained
by merging two blocks A and B. Without loss of generality, assume that
|A| ≤ |B|. We have:

g(n) ≤ |A|+ g(|A|) + g(|B|)
≤ |A|+ |A| log |A|+ |B| log |B|
≤ |A|+ |A|(logm− 1) + |B| logm

≤ (|A|+ |B|) logm = m logm

The first inequality is due to the fact that the algorithm reindexes only
the smallest block, A, when merging A and B. The induction hypothe-
sis implies the second inequality. The third inequality simply uses that
|A| ≤ |B| and hence |A| ≤ m/2. This allows us to establish that at most
T log T reindexations are performed by the algorithm.

In both cases, the values e eventually associated with blocks B and B′ (if
they are not reduced to a single period) are removed from data structure
H, and the new value e associated with B′′ is inserted, which can be
done in time O(log T). Finally, we update the slope by setting α(i+1) =
α(i) + (n(B′′)c̃t(B′′)− c̃(B′′))− (n(B′)c̃t(B′)− c̃(B′))− (n(B)c̃t(B)− c̃(B)).

Case 3. Constraint (C3) is saturated. Let t be a period such that C(i+1) = Ft.
In this case, the structure of the blocks is not modified, that is, B(i+1) =
B(i). However, the slope α(i+1) is modified. More precisely, let B be the

28

block where period t belongs. We update the attributes of block B by
setting F (B)← F (B)− Ft, c̃(B)← c̃(B) + c̃t and n(B) = n(B) + 1. The
slope α(i+1) is then equal to α(i+1) = α(i) + (c̃t(B) − c̃t). In this case, we
update the e value associated with block B by removing it from H and
by inserting its new value.

The time complexity of the algorithm is thus dominated by the precom-
putation phase, the updating of the e values in the data structure H, and
the reindexing of the periods to keep track of their blocks, each one requiring
O(T log T) operations. Hence the algorithm can be implemented in overall time
complexity O(T log T).

29

	Introduction
	Literature review
	Problem formulation
	Pure capacity acquisition problem
	Preliminaries
	Structure of an optimal solution
	Description of the algorithm
	Illustrative example

	Polynomial time algorithms for energy-LSP
	Case with w=0, pt>0, Et>0: Production energy consumption
	Case with p=0, wt>0, Et>0: Start-up energy consumption
	Extension of the pure capacity acquisition algorithm

	Extension to more general start-up cost functions
	Conclusion and perspectives

