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MINIMIZING FRACTIONAL HARMONIC MAPS

ON THE REAL LINE IN THE SUPERCRITICAL REGIME

VINCENT MILLOT, YANNICK SIRE, AND HUI YU

Abstract. This article addresses the regularity issue for minimizing fractional
harmonic maps of order s ∈ (0, 1/2) from an interval into a smooth manifold.

Hölder continuity away from a locally finite set is established for a general target.

If the target is the standard sphere, then Hölder continuity holds everywhere.

1. Introduction

In a series of recent articles [6, 7], F. Da Lio and T. Rivière introduced the concept
of 1/2-harmonic maps into a manifold. Given a compact smooth submanifold N ⊆ Rd
without boundary, such a map u : R→ N is defined as a critical point of the nonlocal
energy

E 1
2
(u) :=

1

2π

∫∫
R×R

|u(x)− u(y)|2

|x− y|2
dxdy .

It satisfies the Euler-Lagrange equation

(−∆)
1
2u ⊥ Tan(u,N ) ,

where (−∆)
1
2 is the fractional Laplacian as defined in Fourier space. Obviously, this

equation is in strong analogy with the standard harmonic map equation into N ,
and one main issue is to prove a priori regularity. This was achieved in [6, 7], thus
extending the famous regularity result of F. Hélein for classical harmonic maps on
surfaces [11]. The notion of 1/2-harmonic maps has been then extended in [14, 16] to
higher dimensions, and partial regularity for minimizing or stationary 1/2-harmonic
maps established (in analogy with the classical harmonic map problem [1, 5, 17]).

All these works pave the way to a more general theory for fractional harmonic
maps where the energy E 1

2
is replaced by the Dirichlet form induced by the fractional

Laplacian (−∆)s with exponent s ∈ (0, 1). As noticed in [15, Remark 1.7], the
case s ∈ (0, 1/2) is in strong relation with the so-called nonlocal minimal surfaces
introduced by L. Caffarelli, J.M. Roquejoffre, and O. Savin [2]. For this reason, we
focus here on the case s ∈ (0, 1/2), and as first step toward such a theory, we shall
consider minimizing s-harmonic maps in one space dimension. Before going further,
let us give some details on the mathematical framework.

Given s ∈ (0, 1/2) and a bounded open interval ω ⊆ R, the nonlocal (or fractional)
s-energy in ω of a measurable function u : R→ Rd is defined as

Es(u, ω) :=
γs
2

∫∫
ω×ω

|u(x)− u(y)|2

|x− y|1+2s
dxdy + γs

∫∫
ω×(R\ω)

|u(x)− u(y)|2

|x− y|1+2s
dxdy .

The normalization constant γs := s22sπ−
1
2

Γ( 1+2s
2 )

Γ(1−s) is chosen in such a way that

Es(u, ω) =
1

2

∫
R
|(−∆)

s
2u|2 dx ∀u ∈ C∞0 (ω;Rd) .

Following [15, Section 2], we denote by Ĥs(ω;Rd) the Hilbert space made of L2
loc(R)-

functions u such that Es(u, ω) <∞, and we set

Ĥs(ω;N ) :=
{
u ∈ Ĥs(ω;Rd) : u(x) ∈ N a.e. on R

}
.

Definition. We say that u ∈ Ĥs(ω;N ) is a minimizing s-harmonic map in ω if

Es(u, ω) 6 Es(ũ, ω)
1
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for every ũ ∈ Ĥs(ω;N ) such that spt(ũ− u) ⊆ ω.

Exactly as in the case s = 1/2 (see [14, Remark 4.24]), a minimizing s-harmonic
map satisfies the Euler-Lagrange equation

(−∆)su ⊥ Tan(u,N ) in D ′(ω) .

In terms of scaling, this equation turns out to be supercritical (since s ∈ (0, 1/2)), and
one may expect that minimizing s-harmonic maps are singular, exactly as it happens
for (classical) minimizing harmonic maps in dimensions greater than three [17].

The main objective of this paper is to provide a first partial regularity result for
minimizing s-harmonic maps. At this stage, we should point out that existence is not

an issue. Indeed, prescribing an exterior condition g ∈ Ĥs(ω;N ), one can minimize

the energy Es(·, ω) over all maps u ∈ Ĥs(ω;N ) satisfying u = g a.e. in R\ω. Existence
for this minimization problem easily follows from the Direct Method of Calculus of
Variations, and it obviously produces a minimizing s-harmonic map in ω.

Our first main result concerns the case of a general (smooth) target N .

Theorem 1.1. For s ∈ (0, 1/2), let u ∈ Ĥs(ω;N ) be a minimizing s-harmonic map
in ω. Then u is locally Hölder continuous in ω away from a locally finite set of points.

The proof of Theorem 1.1 follows somehow the general scheme for proving partial
regularity of minimizing harmonic maps, or more precisely of minimizing harmonic
maps with (partially) free boundary. Indeed, the problem can be rephrased as a
degenerate regularity problem for harmonic maps with free boundary, once we use the
so-called Caffarelli-Silvestre extension [3]. With this respect, our arguments ressemble
to the ones in [4, 9, 10], except that they have to be suitably modified to deal with
our degenerate setting. In view of this classical literature, one may wonder if Hölder
continuity implies higher order regularity. We do not address this question here, as it
will be the object of a future work. In a complementary direction, one can ask wether
or not a (one dimensional) minimizing s-harmonic can be singular. We believe that,
in general, Theorem 1.1 is optimal, but the question remains open. However, if the
manifold N is a standard sphere, then there are no singularities at all. This statement
(and proof) is in a sense an amusing fractional counterpart of the regularity result of
R. Schoen & K. Uhlenbeck [18] for minimizing harmonic maps into spheres.

Theorem 1.2. For s ∈ (0, 1/2), let u ∈ Ĥs(ω;Sd−1) be a minimizing s-harmonic
map in ω. Then u is locally Hölder continuous in ω.

This article is organized as follows. In Section 2, we introduce the notion of har-
monic maps with free boundary induced by the Caffarelli-Silvestre extension, together
with some fundamental properties such as the monotonicity formula. In Section 3,
we prove an ε-regularity theorem for those harmonic maps with free boundary. Sec-
tion 4 is devoted to compactness properties of minimizing s-harmonic maps, and
Theorems 1.1 & 1.2 are proved in Section 5.

Notation. We shall often identify R with ∂R2
+ = R × {0}. More generally, a set

A ⊆ R can be identified with A × {0} ⊆ ∂R2
+. Points in R2 are written x = (x, y).

We denote by Br(x) the open disc in R2 of radius r centered at x = (x, y). For an
arbitrary set Ω ⊆ R2, we write Ω+ := Ω ∩ R2

+ and ∂+Ω := ∂Ω ∩ R2
+.

If Ω ⊆ R2
+ is a bounded open set, we shall say that Ω is admissible whenever

• ∂Ω is Lipschitz regular;

• the (relative) open set ∂0Ω ⊆ ∂R2
+ ' R is defined by

∂0Ω :=
{

x ∈ ∂Ω ∩ ∂R2
+ : B+

r (x) ⊆ Ω for some r > 0
}
,

is non empty and has Lipschitz boundary;

• ∂Ω = ∂+Ω ∪ ∂0Ω .
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Finally, we denote by dN the distance function on Rd to the manifold N , i.e.,

dN (z) := inf
p∈N
|z − p| .

The tangent and normal spaces to N at a point p ∈ N are denoted by Tan(p,N ) and
Nor(p,N ), respectively.

2. Minimizing weighted harmonic maps with free boundary

The proof of our results relies on the already mentioned Caffarelli-Silvestre exten-
sion procedure [3] which allows to rephrase our fractional problem into a local one.
Before going into details on the extension of minimizing s-harmonic maps, we briefly
introduce the resulting local problem and its functional setting.

2.1. Minimizing weighted harmonic maps. For a bounded admissible open sub-
set Ω ⊆ R2

+, we consider the weighted spaces

L2(Ω;Rd, yadx) :=
{
v ∈ L1

loc(Ω;Rd) : y
a
2 |v| ∈ L2(Ω)

}
with a := 1− 2s > 0 ,

and

H1(Ω;Rd, yadx) :=
{
v ∈ L2(Ω, yadx) : ∇v ∈ L2(Ω, yadx)

}
.

We refer to [15, Section 2] for the main properties of these spaces that we shall use.
We simply recall that a map v ∈ H1(Ω;Rd, yadx) has a well defined trace on ∂0Ω,
and the trace operator from H1(Ω;Rd, yadx) into L2(∂0Ω;Rd) is a compact linear
operator.

On H1(Ω, yadxdy), we define the weighted Dirichlet energy

Es(v,Ω) :=
1

2

∫
Ω

ya|∇v|2 dx .

Definition 2.1. Let Ω ⊆ R2
+ be a bounded admissible open set, and consider a map

v ∈ H1(Ω;Rd, yadx) such that v(x) ∈ N a.e. on ∂0Ω. We say that v is a minimizing
weighted harmonic map in Ω with respect to the (partially) free boundary v(∂0Ω) ⊆ N
if

Es(v,Ω) 6 Es(w,Ω)

for every competitor w ∈ H1(Ω, yadx) satisfying w(x) ∈ N a.e. on ∂0Ω, and such
that spt(w−v) ⊆ Ω∪∂0Ω. In short, we shall say u is a minimizing weighted harmonic
map with free boundary in Ω.

Remark 2.2. Using variations supported in Ω, one obtains that a minimizing weighted
harmonic map v with free boundary in Ω satisfies

div(ya∇v) = 0 in Ω . (2.1)

In particular, v ∈ C∞(Ω) by standard elliptic theory. The regularity issue is then at
(and only at) the free boundary ∂0Ω. Arguing exactly as [4, Section 2], one obtains

ya∂yv ⊥ Tan(v,N ) on ∂0Ω

in the duality sense. In other words, the (full) Euler-Lagrange equation derived from
minimality is ∫

Ω

ya∇v · ∇ζ dx = 0 (2.2)

for every ζ ∈ H1(Ω;Rd, yadx) satisfying ζ(x) ∈ Tan(v(x),N ) for a.e. x ∈ ∂0Ω, and
such that spt(ζ) ⊆ Ω ∪ ∂0Ω.
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2.2. Extending minimizing s-harmonic maps. We now move on the extension
procedure of [3]. Given a bounded open interval ω ⊆ R, we define the extension

ue : R2
+ → Rd of a map u ∈ Ĥs(ω;Rd) by

ue(x, y) := σs

∫
R

t2su(t)

(|x− y|2 + t2)
1+2s

2

dt with σs := π−
1
2

Γ( 1+2s
2 )

Γ(s)
.

This extension can be referred to as fractional harmonic extension of u (by analogy
with the case s = 1/2) as it solves{

div(ya∇ue) = 0 in R2
+ ,

ue = u on R ' ∂R2
+ .

(2.3)

It turns out that ue ∈ H1(Ω;Rd, yadx) for every bounded admissible open set Ω ⊆
R2

+ such that ∂0Ω ⊆ ω. In addition, ue ∈ L∞(R2
+) whenever u ∈ L∞(R), and

‖ue‖L∞(R2
+) 6 ‖u‖L∞(R). We refer to [15, Section 2] for further details.

We shall make use of the following converse statement to control the fractional
energy by the weighted Dirichlet energy.

Lemma 2.3. Let r > 0 and v ∈ H1(B+
2r;Rd, yadx). The trace of v on the interval

ωr := ∂0B+
r belongs to Hs(ωr;Rd), and∫∫

ωr×ωr

|v(x)− v(y)|2

|x− y|1+2s
dxdy 6 CEs(v,B

+
2r) .

for some constant C = C(s).

Proof. Without loss of generality, we may assume that v has a vanishing average over
the half ball B+

2r. Let ζ ∈ C∞(B2r; [0, 1]) be a cut-off function such that ζ(x) = 1
for |x| 6 r, ζ(x) = 0 for |x| > 3r/2, and satisfying |∇ζ| 6 C/r. The function
vr := ζv belongs to H1(R2

+;Rd, yadx), and Poincaré’s inequality in H1(R2
+;Rd, yadx)

(see e.g. [8]) yields∫
R2

+

ya|∇vr|2 dx 6 2Es(v,B
+
2r) +

C

r2

∫
B+

2r

ya|v|2 dx 6 CsEs(v,B
+
2r) . (2.4)

On the other hand, it follows from [3] (see also [15, Lemma 2.8]) that∫∫
ωr×ωr

|v(x)− v(y)|2

|x− y|1+2s
dxdy 6

∫∫
R×R

|vr(x)− vr(y)|2

|x− y|1+2s
dxdy

6 Cs

∫
R2

+

ya|∇vr|2 dx , (2.5)

for some constant Cs depending only on s. Gathering (2.4) and (2.5) leads to the
announced estimate. �

The following proposition draws links between minimizing s-harmonic maps and
minimizing weighted harmonic maps with free boundary. Its proof follows exactly as
in [14, Proposition 4.9] (see also [15, Corollary 2.13]), and we shall omit it.

Proposition 2.4. Let ω ⊆ R be a bounded open interval, and u ∈ Ĥs(ω;N ) a
minimizing s-harmonic map in ω. Then ue is a minimizing weighted harmonic map
in Ω with free boundary in every bounded admissible open set Ω ⊆ R2

+ satisfying

∂0Ω ⊆ ω.

2.3. The monotonicity formula. In this subsection, we consider a bounded admis-
sible open set Ω ⊆ R2

+, and a minimizing weighted harmonic map v ∈ H1(Ω;Rd, yadx)
with free boundary. We present the fundamental monotonicity formula involving the
following density function: for a point x0 = (x0, 0) ∈ ∂0Ω and r > 0 such that
B+
r (x0) ⊆ Ω , we set

Θv(x0, r) :=
1

r1−2s
Es

(
v,B+

r (x0)
)
.



MINIMIZING FRACTIONAL HARMONIC MAPS ON THE REAL LINE 5

Lemma 2.5. For every x0 ∈ ∂0Ω and r > ρ > 0 such that B+
r (x0) ⊆ Ω,

Θv(x0, r)−Θv(x0, ρ) =

∫
B+
r (x0)\B+

ρ (x0)

ya
|(x− x0) · ∇v|2

|x− x0|3−2s
dx .

Proof. The proof follows classically from the stationarity implied by minimality. To
be more precise, let us consider a vector field X = (X1,X2) ∈ C1(R2

+;R2) compactly
supported in Ω ∪ ∂0Ω and such that X2 = 0 on R× {0}. Then consider a compactly
supported C1-extension of X to the whole R2, still denoted by X. We define {φt}t∈R
the flow on R2 generated by X, i.e., for x ∈ R2, the map t 7→ φt(x) is defined as the
unique solution of the differential equation

d

dt
φt(x) = X

(
φt(x)

)
,

φ0(x) = x .

Notice that φt(Ω) = Ω, φt(∂
0Ω) = ∂0Ω, and spt(φt − idR2) ∩ R2

+ ⊆ Ω ∪ ∂0Ω. As a
consequence, the map vt := v ◦φt ∈ H1(Ω;Rd, ya dx) satisfies vt(x) ∈ N a.e. on ∂0Ω,
and spt(vt − v) ⊆ Ω∪ ∂0Ω. By minimality Es(v,Ω) 6 Es(vt) for every t ∈ R, so that[

d

dt
Es(vt,Ω)

]
t=0

= 0 .

Computing this derivative (see e.g. [19, Chapter 2.2] or [15]) leads to∫
Ω

ya

|∇v|2div X− 2

2∑
i,j=1

(∂iv · ∂jv)∂jXi

 dx + a

∫
Ω

ya−1|∇v|2X2 dx = 0 (2.6)

for every vector field X = (X1,X2) ∈ C1(R2
+;R2) compactly supported in Ω ∪ ∂0Ω

and such that X2 = 0 on R×{0}. From equation (2.6), the announced monotonicity
follows as in [15, Lemma 6.2]. �

Corollary 2.6. For every x0 ∈ ∂0Ω, the limit

Θv(x0) := lim
r↓0

Θv(x0, r)

exists, and the function Θv : ∂0Ω→ [0,∞) is upper semicontinuous. In addition,

Θv(x0, r)−Θv(x0) =

∫
B+
r (x0)

ya
|(x− x0) · ∇v|2

|x− x0|3−2s
dx . (2.7)

Proof. The existence of the limit defining Θv as well as (2.7) are straightforward
consequences of Lemma 2.5. Then Θv is upper semicontinuous as a pointwise limit
of a decreasing family of continuous functions. �

3. The ε-regularity theorem

3.1. An extension lemma and the hybrid inequality. This subsection is es-
sentially devoted to the construction of comparison maps. We shall start with the
construction of competitors from a boundary data satisfying a small oscillation con-
dition. Testing minimality against such competitors leads to the so-called hybrid
inequality (see [9, 10]), a central estimate in the proof of the ε-regularity theorem.

Let us start with an elementary lemma.

Lemma 3.1. Let v ∈ H1(∂+B1;Rd, yadx) be such that v(±1, 0) ∈ N . Then,

d2
N
(
v(x)

)
6

(∫
∂+B1

ya|∂τv|2 dH1

)1/2(∫
∂+B1

y−ad2
N (v) dH1

)1/2

for every x ∈ ∂+B1.
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Proof. First recall that H1(∂+B1;Rd, yadx) ↪→ W 1,1(∂+B1;Rd), so that maps in

H1(∂+B1;Rd, yadx) are continuous on ∂+B1. Then notice that the function dN is
1-Lipschitz, and by chain rule one derives |∇d2

N | 6 2dN a.e. in Rd. In turns, it
implies that d2

N (u) ∈ H1(∂+B1, y
adx) and

|∂τd2
N (v)| 6 2dN (v)|∂τv| a.e. on ∂+B1 .

Since v(−1, 0) ∈ N , this estimate implies that for every x ∈ ∂+B1,

d2
N
(
v(x)

)
6 2

∫
((−1,0),x)

dN (v)|∂τv| dH1 ,

where ((−1, 0),x) denotes the arc in ∂+B1 going from (−1, 0) to x. The announced
inequality then follows from Cauchy-Schwarz inequality. �

Lemma 3.2 (Comparison maps). There exist two constants ε0 = ε0(N ) > 0 and
C = C(N , s) such that the following holds. Let v ∈ H1(∂+B1;Rd, yadx) be such that
v(±1, 0) ∈ N , and ξ ∈ Rd. If(∫

∂+B1

ya|∂τv|2 dH1

)(∫
∂+B1

y−a|v − ξ|2 dH1 +

∫
∂+B1

y−ad2
N (v) dH1

)
6 ε0 ,

(3.1)
then there exists w ∈ H1(B+

1 ;Rd, , yadx) such that w(∂0B+
1 ) ⊆ N , w = v on ∂+B1,

and∫
B+

1

ya|∇w|2 dx

6 C

(∫
∂+B1

ya|∂τv|2 dH1

)1/2(∫
∂+B1

y−a|v − ξ|2 dH1 +

∫
∂+B1

y−ad2
N (v) dH1

)1/2

.

Proof. Reflect v evenly to the entire sphere ∂B1. Obviously, v ∈ H1(∂B1;Rd, |y|adx)
by symmetry. We consider the variational solution h ∈ H1(B1;Rd, |y|adx) of{

div(|y|a∇h) = 0 in B1 ,

h = v on ∂B1 .
(3.2)

Note that h ∈ L∞(B1). Indeed, since v is absolutely continuous, it is bounded. Since
h minimizes Es(·, B1) over all maps equal to v on ∂B1, a classical truncation argument
shows that |h| does not exceed ‖v‖L∞(∂B1).

Next, recalling [3, Lemma 6.2], we have∫
∂B1

|y|a|∂νh|2 dH1 6
∫
∂B1

|y|a|∂τv|2 dH1 . (3.3)

Using (3.2) and (3.3), we infer from the divergence theorem and Cauchy-Schwarz
inequality that∫

B1

|y|a|∇h|2 dx =

∫
B1

|y|a|∇(h− ξ)|2 dx

=

∫
∂B1

|y|a(h− ξ) · ∂νh dH1

6

(∫
∂B1

|y|a|v − ξ|2 dH1

)1/2(∫
∂B1

|y|a|∂τv|2 dH1

)1/2

.

Hence, by symmetry,∫
B1

|y|a|∇h|2 dx 6 2

(∫
∂+B1

ya|v − ξ|2 dH1

)1/2(∫
∂+B1

ya|∂τv|2 dH1

)1/2

. (3.4)
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By the fundamental theorem of calculus (and symmetry), we have

|v(x)− v(x0)|2 6 2

∫
(x0,x1)

|v − v(x0)||∂τv| dH1

6 2

(∫
∂+B1

y−a|v − v(x0)|2 dH1

)1/2(∫
∂+B1

ya|∂τv|2 dH1

)1/2

for every x,x0 ∈ ∂B1.
We choose the point x0 in such a way that x 7→ |v(x) − ξ| achieves its minimum

at x0. Then,

|v − v(x0)|2 6 2|v − ξ|2 + 2|v(x0)− ξ|2 6 4|v − ξ|2 on ∂B1 .

Consequently,

|v(x)− v(x0)|2 6 4

(∫
∂+B1

y−a|v − ξ|2 dH1

)1/2(∫
∂+B1

ya|∂τv|2 dH1

)1/2

(3.5)

for every x ∈ ∂B1.
Since h is bounded, |h− v(x0)|2 belongs to H1(B1, |y|adx). Moreover,

div
(
|y|a∇(|h− v(x0)|2)

)
> 0 in B1 ,

and the maximum principle in [8] together with (3.5) implies that

|h(x)− v(x0)|2 6 4

(∫
∂+B1

y−a|v − ξ|2 dH1

)1/2(∫
∂+B1

ya|∂τv|2 dH1

)1/2

for every x ∈ B1. Applying Lemma 3.1 at x = x0, we now infer that

dN
(
h(x)

)
6
∣∣dN (h(x)

)
− dN

(
v(x0)

)∣∣+ dN
(
v(x0)

)
6
∣∣h(x)− v(x0)

∣∣+ dN
(
v(x0)

)
6 2

(∫
∂+B1

y−a|v − ξ|2 dH1

)1/4(∫
∂+B1

ya|∂τv|2 dH1

)1/4

+

(∫
∂+B1

y−ad2
N (v) dH1

)1/4
(∫

∂B+
1

ya|∂τv|2 dH1

)1/4

6 2

(∫
∂+B1

ya|∂τv|2 dH1

)1/4(∫
∂+B1

y−a|v − ξ|2 dH1

+

∫
∂+B1

y−ad2
N (v) dH1

)1/4

for every x ∈ B1. By our assumption, we thus have

dN (h) 6 2ε
1/4
0 in B1 .

As a consequence, if ε0 = ε0(N ) is small enough, h takes values in a small tubular
neighborhood of N . In such a neighborhood, the nearest point retraction πN on N
is well defined and smooth. Therefore, πN (h) belongs to H1(B1;N , |y|a dx), and

‖πN (h)− h‖2L∞(B1) 6 4

(∫
∂+B1

ya|∂τv|2 dH1

)1/2(∫
∂+B1

y−a|v − ξ|2 dH1

+

∫
∂+B1

y−ad2
N (v) dH1

)1/2

. (3.6)

We shall now construct the extension w interpolating h and πN (h) near ∂+B1. We
proceed as follows. Consider the set

A :=
{

x = (x, y) ∈ B+

1 : 0 6 y 6 1/2 , |x| 6
√

1− y2 − y a2
}
,
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and let ζ ∈ C∞(B+
1 ; [0, 1]) be a smooth cut-off function satisfying ζ = 1 in A ∩ B+

1 ,
and ζ = 0 on ∂+B1. From the very definition of A, we can even find ζ in such a way
that

|∂yζ(x, y)| 6 C and |∂xζ(x, y)| 6 Cy
−a
2 , (3.7)

where C = C(s). In particular, ζ ∈ H1(B+
1 ; [0, 1], yadx). We finally define

w := ζ
(
πN (h)− h

)
+ h ∈ H1(B+

1 ;Rd, yadx) .

By construction, w(x) ∈ N for x ∈ ∂0B+
1 , and w = h = v on ∂+B1. Then we

estimate∫
B+

1

ya|∇w|2 dx 6 2

∫
B+

1

ya|∇h|2 dx + 4

∫
B+

1

ya
∣∣∇(πN (h)− h)

∣∣2 dx
+ 4

∫
B+

1

ya|∇ζ|2|πN (h)− h|2 dx

6 C
∫
B+

1

ya|∇h|2 dx + 4‖πN (h)− h‖2
L∞(B+

1 )

∫
B+

1

ya|∇ζ|2 dx . (3.8)

Gathering (3.8) with (3.4), (3.6), and (3.7) leads to the announced result. �

Corollary 3.3 (Hybrid inequality). There exists two constants ε1 = ε1(N ) > 0
and C = C(N , s) such that the following holds. Let v ∈ H1(B+

1 ;Rd, yadx) be a
minimizing weighted harmonic map with free boundary in B+

1 , and ξ ∈ Rd. If(∫
B+

1

ya|∇v|2 dx

)(∫
B+

1

y−a|v − ξ|2 dx +

∫
B+

1

y−ad2
N (v) dx

)
6 ε1 ,

then∫
B+

1/2

ya|∇v|2 dx 6 λ
∫
B+

1

ya|∇v|2 dx

+
C

λ

(∫
B+

1

y−a|v − ξ|2 dx +

∫
B+

1

y−ad2
N (v) dx

)
for every λ ∈ (0, 1).

Proof. By a classical averaging argument, we can find r ∈ (1/2, 1) such that v re-
stricted to ∂+Br belongs to H1(∂+Br;Rd, ya dx), and∫

∂+Br

y−a|v − ξ|2 dH1 6 12

∫
B+

1

y−a|u− ξ|2 dx ,∫
∂+Br

y−ad2
N (v) dH1 6 12

∫
B+

1

y−ad2
N (v) dx ,∫

∂+Br

ya|∂τv|2 dH1 6 12

∫
B+

1

ya|∇v|2dx .

Setting vr(x) := v(rx) for x ∈ ∂+B1, we deduce by scaling that vr satisfies (3.1) for
ε1 small enough. Denote by wr the extension of vr provided by Lemma 3.2, and set
w(x) := wr(x/r) for x ∈ B+

r . Scaling back, we discover that∫
B+
r

ya|∇w|2 dx

6 C

(∫
∂+Br

ya|∂τv|2 dH1

)1/2(∫
∂+Br

y−a|v − ξ|2 dH1 +

∫
∂+Br

y−ad2
N (v) dH1

)1/2

.

Since w = v on ∂+Br, and w(x) ∈ N on ∂0B+
r , we may extend w by v in B+

1 \ B+
r

to produce a competitor to minimality, that we still denote by w. Hence, we have
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Es(v,B
+
1 ) 6 Es(w,B

+
1 ), which leads to∫

B+
1/2

ya|∇v|2 dx 6
∫
B+
r

ya|∇v|2 dx

6
∫
B+
r

ya|∇w|2 dx

6
λ

12

∫
∂+Br

ya|∂τv|2 dH1

+
3

λ

(∫
∂+Br

y−a|v − ξ|2 dH1 +

∫
∂+Br

y−ad2
N (v) dH1

)
6 λ

∫
B+

1

ya|∇v|2 dx

+
36

λ

(∫
B+

1

y−a|v − ξ|2 dx +

∫
B+

1

y−ad2
N (v) dx

)
for every λ ∈ (0, 1). �

3.2. Small energy regularity. We shall now prove the aforementioned small energy
regularity property. As usual, the cornerstone argument is an energy improvement
under a small oscillation condition. This leads to an improved energy decay, which in
turn implies Hölder continuity as in the classical Morrey’s lemma.

Theorem 3.4 (Energy improvement). There exist constants r0 = r0(s,N ) ∈
(0, 1/2) and ε2 = ε2(s,N ) > 0 such that the following holds. If v ∈ H1(B+

1 ;Rd, yadx)
is a minimizing weighted harmonic map in B+

1 satisfying Es(v,B
+
1 ) 6 ε2

2, then

1

r1−2s
0

Es(v,B
+
r0) <

1

2
Es(v,B

+
1 ) .

Let us start with the following elementary lemma inspired from [4, Lemma 3.3].

Lemma 3.5. Let v ∈ H1(B+
1 ;Rd, yadx) be such that v(x) ∈ N for a.e. x ∈ ∂0B+

1 .
Setting

v̄ :=
2

π

∫
B+

1

v dx ,

one has

dN (v̄) 6 C
(
Es(v,B

+
1 )
)1/2

for some constant C = C(s).

Proof. Since dN is 1-Lipschitz, we have dN (v̄) 6 |v − v̄| + dN (v), and dN (v) ∈
H1(B+

1 , y
adx) satisfies dN (v) = 0 on ∂0B+

1 . Applying Poincaré’s inequalities, and
Hölder’s inequality,

dN (v̄) 6 C
∫
B+

1

|v − v̄| dx + C

∫
B+

1

dN (v) dx

6 C
∫
B+

1

|∇v| dx + C

∫
B+

1

∣∣∇(dN (v)
)∣∣ dx

6 C
(
Es(v,B

+
1 )
)1/2

where we have used again the fact that dN is 1-Lipschitz in the last inequality. �

Proof of Theorem 3.4. Step 1. We argue by contradiction assuming that for a given
radius r0 ∈ (0, 1/2) (to be chosen), there is a sequence {vn} in H1(B+

1 ;Rd, yadx) of
minimizing weighted harmonic maps in B+

1 such that

ε2
n := Es(vn, B

+
1 )→ 0 , (3.9)

and
1

r1−2s
0

Es(vn, B
+
r0) >

1

2
Es(vn, B

+
1 ) . (3.10)
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By Lemma 3.5, we have dN (v̄n) 6 Cεn → 0. Hence, for n large enough, there is a
unique pn ∈ N such that dN (v̄n) = |v̄n − pn|. Extracting a subsequence, there are
p ∈ N and q ∈ Rd such that

pn → p , v̄n → p , and
pn − v̄n
εn

→ q .

Note that q ∈ Nor(p,N ) since pn − v̄n ∈ Nor(pn,N ).

By Poincaré’s inequality in H1(B+
1 ;Rd, yadx) (see [8]), vn → p in L2(B+

1 , y
adx),

and therefore in H1(B+
1 ;Rd, yadx). By continuity of the trace operator, we then have

vn → p in L2(∂0B+
1 ), and thus vn → p a.e. on ∂0B+

1 , up to a further subsequence.
Consider now the sequence

wn :=
1

εn
(vn − v̄n)

which satisfies

Es(wn, B
+
1 ) = 1 and

∫
B+

1

wn dx = 0 .

By Poincaré’s inequality again, {wn} is bounded in H1(B+
1 ;Rd, yadx), and we can

find a (not relabeled) subsequence such that wn ⇀ w weakly in H1(B+
1 ;Rd, yadx).

By linearity, since vn solves (2.1) in B+
1 , wn solves (2.1) as well in B+

1 . Consequently,
by weak convergence, w satisfies

div(ya∇w) = 0 in B+
1 . (3.11)

Next, by continuity of the trace operator, we also deduce that {wn} is bounded in
L2(∂0B+

1 ). From Lemma 2.3, we also infer that {wn} is bounded in Hs
loc(∂0B+

1 ).
By the compact embedding Hs

loc(∂0B+
1 ) ↪→ L2

loc(∂0B+
1 ), we deduce that, up to a

subsequence, wn → w a.e. on ∂0B+
1 and strongly in L2

loc(∂0B+
1 ). For x ∈ ∂0B+

1 , such
that wn(x)→ w(x) and vn(x)→ p, the sequence

ε−1
n (vn(x)− pn) = wn(x) + ε−1

n (v̄n − pn)

is converging toward a vector in Tan(p,N ) since vn(x)→ p and pn → p. Therefore,

w(x)− q ∈ Tan(p,N ) for a.e. x ∈ ∂0B+
1 . (3.12)

Step 2. We claim that ∫
B+

1

ya∇w · ∇ζ dx = 0 (3.13)

for every ζ ∈ C1(B+
1 ;Rd) satisfying ζ(x) ∈ Tan(p,N ) for every x ∈ ∂0B+

1 , and such
that spt(ζ) ⊆ B+

1 ∪ ∂0B+
1 .

To prove (3.13), we consider the field Πb of d × d matrices associating to b ∈ N
the orthogonal projector on Tan(b,N ). Then we consider a (smooth) compactly
supported extension of Πb to the whole Rd. Then Πvn ∈ H1(B+

1 ;Rd×d, yadx), and
Πvn → Πp strongly in H1(B+

1 ;Rd×d, yadx). As a consequence, Πvnζ → Πpζ strongly
in H1(B+

1 ;Rd, yadx). Since vn(x) ∈ N for a.e. x ∈ ∂0B+
1 , we have Πvn(x)ζ(x) ∈

Tan(un(x),N ) for a.e. x ∈ ∂0B+
1 , and thus (2.2) can be applied, i.e.,∫

B+
1

ya∇vn · ∇
(
Πvnζ

)
dx = 0 .

Therefore, ∫
B+

1

ya∇wn · ∇
(
Πvnζ

)
dx = 0 .

Since {wn} is weakly convergent and Πvnζ strongly convergent, we can pass to the
limit n→∞ to derive ∫

B+
1

ya∇w · ∇
(
Πpζ

)
dx = 0 . (3.14)

Since Πpζ − ζ = 0 on ∂0B+
1 , we infer from (3.11) that∫
B+

1

ya∇w · ∇
(
Πpζ − ζ

)
dx = 0 . (3.15)
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Gathering (3.14) and (3.15) yields (3.13).

Step 3. Set

(vn)2r0 :=

∫
B+

2r0

wn dx , (wn)2r0 :=

∫
B+

2r0

wn dx and (w)2r0 :=

∫
B+

2r0

w dx .

Since the embedding H1(B+
1 , y

adx) ↪→ L2(B+
1 , y

−adx) is compact (see e.g. [12]), we
have Poincaré’s inequalities telling us that

1

(2r0)1+2s

∫
B+

2r0

y−a|vn − (vn)2r0 |2 dx 6
C

(2r0)1−2s
Es(vn, B

+
2r0

) 6 CEs(vn, B
+
1 ) ,

and
1

(2r0)1+2s

∫
B+

2r0

y−ad2
N (vn) dx 6

C

(2r0)1−2s
Es(vn, B

+
2r0

) 6 CEs(vn, B
+
1 ) .

Here we have used the monotonicity formula in Lemma 2.5, the fact that the function
dN is 1-Lipschitz, and dN (vn) = 0 on ∂0B+

1 . Changing variables, one discovers that
the rescaled map x 7→ vn(2r0x) satisfies the small oscillation condition in Corollary 3.3
with ξ = (vn)2r0 for n large enough, thanks to (3.9). Choosing λ = 1/8 in that
corollary and scaling back, we infer that

1

r1−2s
0

Es(vn, B
+
r0) 6

1

8(2r0)1−2s
Es(vn, B

+
2r0

)

+
C

λ(2r0)1+2s

(∫
B+

2r0

y−a
∣∣vn − (vn)2r0

∣∣2 dx +

∫
B+

2r0

y−ad2
N (vn) dx

)
. (3.16)

By Lemma 2.5 again, we have

1

8(2r0)1−2s
Es(vn, B

+
2r0

) 6
ε2
n

8
. (3.17)

Then,∫
B+

2r0

y−a
∣∣vn − (vn)2r0

∣∣2 dx = ε2
n

∫
B+

2r0

y−a
∣∣wn − (wn)2r0

∣∣2 dx
6 Cε2

n

(∫
B+

2r0

y−a
∣∣w − (w)2r0

∣∣2 dx+∫
B+

2r0

y−a
∣∣w − wn∣∣2 dx +

∫
B+

2r0

y−a
∣∣(w)2r0 − (wn)2r0

∣∣2 dx)
By the two compact embeddings H1(B+

1 , y
adx) ↪→ L1(B+

1 ) and H1(B+
1 , y

adx) ↪→
L2(B+

1 , y
−adx), we have wn → w strongly in L2(B+

1 , y
−adx) and (wn)2r0 → (w)2r0 .

Hence,∫
B+

2r0

y−a
∣∣vn − (vn)2r0

∣∣2 dx = ε2
n

∫
B+

2r0

y−a
∣∣w − (w)2r0

∣∣2 dx + o(ε2
n) . (3.18)

Next we decompose the map w as w =: wT +w⊥ where wT takes values in Tan(p,N ),
and w⊥ takes values in Nor(p,N ). From (3.11) and (3.12), we derive that{

div(ya∇w⊥) = 0 in B+
1 ,

w⊥ = q on ∂0B+
1 .

From the boundary condition, we can reflect oddly the map (w⊥ − q) to the whole
ball B1, so that the resulting w⊥ belongs to H1(B1, y

adx) and satisfies

div(|y|a∇w⊥) = 0 in B1 .

By the regularity result in [8], w⊥ is α-Hölder continuous in B1/2 for some Hölder
exponent α = α(s) ∈ (0, 1). Consequently,∫

B+
2r0

y−a
∣∣w⊥ − (w⊥)2r0

∣∣2 dx 6 Cr1+2s+2α
0 . (3.19)
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Next we deduce from (3.13) that∫
B+

1

ya∇wT · ∇ζ dx = 0

for every ζ ∈ C1(B
+

1 ; Tan(p,N )) such that spt(ζ) ⊆ B+
1 ∪ ∂0B+

1 . If we reflect evenly
wT to the whole ball B1, then wT belongs to H1(B1, |y|adx) and satisfies

div(|y|a∇wT ) = 0 in B1 .

Once again, [8] tells us that wT is α-Hölder continuous in B1/2, and thus∫
B+

2r0

y−a
∣∣wT − (wT )2r0

∣∣2 dx 6 Cr1+2s+2α
0 . (3.20)

In view of (3.18), (3.19) and (3.20), we have proved that∫
B+

2r0

y−a
∣∣vn − (vn)2r0

∣∣2 dx 6 Cε2
nr

1+2s+2α
0 + o(ε2

n) . (3.21)

Finally, to estimate the last term in the right hand side of (3.16), we proceed as
follows. First notice that dN (vn) 6 εn|wn|+ |v̄n− pn|, so that ε−1

n dN (vn) is bounded
in L2(B+

1 , y
adx). Since dN is 1-Lipschitz, we have |∇dN (vn)| 6 εn|∇wn|, and thus

{ε−1
n dN (vn)} is bounded in H1(B+

1 , y
adx). Since the embedding H1(B+

1 , y
adx) ↪→

L2(B+
1 , y

−adx) is compact, we can assume that ε−1
n dN (vn) → d in L2(B+

1 , y
−adx)

for some function d ∈ H1(B+
1 , y

adx). Up to a further subsequence, we also have
vn(x)→ a, wn(x)→ w(x), and ε1

ndN (vn(x))→ d(x) for a.e. x ∈ B+
1 .

Given x ∈ B+
1 such that these convergences hold at x, we have

ε−1
n (vn(x)− pn) = wn(x) + ε−1

n (v̄n − pn)→ w(x)− q .
On the other hand, for n large enough, vn(x) has a unique nearest point vn ∈ N , and
vn → p. Since |vn(x)−pn| > dN (vn(x)) = |vn(x)−vn| and vn(x)−vn ∈ Nor(vn,N ),
ε−1
n (vn(x) − vn) → n for some n ∈ Nor(p,N ), taking a subsequence if necessary. In

turn, it implies that ε−1
n (vn − pn) is converging toward a vector t ∈ Tan(p,N ).

Consequently, t + n = w(x)− q, so that n = w⊥(x)− q, and thus d(x) = |w⊥(x)− q|.
We have thus shown that ε−1

n dN (vn) → |w⊥ − q| a.e. in B+
1 , and therefore in

L2(B+
1 , y

−adx). Hence,∫
B+

2r0

y−ad2
N (vn) dx = ε2

n

∫
B+

2r0

y−a|w⊥ − q|2 dx + o(ε2
n) .

Since w⊥ is α-Hölder continuous in B
+

1/2 and w⊥− q = 0 on ∂0B+
1 , we conclude that∫

B+
2r0

y−ad2
N (vn) dx 6 Cε2

nr
1+2s+2α
0 + o(ε2

n) . (3.22)

Gathering (3.16), (3.17), (3.21), and (3.22) yields

1

r1−2s
0

Es(vn, B
+
r0) 6

ε2
n

8
+ Cε2

nr
2α
0 + o(ε2

n) .

Choosing r0 small enough (in such a way that Cr2α
0 6 1/8), we conclude that

1

r1−2s
0

Es(vn, B
+
r0) <

ε2
n

2

for n large enough, contradicting (3.10). �

Arguing exactly as [9, Theorem 2.5], we infer from Theorem 3.4 the following decay
estimate.

Corollary 3.6 (Energy decay). If v ∈ H1(B+
2R;Rd, yadx) is a minimizing weighted

harmonic map in B+
2R satisfying Es(v,B

+
2R) 6 ε2

2R
1−2s, then

1

r1−2s
Es

(
v,B+

r (x)
)
6 CR−βrβ for all x ∈ ∂0B+

R and 0 < r 6 R ,

for some exponent β ∈ (0, 1) depending only on s and N .



MINIMIZING FRACTIONAL HARMONIC MAPS ON THE REAL LINE 13

In turn, this last corollary implies Hölder continuity at the boundary as in Morrey’s
lemma.

Corollary 3.7. In addition to Corollary 3.6, v is Hölder continuous on ∂0B+
R with

Hölder exponent β/2.

Proof. Combining Corollary 3.6 with Lemma 2.3, we first infer that

1

r1−2s

∫∫
ωr(x0)×ωr(x0)

|v(x)− v(y)|2)

|x− y|1+2s
dxdy 6 CR−βrβ

for every x0 = (x0, 0) ∈ ∂0B+
R and 0 < r 6 R, where we have set ωr(x0) := ∂0B+

r (x0).
Setting

(v)x0,r :=
1

2r

∫
ωr(x0)

v dx ,

we deduce from Poincaré’s inequality in Hs(ωr(x0)) that

1

r2

∫
ωr(x0)

|v − (v)x0,r|2 dx 6
C

r1−2s

∫∫
ωr(x0)×ωr(x0)

|v(x)− v(y)|2

|x− y|1+2s
dxdy

6 CR−βrβ ,

for all x0 ∈ ωR(0) and 0 < r 6 R. The conclusion then follows from Campanato’s
criterion (see e.g. [13, Chapter 6.1]). �

4. Compactness of minimizing s-harmonic maps

This section is devoted to compactness of minimizing s-harmonic maps. As it will
be clear in a few lines, the proof is here much simpler compare to classical harmonic
maps, as minimality can be directly tested (as if the exterior condition were fixed).
Consequences concerning the extensions and densities are then easy exercices.

Theorem 4.1. Let ω ⊆ R be a bounded open interval, and {un}n∈N ⊆ Ĥs(ω;N )
a sequence of minimizing s-harmonic maps in ω. Assume that supn Es(un, ω) < ∞,

and un → u in L2
loc(R). Then u ∈ Ĥs(ω;N ) is a minimizing s-harmonic map in ω,

un → u strongly in Hs
loc(ω), and Es(un, ω′) → Es(u, ω′) for every open interval such

that ω′ ⊆ ω.

Proof. First we select a subsequence uk := unk such that uk → u a.e. on R, and

lim
k→∞

Es(uk, ω) = lim inf
n→∞

Es(un, ω) <∞ .

Since each uk takes values into N , we infer from the pointwise convergence that
u(x) ∈ N for a.e. x ∈ R. Then, by Fatou’s lemma, we have

Es(u, ω) 6 lim
k→∞

Es(uk, ω) ,

so that u ∈ Ĥs(ω;N ).

Let us now consider ũ ∈ Ĥs(ω;N ) such that spt(u − ũ) ⊆ ω. We select an open
interval ω′ such that spt(u− ũ) ⊆ ω′ and ω′ ⊆ ω. Define

ũk(x) :=

{
ũ(x) if x ∈ ω′ ,
uk if x ∈ R \ ω′ .

It is elementary to check that ũk ∈ Ĥs(ω;N ), and of course spt(ũk − uk) ⊆ ω. By
minimality of uk, we have Es(uk, ω) 6 Es(ũk, ω) which leads to

Es(uk, ω′) 6 Es(ũk, ω′) =
γs
2

∫∫
ω′×ω′

|ũ(x)− ũ(y)|2

|x− y|1+2s
dxdy

+ γs

∫∫
ω′×(R\ω′)

|ũ(x)− uk(y)|2

|x− y|1+2s
dxdy . (4.1)

Since ũ and uk are taking values in N , we have

|ũ(x)− uk(y)|2

|x− y|1+2s
6

C

|x− y|1+2s
∈ L1

(
ω′ × (R \ ω′)

)
.
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Hence Es(ũk, ω′) → Es(ũ, ω′) by dominated convergence and the fact that ũ = u a.e.
in R \ ω′. On the other hand, lim infk Es(uk, ω′) > Es(u, ω′), still by Fatou’s lemma.
Letting k →∞ in (4.1), we can now conclude that Es(u, ω′) 6 Es(ũ, ω′). Once again,
since ũ = u a.e. in R \ ω′, this yields Es(u, ω) 6 Es(ũ, ω). We have thus proved that
u is a minimizing s-harmonic map in ω.

In addition, the argument above applied to ũ = u shows that Es(uk, ω′)→ Es(u, ω′).
In turn,∫∫

ω′×(R\ω′)

|uk(x)− uk(y)|2

|x− y|1+2s
dxdy →

∫∫
ω′×(R\ω′)

|u(x)− u(y)|2

|x− y|1+2s
dxdy ,

again by dominated convergence. Hence,∫∫
ω′×ω′

|uk(x)− uk(y)|2

|x− y|1+2s
dxdy →

∫∫
ω′×ω′

|u(x)− u(y)|2

|x− y|1+2s
dxdy . (4.2)

Since {uk} is bounded in Hs(ω′) and uk → u pointwise., we have uk ⇀ u weakly in
Hs(ω′). Then (4.2) implies that uk → u strongly in Hs(ω′). �

Theorem 4.2. In addition to Theorem 4.1, ue
n → ue strongly in H1(Ω;Rd, yadx) for

every bounded admissible open set Ω ⊆ R2
+ such that ∂0Ω ⊆ ω.

Proof. From Theorem 4.1 and [15, Lemma 2.10], we start deducing that ue
n → ue

strongly in L2
loc(R2

+;Rd, yadx). Since ue solves (2.3), we infer from standard elliptic

theory that ue
n → ue strongly in H1

loc(R2
+;Rd, yadx). It remains to prove that strong

convergence holds up to ∂0Ω (locally). To this purpose, let us fix an arbitrary half
ball B+

r (x0) such that x0 ∈ ∂0Ω and ∂0B+
3r(x0) ⊆ ω. By [15, Lemma 2.10], we have

Es

(
ue
n − ue, B+

r (x0)
)
6 C

(
Es(un − u, ∂0B+

2r(x0)) + ‖un − u‖L2(∂0B+
2r(x0))

)
→ 0 ,

again by Theorem 4.1. �

Corollary 4.3. In addition to Theorem 4.1, if {xn} ⊆ ω is a sequence converging to
x ∈ ω, then

lim sup
n→∞

Θue
n
(xn) 6 Θue(x) .

Proof. Without loss of generality we may assume that x = 0. For r > 0 small enough

we have ∂0B+
2r ⊆ ω. Setting rn := |xn|, we have rn < r for n large enough. Then, we

infer from Corollary 2.6 that

Θue
n
(xn) 6 Θue

n
(xn, r) 6

1

r1−2s
Es(u

e
n, B

+
r+rn) .

By Theorem 4.2, we have ue
n → ue strongly in H1(B+

2r;Rd, ya dx), and thus

lim sup
n→∞

Θue
n
(xn) 6 lim

n→∞

1

r1−2s
Es(u

e
n, B

+
r+rn) = Θue(0, r) .

Letting now r ↓ 0 provides the desired conclusion. �

5. Proof of Theorems 1.1 & 1.2

This section is devoted to the proof of Theorem 1.1 and 1.2. We consider for the

entire section a bounded open interval ω ⊆ R, and u ∈ Ĥs(ω;N ) a minimizing s-
harmonic map in ω. Both proofs rely on the analysis of tangent maps of u at a given
point of ω. To define them, we fix a point x0 ∈ ω, and for ρ > 0 we consider the
rescaled map

ux0,ρ(x) := u(x0 + ρx) .

Tangent maps of u at x0 are all possible weak limits of ux0,ρ as ρ ↓ 0, and this is is
the purpose of the following proposition.
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Proposition 5.1 (Tangent maps). Let ρn → 0 be an arbitrary sequence. There is
a (not relabeled) subsequence such that ux0,ρn → u0 strongly in Hs

loc(R), where u0 is
a minimizing s-harmonic map in every bounded open interval of the form

u0(x) :=

{
a if x > 0 ,

b if x < 0 ,
(5.1)

for some a, b ∈ N . In addition, Θue
0
(0, r) = Θue

0
(0) = Θue(x0) for every r > 0.

Proof. Assume without loss of generality that x0 = 0 and [−1, 1] ⊆ ω. For an integer
k > 1, write ωk := (−k, k). For n large enough, 2ρnk 6 1 and un := u0,ρn ∈
Ĥs(ωk;N ). Moreover,

Es(un, ωk) =
1

ρ1−2s
n

Es(u, ρnωk) .

Next we infer from Lemma 2.3 and Lemma 2.5 that

1

ρ1−2s
n

∫∫
(ρnωk)×(ρnωk)

|u(x)− u(y)|2

|x− y|1+2s
dxdy 6 CΘue(0, 2ρnk) 6 CΘue(0, 1) .

On the other hand,

1

ρ1−2s
n

∫∫
(ρnωk)×(R\ρnωk)

|u(x)− u(y)|2

|x− y|1+2s
dxdy

6
C

ρ1−2s
n

∫∫
(ρnωk)×(R\ρnωk)

1

|x− y|1+2s
dxdy = Ck1−2s .

Therefore Es(un, ωk) 6 Ck for a constant Ck depending only on s and k. In particular,
{un} is bounded in Hs(ωk) for each integer k > 1. Hence, we can find a (not relabeled)
subsequence such that uk ⇀ u0 weakly in Hs

loc(R). From the compact embedding
Hs(ωk) ↪→ L2(ωk), we also deduce that un → u0 in L2

loc(R). Applying Theorem 4.1
in each ωk, we derive that u0 is a minimizing s-harmonic map in every bounded open
interval. Next, Theorem 4.2 implies that

Θue
0
(0, r) = lim

n→∞
Θue

n
(0, r) = lim

n→∞
Θue(0, ρnr) = Θue(0) ∀r > 0 .

Here, we have also used that ue
n(x) = ue(ρnx). In view of Corollary 2.6, we thus have∫

B+
r

ya
|x · ∇ue

0|2

|x|3−2s
dx = Θue

0
(0, r)−Θue

0
(0) = 0 ∀r > 0 .

Therefore x · ∇ue = 0, so that ue
0 is positively 0-homogeneous, i.e., ue

0(λx) = ue
0(x)

for every x ∈ R2
+ and λ > 0. In particular, u0 is positively 0-homogeneous, and (5.1)

follows. �

Remark 5.2. If u is continuous at x0, the limit u0 obtained in Proposition 5.1 is
obviously the constant map equal to u(x0). As a consequence, if u is continuous at x0,
then Θue

(
(x0, 0)

)
= 0.

Proof of Theorem 1.1. Let us consider the set

S :=
{
x ∈ ω : Θue

(
(x, 0)

)
> 22s−1ε2

2

}
, (5.2)

where ε2 > 0 is the constant given by Theorem 3.4. Since Θue is upper semicontinu-
ous, S is a relatively closed subset of ω. Moreover, Corollaries 3.6 & 3.7 together with
Corollary 2.6 implies that u is locally Hölder continuous in ω\S. To prove Theorem1.1,
it then remains to show that S has no accumulation point in ω. We argue by contra-
diction assuming that there is a sequence {xn} ⊆ S such that xn → x ∈ ω. Without
loss of generality, we may assume that xn > x. Setting ρn := xn − x, we consider the
sequence un := ux0,ρn , and then apply Proposition 5.1 to find a (not relabeled) sub-
sequence and a minimizing s-harmonic map u0 of the form (5.1) such that un → u0.
In view of Corollary 4.3 we have

Θue
0

(
(1, 0)

)
> lim sup

n→∞
Θue

n

(
(1, 0)

)
= lim sup

n→∞
Θue

(
(xn, 0)

)
> ε2 .
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On the other hand, by the explicit form (5.1), the map u0 is continuous at 1. Hence,
Θue

0

(
(1, 0)

)
= 0 by Remark 5.2, contradiction. �

Proof of Theorem 1.2. Recall that we assume now that N = Sd−1. In view of the
proof of Theorem 1.1, it is enough to show that the set S defined in (5.2) is empty.
Assume by contradiction that S 6= ∅. We may then assume without loss of generality
that 0 ∈ S. Let u0 be a s-minimizing harmonic map produced by Proposition 5.1,
i.e., u0 is the limit of the rescaled map u0,ρn for some sequence ρn → 0. Then
Θue

0
(0) > ε2 > 0, so that u0 is not constant. In other words, in the form (5.1) the

two vectors a, b ∈ Sd−1 are distinct. Upon working in the plane passing through a,
b, and the origin, there is no loss of generality assuming that d = 2, that is N = S1.
Moreover, rotating coordinates in the image if necessary, we can assume that

a = (α, β) and b = (−α, β) ,

with 0 < α 6 1 and 0 6 β < 1 satisfying α2 + β2 = 1. Then set

a∗ := (−β, α) and b∗ := (β, α) .

Note that a∗ ⊥ a and b∗ ⊥ b. We define for t ∈ R,

ut(x) :=



a+ ta∗√
1 + t2

if 0 < x < 1 ,

b+ tb∗√
1 + t2

if −1 < x < 0 ,

u0(x) otherwise .

One can easily check that ut ∈ Ĥs
(
(−2, 2);S1

)
, and since spt(ut − u) ⊆ (−2, 2), the

map ut is an admissible competitor for the minimality of u0 in (−2, 2). In other words,
Es
(
u0, (−2, 2)

)
6 Es

(
ut, (−2, 2)

)
, which in turn yields Es

(
u0, (−1, 1)

)
6 Es

(
ut, (−1, 1)

)
since ut = u0 outside (−1, 1). Therefore,[

d

dt
Es
(
ut, (−1, 1)

)]
t=0

= 0 and

[
d2

dt2
Es
(
ut, (−1, 1)

)]
t=0

> 0 .

Now we expand Es
(
ut, (−1, 1)

)
as

Es
(
ut, (−1, 1)

)
=

(
γs

∫ 1

0

∫ 0

−1

dxdy

|x− y|1+2s

) ∣∣(a− b) + t(a∗ − b∗)
∣∣2

1 + t2

+

(
γs

∫ 1

0

∫ +∞

1

dxdy

|x− y|1+2s

) ∣∣(1−√1 + t2)a+ ta∗
∣∣2

1 + t2

+

(
γs

∫ 1

0

∫ −1

−∞

dxdy

|x− y|1+2s

) ∣∣a+ ta∗ − b
√

1 + t2
∣∣2

1 + t2

+

(
γs

∫ 0

−1

∫ −1

−∞

dxdy

|x− y|1+2s

) ∣∣(1−√1 + t2)b+ tb∗
∣∣2

1 + t2

+

(
γs

∫ 0

−1

∫ +∞

1

dxdy

|x− y|1+2s

) ∣∣b+ tb∗ − a
√

1 + t2
∣∣2

1 + t2
.

It then follows that [
d

dt
Es
(
ut, (−1, 1)

)]
t=0

= −Cαβ

for some constant C = C(s) > 0. The first order condition implies αβ = 0, and thus

a = (1, 0) , b = (−1, 0) , and a∗ = b∗ = (0, 1) .
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As a consequence, using the symmetry in the integrals above,

Es
(
ut, (−1, 1)

)
=

(
4γs

∫ 1

0

∫ 0

−1

dxdy

|x− y|1+2s

)
1

1 + t2

+

(
2γs

∫ 1

0

∫ +∞

1

dxdy

|x− y|1+2s

)
(1−

√
1 + t2)2 + t2

1 + t2

+

(
2γs

∫ 1

0

∫ −1

−∞

dxdy

|x− y|1+2s

)
(1 +

√
1 + t2)2 + t2

1 + t2
.

An elementary computation now yields[
d2

dt2
Es
(
ut, (−1, 1)

)]
t=0

= −8γs

∫ 1

0

∫ 0

−1

dxdy

|x− y|1+2s
+ 4γs

∫ 1

0

∫ +∞

1

dxdy

|x− y|1+2s

− 4γs

∫ 1

0

∫ −1

−∞

dxdy

|x− y|1+2s

= −4γs

∫ 1

0

∫ 0

−1

dxdy

|x− y|1+2s
+ 4γs

∫ 1

0

∫ +∞

1

dxdy

|x− y|1+2s

− 4γs

∫ 1

0

∫ 0

−∞

dxdy

|x− y|1+2s

= −4γs

∫ 1

0

∫ 0

−1

dxdy

|x− y|1+2s

< 0 ,

contradicting the second order condition for minimality. �
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