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MINIMIZING FRACTIONAL HARMONIC MAPS ON THE REAL LINE IN THE SUPERCRITICAL REGIME

This article addresses the regularity issue for minimizing fractional harmonic maps of order s ∈ (0, 1/2) from an interval into a smooth manifold. Hölder continuity away from a locally finite set is established for a general target. If the target is the standard sphere, then Hölder continuity holds everywhere.

Introduction

In a series of recent articles [START_REF] Da Lio | Three-term commutator estimates and the regularity of 1/2-harmonic maps into spheres[END_REF][START_REF] Da Lio | Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps[END_REF], F. Da Lio and T. Rivière introduced the concept of 1/2-harmonic maps into a manifold. Given a compact smooth submanifold N ⊆ R d without boundary, such a map u : R → N is defined as a critical point of the nonlocal energy

E 1 2 (u) := 1 2π R×R |u(x) -u(y)| 2 |x -y| 2 dxdy .
It satisfies the Euler-Lagrange equation (-∆)

1 2 u ⊥ Tan(u, N ) ,
where (-∆)

1 2 is the fractional Laplacian as defined in Fourier space. Obviously, this equation is in strong analogy with the standard harmonic map equation into N , and one main issue is to prove a priori regularity. This was achieved in [START_REF] Da Lio | Three-term commutator estimates and the regularity of 1/2-harmonic maps into spheres[END_REF][START_REF] Da Lio | Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps[END_REF], thus extending the famous regularity result of F. Hélein for classical harmonic maps on surfaces [START_REF] Hélein | Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne[END_REF]. The notion of 1/2-harmonic maps has been then extended in [START_REF] Millot | On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres[END_REF][START_REF] Moser | Intrinsic semiharmonic maps[END_REF] to higher dimensions, and partial regularity for minimizing or stationary 1/2-harmonic maps established (in analogy with the classical harmonic map problem [START_REF] Bethuel | On the singular set of stationary harmonic maps[END_REF][START_REF] Evans | Partial regularity for stationary harmonic maps into spheres[END_REF][START_REF] Schoen | A regularity theory for harmonic maps[END_REF]).

All these works pave the way to a more general theory for fractional harmonic maps where the energy E 1 2 is replaced by the Dirichlet form induced by the fractional Laplacian (-∆) s with exponent s ∈ (0, 1). As noticed in [START_REF] Millot | Asymptotics for the fractional Allen-Cahn equation and stationary nonlocal minimal surfaces[END_REF]Remark 1.7], the case s ∈ (0, 1/2) is in strong relation with the so-called nonlocal minimal surfaces introduced by L. Caffarelli, J.M. Roquejoffre, and O. Savin [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF]. For this reason, we focus here on the case s ∈ (0, 1/2), and as first step toward such a theory, we shall consider minimizing s-harmonic maps in one space dimension. Before going further, let us give some details on the mathematical framework.

Given s ∈ (0, 1/2) and a bounded open interval ω ⊆ R, the nonlocal (or fractional) s-energy in ω of a measurable function u : R → R d is defined as The normalization constant γ s := s2 2s π -1 2 Γ( 1+2s 2 )

Γ(1-s) is chosen in such a way that

E s (u, ω) = 1 2 R |(-∆) s 2 u| 2 dx ∀u ∈ C ∞ 0 (ω; R d ) .
Following [15, Section 2], we denote by H s (ω; R d ) the Hilbert space made of L 2 loc (R)functions u such that E s (u, ω) < ∞, and we set H s (ω; N ) := u ∈ H s (ω; R d ) : u(x) ∈ N a.e. on R .

Definition. We say that u ∈ H s (ω; N ) is a minimizing s-harmonic map in ω if E s (u, ω) E s ( u, ω) for every u ∈ H s (ω; N ) such that spt( u -u) ⊆ ω.

Exactly as in the case s = 1/2 (see [START_REF] Millot | On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres[END_REF]Remark 4.24]), a minimizing s-harmonic map satisfies the Euler-Lagrange equation (-∆) s u ⊥ Tan(u, N ) in D (ω) .

In terms of scaling, this equation turns out to be supercritical (since s ∈ (0, 1/2)), and one may expect that minimizing s-harmonic maps are singular, exactly as it happens for (classical) minimizing harmonic maps in dimensions greater than three [START_REF] Schoen | A regularity theory for harmonic maps[END_REF].

The main objective of this paper is to provide a first partial regularity result for minimizing s-harmonic maps. At this stage, we should point out that existence is not an issue. Indeed, prescribing an exterior condition g ∈ H s (ω; N ), one can minimize the energy E s (•, ω) over all maps u ∈ H s (ω; N ) satisfying u = g a.e. in R\ω. Existence for this minimization problem easily follows from the Direct Method of Calculus of Variations, and it obviously produces a minimizing s-harmonic map in ω.

Our first main result concerns the case of a general (smooth) target N .

Theorem 1.1. For s ∈ (0, 1/2), let u ∈ H s (ω; N ) be a minimizing s-harmonic map in ω. Then u is locally Hölder continuous in ω away from a locally finite set of points.

The proof of Theorem 1.1 follows somehow the general scheme for proving partial regularity of minimizing harmonic maps, or more precisely of minimizing harmonic maps with (partially) free boundary. Indeed, the problem can be rephrased as a degenerate regularity problem for harmonic maps with free boundary, once we use the so-called Caffarelli-Silvestre extension [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF]. With this respect, our arguments ressemble to the ones in [START_REF] Duzaar | A partial regularity theorem for harmonic maps at a free boundary[END_REF][START_REF] Hardt | Mappings minimizing the L p norm of the gradient[END_REF][START_REF] Hardt | Partially constrained boundary conditions with energy minimizing mappings[END_REF], except that they have to be suitably modified to deal with our degenerate setting. In view of this classical literature, one may wonder if Hölder continuity implies higher order regularity. We do not address this question here, as it will be the object of a future work. In a complementary direction, one can ask wether or not a (one dimensional) minimizing s-harmonic can be singular. We believe that, in general, Theorem 1.1 is optimal, but the question remains open. However, if the manifold N is a standard sphere, then there are no singularities at all. This statement (and proof) is in a sense an amusing fractional counterpart of the regularity result of R. Schoen & K. Uhlenbeck [START_REF] Schoen | Regularity of minimizing harmonic maps into the sphere[END_REF] for minimizing harmonic maps into spheres.

Theorem 1.2. For s ∈ (0, 1/2), let u ∈ H s (ω; S d-1 ) be a minimizing s-harmonic map in ω. Then u is locally Hölder continuous in ω.

This article is organized as follows. In Section 2, we introduce the notion of harmonic maps with free boundary induced by the Caffarelli-Silvestre extension, together with some fundamental properties such as the monotonicity formula. In Section 3, we prove an ε-regularity theorem for those harmonic maps with free boundary. Section 4 is devoted to compactness properties of minimizing s-harmonic maps, and Theorems 1.1 & 1.2 are proved in Section 5.

Notation. We shall often identify R with ∂R 2 + = R × {0}. More generally, a set A ⊆ R can be identified with A × {0} ⊆ ∂R 2

+ . Points in R 2 are written x = (x, y). We denote by B r (x) the open disc in R 2 of radius r centered at x = (x, y). For an arbitrary set Ω ⊆ R 2 , we write

Ω + := Ω ∩ R 2 + and ∂ + Ω := ∂Ω ∩ R 2 + . If Ω ⊆ R 2
+ is a bounded open set, we shall say that Ω is admissible whenever

• ∂Ω is Lipschitz regular; • the (relative) open set ∂ 0 Ω ⊆ ∂R 2 + R is defined by ∂ 0 Ω := x ∈ ∂Ω ∩ ∂R 2 + : B + r (x) ⊆ Ω for some r > 0 ,
is non empty and has Lipschitz boundary; The tangent and normal spaces to N at a point p ∈ N are denoted by Tan(p, N ) and Nor(p, N ), respectively.

• ∂Ω = ∂ + Ω ∪ ∂ 0 Ω .

Minimizing weighted harmonic maps with free boundary

The proof of our results relies on the already mentioned Caffarelli-Silvestre extension procedure [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF] which allows to rephrase our fractional problem into a local one. Before going into details on the extension of minimizing s-harmonic maps, we briefly introduce the resulting local problem and its functional setting.

2.1. Minimizing weighted harmonic maps. For a bounded admissible open subset Ω ⊆ R 2 + , we consider the weighted spaces

L 2 (Ω; R d , y a dx) := v ∈ L 1 loc (Ω; R d ) : y a 2 |v| ∈ L 2 (Ω) with a := 1 -2s > 0 ,
and

H 1 (Ω; R d , y a dx) := v ∈ L 2 (Ω, y a dx) : ∇v ∈ L 2 (Ω, y a dx) .
We refer to [START_REF] Millot | Asymptotics for the fractional Allen-Cahn equation and stationary nonlocal minimal surfaces[END_REF]Section 2] for the main properties of these spaces that we shall use. We simply recall that a map v ∈ H 1 (Ω; R d , y a dx) has a well defined trace on ∂ 0 Ω, and the trace operator from

H 1 (Ω; R d , y a dx) into L 2 (∂ 0 Ω; R d ) is a compact linear operator.
On H 1 (Ω, y a dxdy), we define the weighted Dirichlet energy

E s (v, Ω) := 1 2 Ω y a |∇v| 2 dx .
Definition 2.1. Let Ω ⊆ R 2 + be a bounded admissible open set, and consider a map v ∈ H 1 (Ω; R d , y a dx) such that v(x) ∈ N a.e. on ∂ 0 Ω. We say that v is a minimizing weighted harmonic map in Ω with respect to the (partially) free boundary v(∂

0 Ω) ⊆ N if E s (v, Ω) E s (w, Ω)
for every competitor w ∈ H 1 (Ω, y a dx) satisfying w(x) ∈ N a.e. on ∂ 0 Ω, and such that spt(w -v) ⊆ Ω∪∂ 0 Ω. In short, we shall say u is a minimizing weighted harmonic map with free boundary in Ω.

Remark 2.2. Using variations supported in Ω, one obtains that a minimizing weighted harmonic map v with free boundary in Ω satisfies div(y a ∇v) = 0 in Ω .

(2.1)

In particular, v ∈ C ∞ (Ω) by standard elliptic theory. The regularity issue is then at (and only at) the free boundary ∂ 0 Ω. Arguing exactly as [4, Section 2], one obtains 

y a ∂ y v ⊥ Tan(v, N ) on ∂ 0 Ω

2.2.

Extending minimizing s-harmonic maps. We now move on the extension procedure of [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF]. Given a bounded open interval ω ⊆ R, we define the extension

u e : R 2 + → R d of a map u ∈ H s (ω; R d ) by u e (x, y) := σ s R t 2s u(t) (|x -y| 2 + t 2 ) 1+2s 2 dt with σ s := π -1 2 Γ( 1+2s 2 ) Γ(s)
.

This extension can be referred to as fractional harmonic extension of u (by analogy with the case s = 1/2) as it solves div(y a ∇u e ) = 0 in R 2 + , u e = u on R ∂R 2 + .

(2.

3)

It turns out that u e ∈ H 1 (Ω; R d , y a dx) for every bounded admissible open set Ω ⊆ R 2 + such that ∂ 0 Ω ⊆ ω. In addition, u e ∈ L ∞ (R 2 + ) whenever u ∈ L ∞ (R), and u e L ∞ (R 2 + )
u L ∞ (R). We refer to [15, Section 2] for further details.

We shall make use of the following converse statement to control the fractional energy by the weighted Dirichlet energy.

Lemma 2.3. Let r > 0 and v ∈ H 1 (B + 2r ; R d , y a dx). The trace of v on the interval ω r := ∂ 0 B + r belongs to H s (ω r ; R d ),
and

ωr×ωr |v(x) -v(y)| 2 |x -y| 1+2s dxdy CE s (v, B + 2r ) .
for some constant C = C(s).

Proof. Without loss of generality, we may assume that v has a vanishing average over the half ball

B + 2r . Let ζ ∈ C ∞ (B 2r ; [0, 1]) be a cut-off function such that ζ(x) = 1 for |x| r, ζ(x) = 0 for |x| 3r/2, and satisfying |∇ζ| C/r. The function v r := ζv belongs to H 1 (R 2 + ; R d , y a dx), and Poincaré's inequality in H 1 (R 2 + ; R d , y a dx) (see e.g. [8]) yields R 2 + y a |∇v r | 2 dx 2E s (v, B + 2r ) + C r 2 B + 2r y a |v| 2 dx C s E s (v, B + 2r ) . (2.4)
On the other hand, it follows from [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF] (see also [START_REF] Millot | Asymptotics for the fractional Allen-Cahn equation and stationary nonlocal minimal surfaces[END_REF]Lemma 2.8]) that

ωr×ωr |v(x) -v(y)| 2 |x -y| 1+2s dxdy R×R |v r (x) -v r (y)| 2 |x -y| 1+2s dxdy C s R 2 + y a |∇v r | 2 dx , (2.5) 
for some constant C s depending only on s. Gathering (2.4) and (2.5) leads to the announced estimate.

The following proposition draws links between minimizing s-harmonic maps and minimizing weighted harmonic maps with free boundary. Its proof follows exactly as in [14, Proposition 4.9] (see also [START_REF] Millot | Asymptotics for the fractional Allen-Cahn equation and stationary nonlocal minimal surfaces[END_REF]Corollary 2.13]), and we shall omit it. 

⊆ R 2 + satisfying ∂ 0 Ω ⊆ ω.
2.3. The monotonicity formula. In this subsection, we consider a bounded admissible open set Ω ⊆ R 2 + , and a minimizing weighted harmonic map v ∈ H 1 (Ω; R d , y a dx) with free boundary. We present the fundamental monotonicity formula involving the following density function: for a point x 0 = (x 0 , 0) ∈ ∂ 0 Ω and r > 0 such that B + r (x 0 ) ⊆ Ω , we set

Θ v (x 0 , r) := 1 r 1-2s E s v, B + r (x 0 ) . Lemma 2.5. For every x 0 ∈ ∂ 0 Ω and r > ρ > 0 such that B + r (x 0 ) ⊆ Ω, Θ v (x 0 , r) -Θ v (x 0 , ρ) = B + r (x0)\B + ρ (x0) y a |(x -x 0 ) • ∇v| 2 |x -x 0 | 3-2s dx .
Proof. The proof follows classically from the stationarity implied by minimality. To be more precise, let us consider a vector field

X = (X 1 , X 2 ) ∈ C 1 (R 2 + ; R 2 ) compactly supported in Ω ∪ ∂ 0 Ω and such that X 2 = 0 on R × {0}.
Then consider a compactly supported C 1 -extension of X to the whole R 2 , still denoted by X. We define {φ t } t∈R the flow on R 2 generated by X, i.e., for x ∈ R 2 , the map t → φ t (x) is defined as the unique solution of the differential equation

   d dt φ t (x) = X φ t (x) , φ 0 (x) = x . Notice that φ t (Ω) = Ω, φ t (∂ 0 Ω) = ∂ 0 Ω, and spt(φ t -id R 2 ) ∩ R 2 + ⊆ Ω ∪ ∂ 0 Ω. As a consequence, the map v t := v • φ t ∈ H 1 (Ω; R d , y a dx) satisfies v t (x) ∈ N a.e. on ∂ 0 Ω, and spt(v t -v) ⊆ Ω ∪ ∂ 0 Ω. By minimality E s (v, Ω) E s (v t ) for every t ∈ R, so that d dt E s (v t , Ω) t=0 = 0 .
Computing this derivative (see e.g. [19, Chapter 2.2] or [START_REF] Millot | Asymptotics for the fractional Allen-Cahn equation and stationary nonlocal minimal surfaces[END_REF]) leads to

Ω y a   |∇v| 2 div X -2 2 i,j=1 (∂ i v • ∂ j v)∂ j X i   dx + a Ω y a-1 |∇v| 2 X 2 dx = 0 (2.6) for every vector field X = (X 1 , X 2 ) ∈ C 1 (R 2 + ; R 2 ) compactly supported in Ω ∪ ∂ 0 Ω
and such that X 2 = 0 on R × {0}. From equation (2.6), the announced monotonicity follows as in [15, Lemma 6.2].

Corollary 2.6. For every x 0 ∈ ∂ 0 Ω, the limit

Θ v (x 0 ) := lim r↓0 Θ v (x 0 , r)
exists, and the function

Θ v : ∂ 0 Ω → [0, ∞) is upper semicontinuous. In addition, Θ v (x 0 , r) -Θ v (x 0 ) = B + r (x0) y a |(x -x 0 ) • ∇v| 2 |x -x 0 | 3-2s dx . (2.7)
Proof. The existence of the limit defining Θ v as well as (2.7) are straightforward consequences of Lemma 2.5. Then Θ v is upper semicontinuous as a pointwise limit of a decreasing family of continuous functions.

3. The ε-regularity theorem 3.1. An extension lemma and the hybrid inequality. This subsection is essentially devoted to the construction of comparison maps. We shall start with the construction of competitors from a boundary data satisfying a small oscillation condition. Testing minimality against such competitors leads to the so-called hybrid inequality (see [START_REF] Hardt | Mappings minimizing the L p norm of the gradient[END_REF][START_REF] Hardt | Partially constrained boundary conditions with energy minimizing mappings[END_REF]), a central estimate in the proof of the ε-regularity theorem.

Let us start with an elementary lemma. 

Lemma 3.1. Let v ∈ H 1 (∂ + B 1 ; R d , y a dx) be such that v(±1, 0) ∈ N . Then, d 2 N v(x) ∂ + B1 y a |∂ τ v| 2 dH 1 1/2 ∂ + B1 y -a d 2 N (v) dH 1 1/2 for every x ∈ ∂ + B 1 . Proof. First recall that H 1 (∂ + B 1 ; R d , y a dx) → W 1,1 (∂ + B 1 ; R d ), so that maps in H 1 (∂ + B 1 ; R d ,
|∂ τ d 2 N (v)| 2d N (v)|∂ τ v| a.e. on ∂ + B 1 .
Since v(-1, 0) ∈ N , this estimate implies that for every x ∈ ∂ + B 1 ,

d 2 N v(x) 2 
((-1,0),x) d N (v)|∂ τ v| dH 1 ,
where ((-1, 0), x) denotes the arc in ∂ + B 1 going from (-1, 0) to x. The announced inequality then follows from Cauchy-Schwarz inequality.

Lemma 3.2 (Comparison maps).

There exist two constants ε 0 = ε 0 (N ) > 0 and

C = C(N , s) such that the following holds. Let v ∈ H 1 (∂ + B 1 ; R d , y a dx) be such that v(±1, 0) ∈ N , and ξ ∈ R d . If ∂ + B1 y a |∂ τ v| 2 dH 1 ∂ + B1 y -a |v -ξ| 2 dH 1 + ∂ + B1 y -a d 2 N (v) dH 1 ε 0 , (3.1) then there exists w ∈ H 1 (B + 1 ; R d , , y a dx) such that w(∂ 0 B + 1 ) ⊆ N , w = v on ∂ + B 1 ,

and

B + 1 y a |∇w| 2 dx C ∂ + B1 y a |∂ τ v| 2 dH 1 1/2 ∂ + B1 y -a |v -ξ| 2 dH 1 + ∂ + B1 y -a d 2 N (v) dH 1 1/2 .
Proof. Reflect v evenly to the entire sphere ∂B 1 . Obviously, v ∈ H 1 (∂B 1 ; R d , |y| a dx) by symmetry. We consider the variational solution h ∈ H 

1 (B 1 ; R d , |y| a dx) of div(|y| a ∇h) = 0 in B 1 , h = v on ∂B 1 . (3.2) Note that h ∈ L ∞ (B 1
B1 |y| a |∇h| 2 dx = B1 |y| a |∇(h -ξ)| 2 dx = ∂B1 |y| a (h -ξ) • ∂ ν h dH 1 ∂B1 |y| a |v -ξ| 2 dH 1 1/2 ∂B1 |y| a |∂ τ v| 2 dH 1 1/2 .
Hence, by symmetry,

B1 |y| a |∇h| 2 dx 2 ∂ + B1 y a |v -ξ| 2 dH 1 1/2 ∂ + B1 y a |∂ τ v| 2 dH 1 1/2 . (3.4)
By the fundamental theorem of calculus (and symmetry), we have

|v(x) -v(x 0 )| 2 2 (x0,x1) |v -v(x 0 )||∂ τ v| dH 1 2 ∂ + B1 y -a |v -v(x 0 )| 2 dH 1 1/2 ∂ + B1 y a |∂ τ v| 2 dH 1 1/2
for every x, x 0 ∈ ∂B 1 . We choose the point x 0 in such a way that x → |v(x) -ξ| achieves its minimum at x 0 . Then,

|v -v(x 0 )| 2 2|v -ξ| 2 + 2|v(x 0 ) -ξ| 2 4|v -ξ| 2 on ∂B 1 . Consequently, |v(x) -v(x 0 )| 2 4 ∂ + B1 y -a |v -ξ| 2 dH 1 1/2 ∂ + B1 y a |∂ τ v| 2 dH 1 1/2 (3.5) for every x ∈ ∂B 1 . Since h is bounded, |h -v(x 0 )| 2 belongs to H 1 (B 1 , |y| a dx). Moreover, div |y| a ∇(|h -v(x 0 )| 2 ) 0 in B 1 ,
and the maximum principle in [START_REF] Fabes | The local regularity of solutions of degenerate elliptic equations[END_REF] together with (3.5) implies that

|h(x) -v(x 0 )| 2 4 ∂ + B1 y -a |v -ξ| 2 dH 1 1/2 ∂ + B1 y a |∂ τ v| 2 dH 1 1/2
for every x ∈ B 1 . Applying Lemma 3.1 at x = x 0 , we now infer that

d N h(x) d N h(x) -d N v(x 0 ) + d N v(x 0 ) h(x) -v(x 0 ) + d N v(x 0 ) 2 ∂ + B1 y -a |v -ξ| 2 dH 1 1/4 ∂ + B1 y a |∂ τ v| 2 dH 1 1/4 + ∂ + B1 y -a d 2 N (v) dH 1 1/4 ∂B + 1 y a |∂ τ v| 2 dH 1 1/4 2 ∂ + B1 y a |∂ τ v| 2 dH 1 1/4 ∂ + B1 y -a |v -ξ| 2 dH 1 + ∂ + B1 y -a d 2 N (v) dH 1 1/4
for every x ∈ B 1 . By our assumption, we thus have

d N (h) 2ε 1/4 0 in B 1 .
As a consequence, if ε 0 = ε 0 (N ) is small enough, h takes values in a small tubular neighborhood of N . In such a neighborhood, the nearest point retraction π N on N is well defined and smooth. Therefore, π N (h) belongs to H 1 (B 1 ; N , |y| a dx), and

π N (h) -h 2 L ∞ (B1) 4 ∂ + B1 y a |∂ τ v| 2 dH 1 1/2 ∂ + B1 y -a |v -ξ| 2 dH 1 + ∂ + B1 y -a d 2 N (v) dH 1 1/2 . (3.6)
We shall now construct the extension w interpolating h and π N (h) near ∂ + B 1 . We proceed as follows. Consider the set where C = C(s). In particular, ζ ∈ H 1 (B + 1 ; [0, 1], y a dx). We finally define

A := x = (x, y) ∈ B + 1 : 0 y 1/2 , |x| 1 -y 2 -y
w := ζ π N (h) -h + h ∈ H 1 (B + 1 ; R d , y a dx) .
By construction, w(x) ∈ N for x ∈ ∂ 0 B + 1 , and w = h = v on ∂ + B 1 . Then we estimate

B + 1 y a |∇w| 2 dx 2 B + 1 y a |∇h| 2 dx + 4 B + 1 y a ∇(π N (h) -h) 2 dx + 4 B + 1 y a |∇ζ| 2 |π N (h) -h| 2 dx C B + 1 y a |∇h| 2 dx + 4 π N (h) -h 2 L ∞ (B + 1 ) B + 1 y a |∇ζ| 2 dx . (3.8)
Gathering (3.8) with (3.4), (3.6), and (3.7) leads to the announced result.

Corollary 3.3 (Hybrid inequality).

There exists two constants ε 1 = ε 1 (N ) > 0 and C = C(N , s) such that the following holds. Let v ∈ H 1 (B + 1 ; R d , y a dx) be a minimizing weighted harmonic map with free boundary in B + 1 , and ξ ∈ R d . If

B + 1 y a |∇v| 2 dx B + 1 y -a |v -ξ| 2 dx + B + 1 y -a d 2 N (v) dx ε 1 , then B + 1/2 y a |∇v| 2 dx λ B + 1 y a |∇v| 2 dx + C λ B + 1 y -a |v -ξ| 2 dx + B + 1 y -a d 2 N (v) dx
for every λ ∈ (0, 1).

Proof. By a classical averaging argument, we can find r ∈ (1/2, 1) such that v restricted to ∂ + B r belongs to H 1 (∂ + B r ; R d , y a dx), and

∂ + Br y -a |v -ξ| 2 dH 1 12 B + 1 y -a |u -ξ| 2 dx , ∂ + Br y -a d 2 N (v) dH 1 12 B + 1 y -a d 2 N (v) dx , ∂ + Br y a |∂ τ v| 2 dH 1 12 B + 1 y a |∇v| 2 dx .
Setting v r (x) := v(rx) for x ∈ ∂ + B 1 , we deduce by scaling that v r satisfies (3.1) for ε 1 small enough. Denote by w r the extension of v r provided by Lemma 3.2, and set w(x) := w r (x/r) for x ∈ B + r . Scaling back, we discover that 

B + r y a |∇w| 2 dx C ∂ + Br y a |∂ τ v| 2 dH 1 1/2 ∂ + Br y -a |v -ξ| 2 dH 1 + ∂ + Br y -a d 2 N (v) dH 1 1/2 . Since w = v on ∂ + B r ,
+ 3 λ ∂ + Br y -a |v -ξ| 2 dH 1 + ∂ + Br y -a d 2 N (v) dH 1 λ B + 1 y a |∇v| 2 dx + 36 λ B + 1 y -a |v -ξ| 2 dx + B + 1 y -a d 2 N (v) dx
for every λ ∈ (0, 1).

Small energy regularity.

We shall now prove the aforementioned small energy regularity property. As usual, the cornerstone argument is an energy improvement under a small oscillation condition. This leads to an improved energy decay, which in turn implies Hölder continuity as in the classical Morrey's lemma.

Theorem 3.4 (Energy improvement).

There exist constants r 0 = r 0 (s, N ) ∈ (0, 1/2) and

ε 2 = ε 2 (s, N ) > 0 such that the following holds. If v ∈ H 1 (B + 1 ; R d , y a dx) is a minimizing weighted harmonic map in B + 1 satisfying E s (v, B + 1 ) ε 2 2 , then 1 r 1-2s 0 E s (v, B + r0 ) < 1 2 E s (v, B + 1 ) .
Let us start with the following elementary lemma inspired from [START_REF] Duzaar | A partial regularity theorem for harmonic maps at a free boundary[END_REF]Lemma 3.3].

Lemma 3.5. Let v ∈ H 1 (B + 1 ; R d , y a dx) be such that v(x) ∈ N for a.e. x ∈ ∂ 0 B + 1 . Setting v := 2 π B + 1 v dx , one has d N (v) C E s (v, B + 1 ) 1/2
for some constant C = C(s).

Proof.

Since d N is 1-Lipschitz, we have d N (v) |v -v| + d N (v), and d N (v) ∈ H 1 (B + 1 , y a dx) satisfies d N (v) = 0 on ∂ 0 B + 1 .
Applying Poincaré's inequalities, and Hölder's inequality,

d N (v) C B + 1 |v -v| dx + C B + 1 d N (v) dx C B + 1 |∇v| dx + C B + 1 ∇ d N (v) dx C E s (v, B + 1 ) 1/2
where we have used again the fact that d N is 1-Lipschitz in the last inequality.

Proof of Theorem 3.4.

Step 1. We argue by contradiction assuming that for a given radius r 0 ∈ (0, 1/2) (to be chosen), there is a sequence 

{v n } in H 1 (B + 1 ; R d , y a dx) of minimizing weighted harmonic maps in B + 1 such that ε 2 n := E s (v n , B + 1 ) → 0 , (3.9) and 1 r 1-2s 0 E s (v n , B + r0 ) 1 2 E s (v n , B + 1 ) . ( 3 
|v(x) -v(y)| 2 )
|x -y| 1+2s dxdy CR -β r β for every x 0 = (x 0 , 0) ∈ ∂ 0 B + R and 0 < r R, where we have set ω r (x 0 ) :

= ∂ 0 B + r (x 0 ). Setting (v) x0,r := 1 2r ωr(x0) v dx , we deduce from Poincaré's inequality in H s (ω r (x 0 )) that 1 r 2 ωr(x0) |v -(v) x0,r | 2 dx C r 1-2s ωr(x0)×ωr(x0) |v(x) -v(y)| 2 |x -y| 1+2s dxdy CR -β r β ,
for all x 0 ∈ ω R (0) and 0 < r R. The conclusion then follows from Campanato's criterion (see e.g. [13, Chapter 6.1]).

Compactness of minimizing s-harmonic maps

This section is devoted to compactness of minimizing s-harmonic maps. As it will be clear in a few lines, the proof is here much simpler compare to classical harmonic maps, as minimality can be directly tested (as if the exterior condition were fixed). Consequences concerning the extensions and densities are then easy exercices. Theorem 4.1. Let ω ⊆ R be a bounded open interval, and {u n } n∈N ⊆ H s (ω; N ) a sequence of minimizing s-harmonic maps in ω. Assume that sup n E s (u n , ω) < ∞, and u n → u in L 2 loc (R). Then u ∈ H s (ω; N ) is a minimizing s-harmonic map in ω, u n → u strongly in H s loc (ω), and E s (u n , ω ) → E s (u, ω ) for every open interval such that ω ⊆ ω.

Proof. First we select a subsequence u k := u n k such that u k → u a.e. on R, and

lim k→∞ E s (u k , ω) = lim inf n→∞ E s (u n , ω) < ∞ .
Since each u k takes values into N , we infer from the pointwise convergence that u(x) ∈ N for a.e. x ∈ R. Then, by Fatou's lemma, we have

E s (u, ω) lim k→∞ E s (u k , ω) , so that u ∈ H s (ω; N ). Let us now consider u ∈ H s (ω; N ) such that spt(u -u) ⊆ ω.
We select an open interval ω such that spt(u -u) ⊆ ω and ω ⊆ ω. Define

u k (x) := u(x) if x ∈ ω , u k if x ∈ R \ ω .
It is elementary to check that u k ∈ H s (ω; N ), and of course spt(

u k -u k ) ⊆ ω. By minimality of u k , we have E s (u k , ω) E s ( u k , ω) which leads to E s (u k , ω ) E s ( u k , ω ) = γ s 2 ω ×ω | u(x) -u(y)| 2 |x -y| 1+2s dxdy + γ s ω ×(R\ω ) | u(x) -u k (y)| 2 |x -y| 1+2s dxdy . (4.1)
Since u and u k are taking values in N , we have

| u(x) -u k (y)| 2 |x -y| 1+2s C |x -y| 1+2s ∈ L 1 ω × (R \ ω ) .
Hence E s ( u k , ω ) → E s ( u, ω ) by dominated convergence and the fact that u = u a.e. in R \ ω . On the other hand, lim inf k E s (u k , ω ) E s (u, ω ), still by Fatou's lemma. Letting k → ∞ in (4.1), we can now conclude that E s (u, ω ) E s ( u, ω ). Once again, since u = u a.e. in R \ ω , this yields E s (u, ω) E s ( u, ω). We have thus proved that u is a minimizing s-harmonic map in ω.

In addition, the argument above applied to u = u shows that E s (u k , ω ) → E s (u, ω ). In turn,

ω ×(R\ω ) |u k (x) -u k (y)| 2 |x -y| 1+2s dxdy → ω ×(R\ω ) |u(x) -u(y)| 2 |x -y| 1+2s dxdy ,
again by dominated convergence. Hence, Proof. Without loss of generality we may assume that x = 0. For r > 0 small enough we have ∂ 0 B + 2r ⊆ ω. Setting r n := |x n |, we have r n < r for n large enough. Then, we infer from Corollary 2.6 that 

ω ×ω |u k (x) -u k (y)| 2 |x -
E s u e n -u e , B + r (x 0 ) C E s (u n -u, ∂ 0 B + 2r (x 0 )) + u n -u L 2 (∂ 0 B + 2r ( 
Θ u e n (x n ) Θ u e n (x n , r)
Θ u e n (x n ) lim n→∞ 1 r 1-2s E s (u e n , B + r+rn ) = Θ u e (0, r) .
Letting now r ↓ 0 provides the desired conclusion.

Proof of Theorems 1.1 & 1.2

This section is devoted to the proof of Theorem 1.1 and 1.2. We consider for the entire section a bounded open interval ω ⊆ R, and u ∈ H s (ω; N ) a minimizing sharmonic map in ω. Both proofs rely on the analysis of tangent maps of u at a given point of ω. To define them, we fix a point x 0 ∈ ω, and for ρ > 0 we consider the rescaled map u x0,ρ (x) := u(x 0 + ρx) .

Tangent maps of u at x 0 are all possible weak limits of u x0,ρ as ρ ↓ 0, and this is is the purpose of the following proposition. Proposition 5.1 (Tangent maps). Let ρ n → 0 be an arbitrary sequence. There is a (not relabeled) subsequence such that u x0,ρn → u 0 strongly in H s loc (R), where u 0 is a minimizing s-harmonic map in every bounded open interval of the form

u 0 (x) := a if x > 0 , b if x < 0 , (5.1) 
for some a, b ∈ N . In addition, Θ u e 0 (0, r) = Θ u e 0 (0) = Θ u e (x 0 ) for every r > 0. Proof. Assume without loss of generality that x 0 = 0 and [-1, 1] ⊆ ω. For an integer k 1, write ω k := (-k, k). For n large enough, 2ρ n k 1 and u n := u 0,ρn ∈ H s (ω k ; N ). Moreover,

E s (u n , ω k ) = 1 ρ 1-2s n E s (u, ρ n ω k ) .
Next we infer from Lemma 2.3 and Lemma 2.5 that

1 ρ 1-2s n (ρnω k )×(ρnω k ) |u(x) -u(y)| 2
|x -y| 1+2s dxdy CΘ u e (0, 2ρ n k) CΘ u e (0, 1) .

On the other hand,

1 ρ 1-2s n (ρnω k )×(R\ρnω k ) |u(x) -u(y)| 2 |x -y| 1+2s dxdy C ρ 1-2s n (ρnω k )×(R\ρnω k ) 1 |x -y| 1+2s dxdy = Ck 1-2s .
Therefore E s (u n , ω k ) C k for a constant C k depending only on s and k. In particular, {u n } is bounded in H s (ω k ) for each integer k 1. Hence, we can find a (not relabeled) subsequence such that u k u 0 weakly in H s loc (R). From the compact embedding H s (ω k ) → L 2 (ω k ), we also deduce that u n → u 0 in L 2 loc (R). Applying Theorem 4.1 in each ω k , we derive that u 0 is a minimizing s-harmonic map in every bounded open interval. Next, Theorem 4.2 implies that Θ u e 0 (0, r) = lim n→∞ Θ u e n (0, r) = lim n→∞ Θ u e (0, ρ n r) = Θ u e (0) ∀r > 0 .

Here, we have also used that u e n (x) = u e (ρ n x). In view of Corollary 2.6, we thus have

B + r y a |x • ∇u e 0 | 2 |x| 3-2s dx = Θ u e 0 (0, r) -Θ u e 0 (0) = 0 ∀r > 0 .
Therefore x • ∇u e = 0, so that u e 0 is positively 0-homogeneous, i.e., u e 0 (λx) = u e 0 (x) for every x ∈ R 2 + and λ > 0. In particular, u 0 is positively 0-homogeneous, and (5.1) follows.

Remark 5.2. If u is continuous at x 0 , the limit u 0 obtained in Proposition 5.1 is obviously the constant map equal to u(x 0 ). As a consequence, if u is continuous at x 0 , then Θ u e (x 0 , 0) = 0.

Proof of Theorem 1.1. Let us consider the set

S := x ∈ ω : Θ u e (x, 0) 2 2s-1 ε 2 2 , (5.2) 
where ε 2 > 0 is the constant given by Theorem 3.4. Since Θ u e is upper semicontinuous, S is a relatively closed subset of ω. Moreover, Corollaries 3.6 & 3.7 together with Corollary 2.6 implies that u is locally Hölder continuous in ω\S. To prove Theorem1.1, it then remains to show that S has no accumulation point in ω. We argue by contradiction assuming that there is a sequence {x n } ⊆ S such that x n → x ∈ ω. Without loss of generality, we may assume that x n > x. Setting ρ n := x n -x, we consider the sequence u n := u x0,ρn , and then apply Proposition 5.1 to find a (not relabeled) subsequence and a minimizing s-harmonic map u 0 of the form (5.1) such that u n → u 0 . In view of Corollary 4.3 we have

Θ u e 0 (1, 0) lim sup n→∞ Θ u e n (1, 0) = lim sup n→∞ Θ u e (x n , 0) ε 2 .
On the other hand, by the explicit form (5.1), the map u 0 is continuous at 1. Hence, Θ u e 0 (1, 0) = 0 by Remark 5.2, contradiction.

Proof of Theorem 1.2. Recall that we assume now that N = S d-1 . In view of the proof of Theorem 1.1, it is enough to show that the set S defined in (5.2) is empty. Assume by contradiction that S = ∅. We may then assume without loss of generality that 0 ∈ S. Let u 0 be a s-minimizing harmonic map produced by Proposition 5.1, i.e., u 0 is the limit of the rescaled map u 0,ρn for some sequence ρ n → 0. Then Θ u e 0 (0) ε 2 > 0, so that u 0 is not constant. In other words, in the form (5.1) the two vectors a, b ∈ S d-1 are distinct. Upon working in the plane passing through a, b, and the origin, there is no loss of generality assuming that d = 2, that is N = S 1 . Moreover, rotating coordinates in the image if necessary, we can assume that a = (α, β) and b = (-α, β) , with 0 < α 1 and 0 β < 1 satisfying α 2 + β 2 = 1. Then set a * := (-β, α) and b * := (β, α) .

Note that a * ⊥ a and b * ⊥ b. We define for t ∈ R,

u t (x) :=              a + ta * √ 1 + t 2 if 0 < x < 1 , b + tb * √ 1 + t 2 if -1 < x < 0 , u 0 (x) otherwise .
One can easily check that u t ∈ H s (-2, 2); S 1 , and since spt(u t -u) ⊆ (-2, 2), the map u t is an admissible competitor for the minimality of u 0 in (-2, 2). In other words, E s u 0 , (-2, 2) E s u t , (-2, 2) , which in turn yields E s u 0 , (-1, 1) E s u t , (-1, 1) since u t = u 0 outside (-1, 1). Therefore, As a consequence, using the symmetry in the integrals above, Aknowledgements. V.M. is supported by the Agence Nationale de la Recherche through the projects ANR-12-BS01-0014-01 (Geometrya) and ANR-14-CE25-0009-01 (MAToS).
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  s (u, ω) := γ s 2 ω×ω |u(x) -u(y)| 2 |x -y| 1+2s dxdy + γ s ω×(R\ω) |u(x) -u(y)| 2 |x -y| 1+2s dxdy .

Finally, we denote

  by d N the distance function on R d to the manifold N , i.e., d N (z) := inf p∈N |z -p| .

Proposition 2 . 4 .

 24 Let ω ⊆ R be a bounded open interval, and u ∈ H s (ω; N ) a minimizing s-harmonic map in ω. Then u e is a minimizing weighted harmonic map in Ω with free boundary in every bounded admissible open set Ω

a 2 ,

 2 and let ζ ∈ C ∞ (B + 1 ; [0, 1]) be a smooth cut-off function satisfying ζ = 1 in A ∩ B + 1 , and ζ = 0 on ∂ + B 1 . From the very definition of A, we can even find ζ in such a way that |∂ y ζ(x, y)| C and |∂ x ζ(x, y)| Cy

1 . 4 . 3 .

 143 x0)) → 0 , again by Theorem 4.Corollary In addition to Theorem 4.1, if {x n } ⊆ ω is a sequence converging to x ∈ ω, then lim sup n→∞ Θ u e n (x n ) Θ u e (x) .

d 2 dt 2 E 0 .

 20 s u t , (-1, 1) t=0 Now we expand E s u t , (-1, 1) asE s u t , (-1, 1) = γ s 1+2s (a -b) + t(a * -b * )

2 .

 2 It then follows that d dt E s u t , (-1, 1) t=0 = -Cαβ for some constant C = C(s) > 0. The first order condition implies αβ = 0, and thus a = (1, 0) , b = (-1, 0) , and a * = b * = (0, 1) .

  |x -y| 1+2s < 0 , contradicting the second order condition for minimality.

  y a dx) are continuous on ∂ + B 1 . Then notice that the function d N is 1-Lipschitz, and by chain rule one derives |∇d 2 N | 2d N a.e. in R d . In turns, it implies that d 2 N (u) ∈ H 1 (∂ + B 1 , y a dx) and

  Br y a |∂ τ v| 2 dH 1

	E s (v, B + 1 ) E s (w, B + 1 ), which leads to
	y a |∇v| 2 dx	y a |∇v| 2 dx
	B + 1/2	B + r
		y a |∇w| 2 dx
		B + r
		λ
		12 ∂ +

and w(x) ∈ N on ∂ 0 B + r , we may extend w by v in B + 1 \ B + r to produce a competitor to minimality, that we still denote by w. Hence, we have

  .10) In turn, this last corollary implies Hölder continuity at the boundary as in Morrey's lemma.Corollary 3.7. In addition to Corollary 3.6, v is Hölder continuous on ∂ 0 B + R with Hölder exponent β/2.

	Proof. Combining Corollary 3.6 with Lemma 2.3, we first infer that
	1	
	r 1-2s	ωr(x0)×ωr(x0)

  y| 1+2s dxdy → Since {u k } is bounded in H s (ω ) and u k → u pointwise., we have u k u weakly in H s (ω ). Then (4.2) implies that u k → u strongly in H s (ω ). In addition to Theorem 4.1, u e n → u e strongly in H 1 (Ω; R d , y a dx) for every bounded admissible open set Ω ⊆ R 2 + such that ∂ 0 Ω ⊆ ω. R d , y a dx). Since u e solves (2.3), we infer from standard elliptic theory that u e n → u e strongly in H 1 loc (R 2 + ; R d , y a dx). It remains to prove that strong convergence holds up to ∂ 0 Ω (locally). To this purpose, let us fix an arbitrary half ball B + r (x 0 ) such that x 0 ∈ ∂ 0 Ω and ∂ 0 B + 3r (x 0 ) ⊆ ω. By [15, Lemma 2.10], we have

	ω ×ω	|u(x) -u(y)| 2 |x -y| 1+2s dxdy .	(4.2)
	Theorem 4.2. Proof. From Theorem 4.1 and [15, Lemma 2.10], we start deducing that u e n → u e strongly in L 2 loc (R 2 + ;

  s u t , (-1, 1) = 4γ s

	1		0	dxdy	1
	0 + 2γ s + 2γ s	0 0	-1 1 1	|x -y| 1+2s +∞ dxdy 1 |x -y| 1+2s 1 + t 2 (1 --1 -∞ dxdy |x -y| 1+2s (1 + √ √ 1 + t 2 1 + t 2 ) 2 + t 2 1 + t 2 ) 2 + t 2 1 + t 2 .
	An elementary computation now yields
	d 2 dt 2 E s u t , (-1, 1)			

By Lemma 3.5, we have d N (v n )

Cε n → 0. Hence, for n large enough, there is a unique p n ∈ N such that d N (v n ) = |v n -p n |. Extracting a subsequence, there are p ∈ N and q ∈ R d such that p n → p , vn → p , and p n -vn ε n → q .

Note that q ∈ Nor(p, N ) since p n -vn ∈ Nor(p n , N ).

By Poincaré's inequality in H 1 (B + 1 ; R d , y a dx) (see [START_REF] Fabes | The local regularity of solutions of degenerate elliptic equations[END_REF]), v n → p in L 2 (B + 1 , y a dx), and therefore in H 1 (B + 1 ; R d , y a dx). By continuity of the trace operator, we then have v n → p in L 2 (∂ 0 B + 1 ), and thus v n → p a.e. on ∂ 0 B + 1 , up to a further subsequence. Consider now the sequence

which satisfies E s (w n , B + 1 ) = 1 and Next, by continuity of the trace operator, we also deduce that

, we deduce that, up to a subsequence, w n → w a.e. on ∂ 0 B + 1 and strongly in

) is converging toward a vector in Tan(p, N ) since v n (x) → p and p n → p. Therefore, w(x) -q ∈ Tan(p, N ) for a.e. x ∈ ∂ 0 B + 1 .

(3.12)

Step 2. We claim that

To prove (3.13), we consider the field Π b of d × d matrices associating to b ∈ N the orthogonal projector on Tan(b, N ). Then we consider a (smooth) compactly supported extension of Π b to the whole R d . Then Π vn ∈ H 1 (B + 1 ; R d×d , y a dx), and 

Since {w n } is weakly convergent and Π vn ζ strongly convergent, we can pass to the limit n → ∞ to derive Since the embedding H 1 (B + 1 , y a dx) → L 2 (B + 1 , y -a dx) is compact (see e.g. [START_REF] Horiuchi | The imbedding theorems for weighted Sobolev spaces[END_REF]), we have Poincaré's inequalities telling us that 1 (2r 0 ) 1+2s

,

.

Here we have used the monotonicity formula in Lemma 2.5, the fact that the function

Changing variables, one discovers that the rescaled map x → v n (2r 0 x) satisfies the small oscillation condition in Corollary 3.3 with ξ = (v n ) 2r0 for n large enough, thanks to (3.9). Choosing λ = 1/8 in that corollary and scaling back, we infer that

By Lemma 2.5 again, we have

Then,

By the two compact embeddings H 1 (B + 1 , y a dx) → L 1 (B + 1 ) and H 1 (B + 1 , y a dx) → L 2 (B + 1 , y -a dx), we have w n → w strongly in L 2 (B + 1 , y -a dx) and (w n ) 2r0 → (w) 2r0 . Hence,

Next we decompose the map w as w =: w T + w ⊥ where w T takes values in Tan(p, N ), and w ⊥ takes values in Nor(p, N ). From (3.11) and (3.12), we derive that div(y

From the boundary condition, we can reflect oddly the map (w ⊥ -q) to the whole ball B 1 , so that the resulting w ⊥ belongs to H 1 (B 1 , y a dx) and satisfies div(|y| a ∇w ⊥ ) = 0 in B 1 .

By the regularity result in [START_REF] Fabes | The local regularity of solutions of degenerate elliptic equations[END_REF], w ⊥ is α-Hölder continuous in B 1/2 for some Hölder exponent α = α(s) ∈ (0, 1). Consequently,

Next we deduce from (3.13) that

If we reflect evenly w T to the whole ball B 1 , then w T belongs to H 1 (B 1 , |y| a dx) and satisfies div(|y| a ∇w T ) = 0 in B 1 .

Once again, [START_REF] Fabes | The local regularity of solutions of degenerate elliptic equations[END_REF] tells us that w T is α-Hölder continuous in B 1/2 , and thus

In view of (3.18), (3.19) and (3.20), we have proved that

Finally, to estimate the last term in the right hand side of (3.16), we proceed as follows. First notice that d

1 , y a dx). Up to a further subsequence, we also have v n (x) → a, w n (x) → w(x), and

1 such that these convergences hold at x, we have

On the other hand, for n large enough, v n (x) has a unique nearest point v n ∈ N , and

for some n ∈ Nor(p, N ), taking a subsequence if necessary. In turn, it implies that ε -1 n (v n -p n ) is converging toward a vector t ∈ Tan(p, N ). Consequently, t + n = w(x) -q, so that n = w ⊥ (x) -q, and thus d(x) = |w ⊥ (x) -q|.

We have thus shown that ε -1 n d N (v n ) → |w ⊥ -q| a.e. in B + 1 , and therefore in L 2 (B + 1 , y -a dx). Hence,

Since w ⊥ is α-Hölder continuous in B + 1/2 and w ⊥ -q = 0 on ∂ 0 B + 1 , we conclude that Arguing exactly as [9, Theorem 2.5], we infer from Theorem 3.4 the following decay estimate.

Corollary 3.6 (Energy decay). If v ∈ H 1 (B + 2R ; R d , y a dx) is a minimizing weighted harmonic map in B + 2R satisfying E s (v, B + 2R ) ε 2 2 R 1-2s , then 1 r 1-2s E s v, B + r (x) CR -β r β for all x ∈ ∂ 0 B + R and 0 < r R , for some exponent β ∈ (0, 1) depending only on s and N .