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A NOTE ON TORIC DEGENERATION OF A
BOTT-SAMELSON-DEMAZURE-HANSEN VARIETY

B. NARASIMHA CHARY

Abstract. In this paper we study the geometry of toric degeneration of a Bott-
Samelson-Demazure-Hansen (BSDH) variety, which was algebraically constructed in
[Pas10] and [PK16]. We give some applications to BSDH varieties. Precisely, we classify
Fano, weak Fano and log Fano BSDH varieties and their toric limits in Kac-Moody set-
ting. We prove some vanishing theorems for the cohomology of tangent bundle (and line
bundles) on BSDH varieties. We also recover the results in [PK16], by toric methods.

Keywords: Bott-Samelson-Demazure-Hansen varieties, canonical line bundle, tangent
bundle and toric varieties.

1. Introduction

Bott-Samelson-Demazure-Hansen (for short, BSDH) varieties are natural desingular-
izations of Schubert varieties in the flag varieties. These were algebraically constructed
by M. Demazure and H.C. Hansen independently by adapting a differential geometric ap-
proach from the paper of Bott and Samelson (see [BS58], [Dem74] and [Han73]). Briefly,
the BSDH varieties are iterated projective line bundles, given by factoring the Schubert
variety using Bruhat decomposition. These varieties depend on the given expression of
the Weyl group element corresponding to the Schubert variety (see for instance [CKP15,
Page 32]). We also see in this paper some properties of these varieties which depend on
the given expression.

In [GK94], M. Grossberg and Y. Karshon constructed toric degenerations of BSDH
varieties by complex geometric methods. In [Pas10] B. Pasquier and in [PK16] A.J.
Parameswaran and P. Karuppuchamy constructed these toric degenerations algebraically.
B. Pasquier used these degenerations to study the cohomology of line bundles on BSDH
varieties (see [Pas10]). In [PK16], the authors studied the limiting toric variety for a
simple simply connected algebraic group by geometric methods. In this paper we study
the limiting toric variety of a BSDH variety in more detail by methods of toric geometry
and we prove some applications to BSDH varieties. We also recover the results in [PK16]
and extend them to the Kac-Moody setting. The key idea for many results in this article
is that the toric limit is a ‘Bott tower’. These are studied in [Cha] and some of their
properties can be transferred to BSDH varieties by using the semi-continuity theorem.

The author is supported by AGIR Pole MSTIC project run by the University of Grenoble Alpes,
France.
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2 B.N. CHARY

Let G be a Kac-Moody group over the field of complex numbers (for the definition see
[Kum12]). Let B be a Borel subgroup containing a fixed maximal torus T . Let W be
the Weyl group corresponding to the pair (G,B, T ) and let w ∈ W . Let w̃ := sβ1 · · · sβn
be an expression (possibly non-reduced) of w in simple reflections and let Z(w̃) be the
BSDH variety corresponding to w̃ (see Section 2). Let Yw̃ be the toric limit of Z(w̃)
constructed as in [Pas10] and [PK16] (see Section 3). We see that Yw̃ is a Bott tower,
the iterated P1-bundle over a point {pt} where each P1-bundle is the projectivization of
a rank 2 decomposable vector bundle (see Corollary 4.4). We prove that the ample cone
Amp(Yw̃) of Yw̃ can be identified with a subcone of the ample cone Amp(Z(w̃)) of Z(w̃)
(see Corollary 5.1).

Recall that a smooth projective variety X is called Fano (respectively, weak Fano) if
its anti-canonical divisor −KX is ample (respectively, nef and big). Following [AS14], we
say that a pair (X,D) of a normal projective variety X and an effective Q-divisor D is
log Fano if it is Kawamata log terminal and −(KX +D) is ample.

When G is a simple algebraic group and the expression w̃ is reduced, Fanoness and
weak Fanoness of the BSDH variety Z(w̃) are considered in [Cha17]. Here we have the
following results in Kac-Moody setting. Let w̃ = sβ1 · · · sβi · · · sβj · · · sβr be an expression

(remember that βk’s are simple roots). Let βij := 〈βj, β̌i〉, where β̌i is the co-root of βi.
Now we define some conditions on the expression w̃ (see Section 6 for examples and also
see [Cha, Section 1]). Define for 1 ≤ i ≤ r,

η+
i := {r ≥ j > i : βij > 0} and η−i := {r ≥ j > i : βij < 0}.

If |η+
i | = 1 (respectively, |η+

i | = 2), then let η+
i = {m} (respectively, η+

i = {m1,m2}). If
|η−i | = 1 (respectively, |η−i | = 2), then set η−i = {l} (respectively, η−i = {l1, l2}).

• N1
i is the condition that
(i) |η+

i | = 0, |η−i | ≤ 1, and if |η−i | = 1 then βil = −1; or
(ii) |η−i | = 0, |η+

i | ≤ 1, and if |η+
i | = 1 then βim = 1 and βmk = 0 for all k > m.

• N2
i is the condition that
Case 1: Assume that |η+

i | = 0. Then |η−i | ≤ 2, and if |η−i | =
1(respectively, |η−i | = 2) then βli = −1 or −2 (respectively, βil1 = −1 = βil2).

Case 2: If |η−i | = 1 = |η+
i | and l < m, then βil = −1, βim = 1 and βmk = 0 for

all k > m.
Case 3: Assume that |η+

i | = 1. Then βim = 1 and either it satisfies
(i) Case 2; or
(ii) |η−i | = 0 and βmk = 0 for all k > m; or
(iii) there exists a unique r ≥ s > m such that βms − βis = 1 and βmk − βik = 0
for all k > s; or βms − βis = −1 and βis − βms − βsk = 0 for all k > s.

Definition 1.1. We say the expression w̃ satisfies condition I (respectively, condition II)
if N1

i (respectively, N2
i ) holds for all 1 ≤ i ≤ r. Note that N1

i =⇒ N2
i for all 1 ≤ i ≤ r.

Theorem (See Lemma 6.1 and Theorem 6.3).

(1) If w̃ satisfies I, then Yw̃ and Z(w̃) are Fano.
(2) If w̃ satisfies II, then Yw̃ and Z(w̃) are weak Fano.
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In [CKP15] and [CK17], we have obtained some vanishing results for the cohomology
of tangent bundle of Z(w̃), when G is finite dimensional and w̃ is reduced (see [CKP15,
Section 3] and [CK17, Theorem 8.1] ). The case w̃ is non-reduced is considered in [CKP].
Here we get some vanishing results in Kac-Moody setting. Let TZ(w̃) denote the tangent
bundle of Z(w̃).

Corollary (see Corollary 6.6). If w̃ satisfies I, then H i(Z(w̃), TZ(w̃)) = 0 for all i ≥ 1.
In particular, Z(w̃) is locally rigid.

In [AS14], D. Anderson and A. Stapledon studied the log Fanoness of Schubert varieties,
and in [And14], log Fanoness of BSDH varieties is studied for chosen divisors. Let D be
a divisor in Z(w̃) with support in the boundary of Z(w̃). For 1 ≤ i ≤ r, we define some
constants fi which again depend on the given expression w̃ (for more details see Section
6).

Corollary (see Corollary 6.7). The pair (Z(w̃), D) is log Fano if fi > 0 for all 1 ≤ i ≤ r.

The article is organized as follows: In section 2, we recall the construction of BSDH
varieties. In Section 3, we give the algebraic construction of toric degeneration of a BSDH
variety. In Section 4, we describe the limiting toric variety as an iterated P1-bundle. In
Section 5, we see some vanishing results of cohomology of line bundles on BSDH varieties.
Section 6 contains the results on Fano, weak Fano and log Fano properties of BSDH
varieties and their toric limits. We also study the vanishing results on cohomology of
tangent bundle on BSDH varieties. In Section 7, we recover the results in [PK16] by toric
methods.

2. Preliminaries

In this section we recall the construction of Bott-Samelson-Demazure-Hansen varieties
(see [BK07] and [Kum12]) and we recall some definitions in toric geometry which are used
in this article (for more details on toric varieties see [CLS11] and also [Ful93]). We work
over the field of complex numbers throughout.

2.1. BSDH varieties. Let A = (aij)1≤i,j≤n be a generalized Cartan matrix. Let G be
the Kac-Moody group associated to A (see [Kum12, Chapter IV]). Fix a maximal torus
T and a Borel subgroup B containing T . Let S := {α1, . . . , αn} be the set of all simple
roots of (G,B, T ). We denote sαi the simple reflection corresponding to αi. Note that
the Weyl group W of G is generated by

{sαi : 1 ≤ i ≤ n}.

Let w ∈ W , an expression w̃ of w is a sequence (sβ1 , . . . , sβr) of simple reflections
sβ1 , . . . , sβr such that w = sβ1 · · · sβr . An expression w̃ of w is said to be reduced if the
number r of simple reflections is minimal. In such case we call r the length of w. By
abuse of notation, we also denote the expression w̃ by w̃ = sβ1 · · · sβr . For α ∈ S, we
denote Pα, the minimal parabolic subgroup of G generated by B and a representative of
sα.
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Definition 2.1. Let w ∈ W and w̃ := sβ1 · · · sβr be an expression (not necessarily reduced)
of w. The Bott-Samelson-Demazure-Hansen (for short, BSDH) variety corresponding to
w̃ is

Z(w̃) := Pβ1 × · · · × Pβr/Br,

where the action of Br on Pβ1 × · · · × Pβr is defined by

(p1, . . . , pr) · (b1, . . . , br) = (p1b1, b
−1
1 p2b2, . . . , b

−1
r−1prbr) for all pi ∈ Pβi , bi ∈ B.

These are smooth projective varieties of dimension r. There is a natural morphism
φw̃ : Z(w̃) −→ G/B defined by

[(p1, . . . , pr)] 7→ p1 · · · prB.

If w̃ is reduced, the BSDH variety Z(w̃) is a natural desingularization of the Schubert
variety, the B-orbit closure of wB/B in G/B (see [Dem74], [Han73] and [Kum12, Chapter
VIII]). We can also construct the BSDH variety as an iterated P1-bundles. Let w̃′ :=
sβ1 · · · sβr−1 . Let f : G/B −→ G/Pβr be the map given by gB 7→ gPβr and let p :
Z(w̃′) −→ G/Pβr be the map given by [(p1, . . . , pr−1)] 7→ p1 · · · pr−1Pβr . Then we have the
following cartesian diagram (see [BK07, Page 66] and [Kum12, Chapter VII]):

Z(w̃) = Z(w̃′)×G/Pβr G/B
φw̃ //

fw̃
��

G/B

f

��
Z(w̃′) p

// G/Pβr

Note that fw̃ is a P1-fibration and the relative tangent bundle Tfw̃ of fw̃ is φ∗w̃(Lβr), where
Lβr is the homogeneous line bundle on G/B corresponding to βr. Using the cohomology
of the relative tangent bundle Tfw̃ we studied the cohomology of the tangent bundle of
Z(w̃), when G is finite dimensional and w̃ is a reduced expression (see [CKP15] and
[CK17]). The fibration fw̃ comes with a natural section σw̃ : Z(w̃′) → Z(w̃) induced by
the projection

Pβ1 × · · · × Pβr → Pβ1 × · · · × Pβr−1 .

For the toric limits we get two natural sections, as will be explained in Section 3. For all
i ∈ {1, . . . , r}, we denote Zi, the divisor in Z(w̃) defined by

{[(p1, . . . , pr)] ∈ Z(w̃) : pi ∈ B}.
In [LT04], N. Lauritzen and J.F. Thomsen proved that Z ′is forms a basis of the Picard
group of Z(w̃) and they also proved that if w̃ is a reduced expression these form a basis
of the monoid of effective divisors (see [LT04, Proposition 3.5]). Recently, the effective
divisors of Z(w̃) for w̃ non-reduced case have been considered in [And14].

The BSDH variety can be described also as an iterated projective line bundle, where
each projective bundle is the projectivization of certain rank 2 vector bundle (not nec-
essarily decomposable). In Section 4, we see the toric degeneration of a BSDH variety
(constructed in Section 3) is a Bott tower, the iterated P1-bundle over a point {pt}, where
each P1-bundle is the projectivization of a rank 2 decomposable vector bundle.
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2.2. Toric varieties.

Definition 2.2. A normal variety X is called a toric variety (of dimension n) if it
contains an n-dimensional torus T (i.e. T = (C∗)n) as a Zariski open subset such that
the action of the torus on itself by multiplication extends to an action of the torus on X.

Toric varieties are completely described by the combinatorics of the corresponding fans.
We denote the fan corresponding to a toric variety by Σ and the collection of cones of
dimension s in Σ by Σ(s) for 1 ≤ s ≤ n. For each cone σ ∈ Σ, we denote V (σ), the orbit
closure of the orbit corresponding to cone σ. For each σ ∈ Σ, σ(1) := σ ∩ Σ(1). For each
ρ ∈ Σ(1), we can associate a divisor in X, we denote it by Dρ (see [CLS11, Chapter 4]
for more details). We recall the following:

Definition 2.3.

(1) We say P ⊂ Σ(1) is a primitive collection if P is not contained in σ(1) for some
σ ∈ Σ but any proper subset is. Note that if Σ is simplicial, primitive collection
means that P does not generate a cone in Σ but every proper subset does.

(2) Let P = {ρ1, . . . , ρk} be a primitive collection in a complete simplicial fan Σ.

Recall uρ be the primitive vector of the ray ρ ∈ Σ. Then
∑k

i=1 uρi is in the relative
interior of a cone γP in Σ with a unique expression

k∑
i=1

uρi − (
∑

ρ∈γP (1)

cρuρ) = 0. (2.1)

where cρ ∈ Q>0. Then we call (2.1) the primitive relation of X corresponding to
P.

(3) For a primitive relation P , we can associate an element r(P ) in N1(X), where
N1(X) is the real vector space of numerical classes of one-cycles in X (see [CLS11,
Page 305]).

3. Toric degeneration of a BSDH variety

In [GK94], toric degenerations of BSDH varieties were constructed by complex geomet-
ric methods. In [Pas10] and [PK16] they have given an algebraic construction for toric
degeneration of a BSDH variety. We recall the algebraic construction here.

Note that the simple roots are linearly independent elements in the character group
of G. Let N be the lattice of one-parameter subgroups of T . We can choose a positive
integer q and an injective morphism λ : Gm −→ T (i.e. λ ∈ N and λ is injective) such
that for all 1 ≤ i ≤ n and u ∈ Gm, αi(λ(u)) = uq (see [Pas10, Page 2836]). When G is
finite dimensional, for each one-parameter subgroup λ ∈ N , define

P (λ) := {g ∈ G : limu→0λ(u)gλ(u)−1 exists in G}.
The set P (λ) is a parabolic subgroup and the unipotent radical Ru(P (λ)) of P (λ) is given
by

Ru(P (λ)) = {g ∈ G : limu→0λ(u)gλ(u)−1 is identity in G}.
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Any parabolic subgroup of G is of this form (see [Spr10, Proposition 8.4.5]). Choose a
one-parameter subgroup λ ∈ N such that the corresponding parabolic subgroup is B. Let
us define an endomorphism of G for all u ∈ Gm by

Ψ̃u : G→ G, g 7→ λ(u)gλ(u)−1.

Let B be the set of all endomorphisms of B. Now define a morphism

Ψ : Gm → B by u 7→ Ψ̃u|B.
This map can be extended to 0 and for all x ∈ U , Ψu|B(x) goes to identity when u goes
to zero. Let A1 := SpecC[t] be the affine line over C. We denote for all u ∈ A1, Ψu the
image of u in B. Note that Ψu is the identity on T and Ψ0 is the projection from B to T .
Let w̃ = sβ1 · · · sβr be an expression.

Definition 3.1.

(i) Let X be the variety defined by

X := A1 × Pβ1 × · · · × Pβr/Br,

where the action of Br on A1 × Pβ1 × · · · × Pβr is given by

(u, p1, . . . , pr) · (b1, . . . , br) = (u, p1b1,Ψu(b1)−1p2b2, . . . ,Ψu(br−1)−1prbr).

(ii) For all i ∈ {1, . . . , r}, we denote Zi the divisor in X defined by

{(u, p1, . . . , pr) ∈ Z : pi ∈ B}.

Note that X and Z ′is are integral. Let π : X → A1 be the projection onto the first
factor. Then we have the following theorem (see [Pas10, Proposition 1.3 and 1.4] and
[PK16, Theorem 9] ).

Theorem 3.2.

(1) π : X → A1 is a smooth projective morphism.
(2) For all u ∈ A1 \ {0}, the fiber π−1(u) is isomorphic to the BSDH variety Z(w̃)

such that π−1(u) ∩ Zi corresponds to the divisor Zi in Z(w̃).
(3) π−1(0) is a smooth projective toric variety.

We denote Xu := π−1(u) for u ∈ A1 and the limiting toric variety X0 = π−1(0) by Yw̃.

4. Connection to Bott towers

In this section we describe the toric limit Yw̃ as an iterated P1-bundle. We also recall
some results on Bott towers from [Cha]. Let {e+

1 , . . . , e
+
r } be the standard basis of the

lattice Zr. Define for all i ∈ {1, . . . , r},

e−i := −e+
i −

∑
j>i

βije
+
j , (4.1)

where βij := 〈βj, β̌i〉. The following proposition will give the description of the fan of the
toric variety Yw̃ (see [Pas10, Proposition 1.4]).
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Proposition 4.1.

(1) The fan Σ of the smooth toric variety Yw̃ consists of the cones generated by subsets
of

{e+
1 , . . . , e

+
r , e

−
1 , . . . , e

−
r }

and containing no subset of the form {e+
i , e

−
i }.

(2) For all i ∈ {1, . . . , r},Z0
i is the irreducible (C∗)r-stable divisor in Yw̃ corresponding

to the one-dimensional cone of Σ generated by e+
i and these form a basis of the

divisor class group of Yw̃.

Note that the maximal cones of Σ are generated by {eεi : 1 ≤ i ≤ r, ε ∈ {+,−}} . We
denote the divisor corresponding to the one-dimensional cone ρεi generated by eεi by Dρεi
for ε ∈ {+,−}. Let w̃′ := sβ1 · · · sβr−1 . Then we get a toric morphism fr : Yw̃ → Yw̃′

induced by the lattice map f r : Zr → Zr−1, the projection onto the first r−1 coordinates.
We prove,

Lemma 4.2.

(1) fr : Yw̃ → Yw̃′ is a toric P1-fibration with two disjoint toric sections.
(2) Yw̃ ' P(OYw̃′ ⊕L ) for some unique line bundle L on Yw̃′.

Proof. Let Σ′ be the fan corresponding to the toric variety Yw̃′ . From the above proposi-
tion, we can see that Σ has a splitting by Σ′ and {e+

r , 0, e
−
r }. Then by [CLS11, Theorem

3.3.19],

fr : Yw̃ → Yw̃′

is a locally trivial fibration with the fan ΣF of the fiber being {e+
r , 0, e

−
r }. Since ΣF is the

fan of the projective line P1, we conclude fr is a toric P1-fibration. As toric sections of the
toric fibration correspond to the maximal cones in ΣF , we get two disjoint toric sections
for fr. This proves (1).

Proof of (2): Since fr : Yw̃ → Yw̃′ is P1-fibration with a section, we see Yw̃ is a projective
bundle P(E ) over Yw̃′ corresponding to a rank 2 vector bundle E on Yw̃′ (see for example
[Har77, Chapter V, Proposition 2.2, page 370]).

Recall that the sections of projective bundle Yw̃ = P(E ) correspond to the quotient line
bundles of E (see [Har77, Proposition 7.12]). Since Yw̃ = P(E ) is projective line bundle on
Yw̃′ with two disjoint sections, we see E is decomposable as a direct sum of line bundles
on Yw̃′ .

As

P(E ) ' P(L ′ ⊗ E )

for any line bundle L ′ on Yw̃′ (see [Har77, Lemma 7.9]), we can assume without loss of
generality

E = OYw̃′ ⊕L

for some unique line bundle L on Yw̃′ . Hence Yw̃ ' P(OYw̃′ ⊕L ) and this completes the
proof of the lemma. �
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Definition 4.3. A Bott tower of height r is a sequence of projective bundles

Yr
πr−→ Yr−1

πr−1−→ · · · π2−→ Y1 = P1 π1−→ Y0 = {pt},

where Yi = P(OYi−1
⊕ Li−1) for a line bundle Li−1 over Yi−1 for all 1 ≤ i ≤ r and P(−)

denotes the projectivization (see for more detalis [Civ05] and also [Cha, Section 2]).

Then by definition of Bott tower and by Lemma 4.2(2) we get:

Corollary 4.4. The toric limit Yw̃ is a Bott tower.

We have the following situation:

P1 P1

Z(w̃) Yw̃

Z(w̃′) Yw̃′

fw̃ fr

Recall that the Bott towers bijectively correspond to the upper triangular matrices with
integer entries (see [Civ05, Section 3]). Here the upper triangular matrix Mw̃ correspond-
ing to Yw̃ is given by

Mw̃ =


1 β12 β13 . . . β1r

0 1 β23 . . . β2r

0 0 1 . . . β3r
...

...
. . .

...
0 . . . . . . 1


r×r

,

where βij’s are integers as defined before. Let Pi := {ρ+
i , ρ

−
i } for 1 ≤ i ≤ r. Then by

[Cha, Lemma 4.3], {Pi : 1 ≤ i ≤ r} is the set of all primitive collections of Yw̃. For
each 1 ≤ i ≤ r, we denote the cone in the definition of primitive relation (see Section 2)
corresponding to Pi by γPi . Let D =

∑
ρ∈Σ(1) aρDρ be a toric divisor in Yw̃ with aρ ∈ Z

and for 1 ≤ i ≤ r, define

di := (aρ+i + aρ−i −
∑

γj∈γPi (1)

cjaγj).

Then we recall the following from [Cha, Lemma 5.1]:

Lemma 4.5.

(1) D is ample if and only if di > 0 for all 1 ≤ i ≤ r.
(2) D is numerically effective (nef) if and only if di ≥ 0 for all 1 ≤ i ≤ r.

Also note that the conditions I and II on w̃ are same as the conditions on Mw̃ as in
[Cha].
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5. Vanishing results on Cohomology of certain line bundles on BSDH
varieties

Let X be a smooth projective variety. Recall N1(X) denote the real finite dimensional
vector space of numerical classes of real divisors in X (see [Kle66, §1, Chapter IV]). The
ample cone Amp(X) of X is the cone in N1(X) generated by classes of ample divisors.

5.1. Ample cone of the toric limit of BSDH variety. In [LT04], the ampleness of
line bundles on BSDH variety Z(w̃) is studied. Now we compare the ample cone of the
toric limit Yw̃ with that of the BSDH-variety Z(w̃) as a consequence of Theorem 3.2.

Corollary 5.1. The ample cone Amp(Yw̃) of Yw̃ can be identified with a subcone of the
ample cone Amp(Z(w̃)) of Z(w̃).

Proof. By Theorem 3.2, π : X → A1 is a smooth projective morphism with X0 = Yw̃ and
Xu = Z(w̃) for u 6= 0. Let L = {Lu : u ∈ A1} be a line bundle on π : X → A1 with L0 is
an ample line bundle on Yw̃. Note that the ampleness of line bundle is an open condition
for the proper morphism π, i.e. there exists an open subset U in A1 containing 0 such
that Lu is an ample line bundle on Xu for all u ∈ U (see [Laz04, Theorem 1.2.17]). Hence
we can identity Amp(Yw̃) with a subcone of Amp(Z(w̃)). �

5.2. Vanishing results. In [Pas10], B. Pasquier obtained vanishing theorems for the
cohomology of certain line bundles on BSDH varieties, by using combinatorics of the toric
limit (see [Pas10, Theorem 0.1]). Here we see some vanishing results for the cohomology
of certain line bundles on BSDH varieties. Let 1 ≤ i ≤ r, define hi−1

i := −βi(i−1) and

hji :=


0 for j > i.

1 for j = i.

−
∑i−1

k=j βik(h
j
k) for j < i.

Let ε ∈ {+,−}. Define Σ(1)ε := {ρεi : 1 ≤ i ≤ r}. Then we can write a toric divisor D in
Yw̃ as follows:

D =
∑
ρ∈Σ(1)

aρDρ =
∑

ρ∈Σ(1)+

aρDρ +
∑

ρ∈Σ(1)−

aρDρ.

For 1 ≤ i ≤ r, let

gi := aρ+i +
r∑
j=i

aρ−j h
i
j.

Recall di from Section 4,

di := (aρ+i + aρ−i −
∑

γj∈γPi (1)

cjaγj),

Let D′ =
∑r

i=1 giZi be a divisor in Z(w̃), where Zi is as in Section 2 for 1 ≤ i ≤ r.

Lemma 5.2. If di ≥ 0 for all 1 ≤ i ≤ r, then Hj(Z(w̃), D′) = 0 for all j > 0.
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Proof. If di ≥ 0 for all 1 ≤ i ≤ r, by Lemma 4.5,
∑

ρ∈Σ(1) aρDρ is a nef divisor in Yw̃.
Then we have

Hj(Yw̃,
∑
ρ∈Σ(1)

aρDρ) = 0 for all j > 0 (5.1)

(see [CLS11, Theorem 9.2.3, page 410] or [Oda88, Theorem 2.7, page 77]). Recall that by
Theorem 3.2, we have

Zxi = Zi for 0 6= x ∈ k and Z0
i = Dρ+i

.

By [Cha, Corollary 3.3], we can write

D =
∑
ρ∈Σ(1)

aρDρ ∼
r∑
i=1

giDρ+i
.

Hence by (5.1), Theorem 3.2 and by semi-continuity theorem (see [Har77, Theorem 12.8]),
we get

Hj(Z(w̃), D′) = 0 for all j > 0.

�

6. Fano, Weak Fano and log Fano BSDH varities

6.1. Fano and weak Fano properties. In this section, we observe that Fano and weak
Fano properties for BSDH variety Z(w̃) depend on the given expression w̃. We use the
terminology from Section 1. First we discuss the conditions I and II with some examples.
We use the ordering of simple roots as in [Hum72, Page 58].

The condition I:

(1) Special case: |η+
i | = 0 and |η−i | = 0. This condition means that the expression w̃ is

fully commutative without repeating the simple reflections. For example if G = SL(n,C)
and w̃ = sα1sα3 · · · sαr , 1 < r ≤ n − 1 and r is odd, then |η+

i | = 0 and |η−i | = 0 for all i.
Hence w̃ satisfies the condition I and also observe that in this case we have

Yw̃ ' Z(w̃) ' P1 × · · · × P1 (dim(Z(w̃)) times ).

(2) Let G = SL(n,C) and fix 1 ≤ j < r ≤ n − 1 such that j is even and r is odd.
Let w̃ = sα1sα3 · · · sαj−3

sαj−1
sαjsαj+1

sαj+3
· · · sαr . Note that sαj appears only once in the

expression w̃ and |η+
i | = 0 for all i. Let p be the ‘position of sαj ’ in the expression w̃,

then |η−i | = 0 for all i 6= p, p − 1 and |η−p−1| = 1 = |η−p | with βp−1p = −1 = βpp+1. Hence
w̃ satisfies condition I.

The condition II:

Again, let G = SL(n,C) and fix 1 ≤ j < r ≤ n − 1 such that j is even and r is odd.
Let w̃ = sα1sα3 · · · sαj−3

sαjsαj−1
sαj+1

sαj+3
· · · sαr (observe that we interchanged sαj and

sαj−1
in the example of condition II). Then |η+

i | = 0 and |η−i | ≤ 2 for all i. Let p be
the ‘position of sαj ’ in the expression w̃, then |η−i | = 0 for all i 6= p and |η−p | = 2 with
βpp+1 = −1 = βpp+1. Hence w̃ satisfies the condition II but not I.
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Let w̃ = sα1sα3sα1 . Then |η+
1 | = 1 with β13 = 2, and |η−1 | = |η+

2 | = η−2 | = 0 . Hence w̃1

satisfies II but not I.

Observe that the condition |η−i | = 1 and βil = −2, happens only in non-simply laced
cases. Let G = SO(5, k) (i.e. G is of type B2), let w̃1 = sα2sα1 and w̃2 = sα1sα2 . Recall
that we have 〈α1, α2〉 = −2 and 〈α2, α1〉 = −1. Then Hence w̃1 satisfies II but not I and
w̃2 satisfies I.

Let G be of type G2 (with 〈α1, α2〉 = −1 and 〈α2, α1〉 = −3). Let w̃1 = sα2sα1 and
w̃2 = sα1sα2 . Then Hence w̃1 satisfies I and w̃2 does not satisfy any of the conditions I
or II.

Now we have the following result:

Lemma 6.1.

(1) Yw̃ is Fano if and only if w̃ satisfies I.
(2) Yw̃ is weak Fano if and only if w̃ satisfies II.

Proof. This follows from Corollary 4.2 and [Cha, Theorem 6.3]. �

Recall the following (see for instance [Cha, Corollary 6.2]):

Lemma 6.2. Let X be a smooth projective variety and D be an effective divisor. Let
supp(D) denote the support of D. If X \ supp(D) is affine, then D is big.

We prove the following:

Theorem 6.3.

(1) If w̃ satisfies I, then Z(w̃) is Fano.
(2) If w̃ satisfies II, then Z(w̃) is weak Fano.

Proof. First recall that the canonical line bundle OZ(w̃)(KZ(w̃)) of Z(w̃) is given by

OZ(w̃)(KZ(w̃)) = OZ(w̃)(−∂Z(w̃))⊗ L(−δ),
where ∂Z(w̃) is the boundary divisor of Z(w̃) and δ ∈ N such that 〈δ, α̌〉 = 1 for all
α ∈ S, where α̌ is the co-root of α (see [Kum12, Proposition 8.1.2] and also [Ram85,
Proposition 2]). Note that if G is finite dimensional, δ is half sum of the positive roots.

By Theorem 3.2, φ : X → A1 is a smooth projective morphism with X0 = Yw̃ and
Xu = Z(w̃) for 0 6= u ∈ A1.

Proof of (1): By [Laz04, Theorem 1.2.17], if −KX0 is ample then −KXu is ample for
u 6= 0. By Lemma 6.1, −KYw̃ is ample if and only if w̃ satisfies I. Hence we conclude
that if w̃ satisfies I, then Z(w̃) is Fano.

Proof of (2): First we prove −KZ(w̃) is big. Let

Z0 := Z(w̃) \ ∂Z(w̃).

Note that Z0 is an open affine subset of Z(w̃). Then by Lemma 6.2, ∂Z(w̃) is big. Since

O(−KZ(w̃)) = O(∂Z(w̃))⊗ L(δ)
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and L(δ) is nef, we conclude −KZ(w̃) is big, as tensor product of a big and a nef line
bundles is again a big line bundle. By [Laz04, Theorem 1.4.14] and Xu = Z(w̃) for u 6= 0,
we can see that if −KX0 is nef then −KXu is also nef for u 6= 0. Therefore, (2) follows
from Lemma 6.1(2). �

There exists expressions w̃ such that the BSDH variety Z(w̃) is Fano (respectively,
weak Fano) but the toric limit Yw̃ is not Fano (respectively, not weak Fano).

Example 6.4. Let G = SL(4,C).

(1) Let w̃ = sα1sα1. Then Z(w̃) ' P1 × P1, which is Fano. The toric limit Yw̃ '
P(OP1 ⊕OP1(2)). Since w̃ does not satisfy I, then by Lemma 6.1, Yw̃ is not Fano.

(2) Let w̃ = sα1sα2sα1. Then it can be seen Z(w̃) is Fano (see [Cha17, Example 5.4]).
By Lemma 6.1, the toric limit Yw̃ is weak Fano but not Fano.

Example 6.5. Let G = SO(5, k), i.e. G is of type B2. Let w̃ = sα1sα2sα1. By Lemma
6.1, the toric limit Yw̃ is not weak Fano. Also we can see Z(w̃) is weak Fano but not Fano
(see [Cha17, Theorem 5.3]).

6.2. Local rigidity of BSDH varieties. In this section we obtain some vanishing results
for the cohomology of tangent bundle of the toric limit Yw̃ and Z(w̃). Let TX denote the
tangent bundle of X, where X = Yw̃ or Z(w̃). Then we have

Corollary 6.6.

(1) If w̃ satisfies I, then H i(Yw̃, TYw̃) = 0 for all i ≥ 1. In particular, Yw̃ is locally
rigid.

(2) If w̃ satisfies I, then H i(Z(w̃), TZ(w̃)) = 0 for all i ≥ 1. In particular, Z(w̃) is
locally rigid.

Proof. Proof of (1): If w̃ satisfies I, then by Lemma 6.1, Yw̃ is a Fano variety. By [BB96,
Proposition 4.2], since Yw̃ is a smooth Fano toric variety, we get H i(Yw̃, TYw̃) = 0 for all i ≥
1.

Proof of (2): From Theorem 3.2, π : X → A1 is a smooth projective morphism with
X0 = Yw̃ and Xu = Z(w̃) for u ∈ A1 , u 6= 0. Hence (2) follows from (1) by semi-continuity
theorem (see [Har77, Theorem 12.8]). �

6.3. Log Fano BSDH varieties. In [And14] and [AS14] log Fanoness of Schubert va-
rieties and BSDH varieties were studied respectively. Now we characterize the (suit-
ably chosen) Q-divisors D′ in Z(w̃)) for which (Z(w̃), D′) is log Fano. Recall that
Zi = {[(p1, . . . , pr)] ∈ Z(w̃) : pi ∈ B} is a divisor in Z(w̃) (see Section 2). Let
γi = sβr · · · sβi+1

(βi) for 1 ≤ i ≤ r. Then,

L(δ) =
r∑
i=1

biZi with bi = 〈δ, γ̌i〉 = ht(γi), (6.1)

where δ is as in Section 6.1 (see page 10), L(δ) is the homogeneous line bundle on Z(w̃)
corresponding to δ and ht(β) for a root β =

∑n
i=1 niαi, is the height defined by ht(β) =
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i=1 ni (see [MR85, Proof of Proposition 10]). When w̃ is reduced, γi is a positive root

and we can see the relation (6.1) from the Chevalley formula for intersection of Schubert
variety by a divisor (see [AS14, Page 410] or [Che94]). It is known that

−KZ(w̃) =
r∑
i=1

(bi + 1)Zi (6.2)

(see [MR85, Proposition 4]). Let D′ =
∑r

i=1 aiZi be a effective Q-divisor in Z(w̃), with
bD′c = 0, where b

∑
i aiZic =

∑
ibaicZi, bxc is the greatest integer ≤ x. Then by (6.2),

we get

−(KZ(w̃) +D′) =
r∑
i=1

(bi + 1 + ai)Zi.

For 1 ≤ i ≤ r, define

fi := (bi + 1 + ai)−
∑

γj∈γPi (1)+

cj(bj + 1 + aj),

where γPi(1)+ := γPi(1) ∩ {ρ+
l : 1 ≤ l ≤ r} and γPi is the cone as in (2.1) for the toric

limit Yw̃.

Recall that if X is smooth and D is a normal crossing divisor, the pair (X,D) is log
Fano if and only if bDc = 0 and −(KX +D) is ample (see [KM08, Lemma 2.30, Corollary
2.31 and Definition 2.34]).

We prove,

Corollary 6.7. The pair (Z(w̃), D′) is log Fano if fi > 0 for all 1 ≤ i ≤ r.

Proof. By definition of D′, the pair (Z(w̃), D′) is log Fano if and only if −(KZ(w̃) +D′) is
ample. Now we prove −(KZ(w̃) +D′) is ample if fi > 0 for all 1 ≤ i ≤ r. Recall that Dρ+i

is the divisor corresponding to ρ+
i ∈ Σ(1) and Zxi = π−1(x) ∩ Zi for x ∈ k (see Section 2

and Section 3).

By Theorem 3.2, we have

Zxi = Zi for x 6= 0 and Z0
i = Dρ+i

. (6.3)

Assume that fi > 0 for all 1 ≤ i ≤ r. By (6.3) and by semicontinuity (see [Laz04,
Theorem 1.2.7]) to prove (Z(w̃), D′) is log Fano it is enough to prove

r∑
i=1

(bi + 1 + ai)Dρ+i
is ample .

By Lemma 4.5, we see that
∑r

i=1(bi + 1 + ai)Dρ+i
is ample if and only if

fi = ((bi + 1 + ai)−
∑

γj∈γPi (1)+

cj(bj + 1 + aj)) > 0 for all 1 ≤ i ≤ r.

Hence we conclude that (Z(w̃), D′) is log Fano. �
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7. More results on the toric limit

In this section we are going to recover the results of [PK16] by using methods of toric
geometry. In [PK16], they have assumed that G is a simple algebraic group. In our
situation G is a Kac-Moody group. Recall the following:

(1) w̃ = sβ1 · · · sβr and w̃′ = sβ1 · · · sβr−1 .

(2) The toric morphism fr : Yw̃ → Yw̃′ is induced by the lattice map f r : Zr → Zr−1,
the projection onto the first r − 1 coordinates.

As we discussed in Section 3, there are two disjoint toric sections for the P1-fibration
fr : Yw̃ → Yw̃′ (see Lemma 4.2).

Definition 7.1.

(1) Schubert and non-Schubert sections: We call the section corresponding to
the maximal cone ρ+

r (respectively, ρ−r ) in ΣF (the fan of the fiber of fr) by
‘Schubert section σ0

r−1’ (respectively, ‘non-Schubert section σ1
r−1’ ).

(2) Schubert point: Let σ ∈ Σ be the maximal cone generated by {e+
1 , . . . , e

+
r }. We

call the point in Yw̃ corresponding to the maximal cone σ by ‘Schubert point’.

(3) Schubert line: We call the fiber of fr over the Schubert point by ‘Schubert line
Lr’.

Note that these definitions agree with that of in [PK16, Section 4]. Now onwards we
denote w̃ = (1, . . . , r) (respectively, w̃′ = (1, . . . , r − 1)) for the expression w̃ = sβ1 · · · sβr
(respectively, w̃′ = sβ1 · · · sβr−1 ). Let I = (i1, . . . , im) be a subsequence of w̃. Inductively
we define the curve LI corresponding to I. Let LI′ be the curve in Yw̃′ corresponding to
the subsequence I ′ = (i1, . . . , im−1) of I . Then define

LI := σ1
r−1(LI′) and σ0

r−1(LI′) = LI′ .

Recall some more notations. Let X be a smooth projective variety, we define

N1(X)Z := {
∑

finite

aiCi : ai ∈ Z, Ci irreducible curve in X}/ ≡

where ≡ is the numerical equivalence, i.e. Z ≡ Z ′ if and only if D · Z = D · Z ′ for all
divisors D in X. We denote by [C] the class of C in N1(X)Z. Let N1(X) := N1(X)Z⊗R.
It is a well known fact that N1(X) is a finite dimensional real vector space dual to N1(X)
(see [Kle66, Proposition 4, §1, Chapter IV]). We have the following result:

Lemma 7.2. The classes of Schubert lines Lj, 1 ≤ j ≤ r form a basis of N1(Yw̃).

Proof. Proof is by induction on r. Assume that the result is true for r − 1. Since Yw̃ is a
projective bundle over Yw̃′ (see Lemma 4.2), then by [Bar71, Lemma 1.1],

Lr and σ0
r−1(Lj) for 1 ≤ j ≤ r
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(the image of Lj by the Schubert section in Yw̃) form a basis of N1(Yw̃). By definition of
LI , we have

σ0
r−1(Lj) = Lj for 1 ≤ j ≤ r − 1

and hence the result follows. �

Let 1 ≤ j ≤ r. Let D := {eεll : 1 ≤ l ≤ r and εl = + for all l} . Let D ′j := {eεll : 1 ≤ l ≤
r and εl = + for all l 6= l; εj = −} .

Lemma 7.3. Fix 1 ≤ j ≤ r. Then the Schubert line Lj is given by

Lj = V (τj) , with τj = σ ∩ σ′j,

intersection of two maximal cones in Σ, where σ (respectively, σ′j) is generated by D
(respectively, D ′j).

Proof. Let us consider the expression w̃j = sβ1 · · · sβj for 1 ≤ j < r. Let Σj be the fan of
the toric variety Yw̃j . By Lemma 4.2,

fj : Yw̃j → Yw̃j−1

is a P1-fibration induced by f j : Zj → Zj−1 the projection onto the first j − 1 factors.
Also note that the Schubert point in Yw̃j−1

corresponds to the maximal cone generated by

{e+
l : 1 ≤ l ≤ j − 1}

and the fan of the fiber is given by {e+
j , 0, e

−
j }. Let σj (respectively, σ′j) be the cone

generated by

{e+
l : 1 ≤ l ≤ j}

(respectively,

{e+
l : 1 ≤ l ≤ j − 1} ∪ {e−j } ).

Then by definition of Schubert line Lj, we can see that Lj is the curve in Yw̃j given by

Lj = V (τj), where τj ∈ Σj and τj = σj ∩ σ′j.

Since the Schubert section of fk for (j ≤ k ≤ r) corresponds to e+
k , we see

σ0
r ◦ · · · ◦ σ0

j+1(Lj),

by abuse of notation we also denote it again by Lj in Yw̃, is given by

Lj = V (τj) with τ = σ ∩ σ′j,
where σ and σ′j are as described in the statement. This completes the proof of the
lemma. �

Let τ be a cone of dimension r−1 which is a wall, that is τ = σ∩σ′ for some σ, σ′ ∈ Σ of
dimension r. Let σ (respectively, σ′) be generated by {uρ1 , uρ2 , . . . , uρr} (respectively, by
{uρ2 , . . . , uρr+1}) and let τ be generated by {uρ2 , . . . , uρr}. Then we get a linear relation,

uρ1 +
r∑
i=2

biuρi + uρr+1 = 0 (7.1)
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The relation (7.1) called wall relation and we have

Dρ · V (τ) =


bi if ρ = ρi and i ∈ {2, 3, . . . , r}
1 if ρ = ρi and i ∈ {1, r + 1}
0 otherwise

(7.2)

(see [CLS11, Proposition 6.4.4 and eq. (6.4.6) page 303]). We prove the following (see
[PK16, Proposition 33]):

Proposition 7.4. Let 1 ≤ j ≤ r and let Lj be the Schubert line in Yw̃. Then,

KYw̃ · Lj = −2−
∑
k>j

βkj.

Proof. By definition of e−j , we have

e+
j + e−j +

∑
k>j

βkje
+
k = 0. (7.3)

By Lemma 7.3, we have Lj = V (τ), with τ = σ∩σ′ where σ (respectively, σ′) is generated
by

{eεll : 1 ≤ l ≤ r, εl = + for all l}
(respectively,

{eεll : εl = + for 1 ≤ l ≤ r and l 6= j, εj = −} ).

Hence (7.3) is the wall relation for the curve Lj. Then by (7.2), we see that

Dρ · Lj =


1 if ρ = ρ+

j or ρ−j .

βkj if ρ = ρ+
k and k > j.

0 otherwise.

Since KYw̃ = −
∑

ρ∈Σ(1)Dρ, we get

KYw̃ · Lj = −2−
∑
k>j

βkj.

This completes the proof of the proposition. �

Now onwards we denote the subsequence (i1, . . . , im) by Ii1 . Let D ′′i1 := {eεll : 1 ≤ l ≤
r and

εl =

{
+ if l /∈ Ii1 \ {i1}
− if l ∈ Ii1

}.

Let D ′′′i1 := {eεll : 1 ≤ l ≤ r and

εl =

{
+ if l /∈ Ii1
− if l ∈ Ii1

}.
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Proposition 7.5. The curve LIi1 is given by

LIi1 = V (τi1) with τi1 = σi1 ∩ σ′i1 ,

where σi1 (respectively, σ′i1) is the cone generated by D ′′i1 (respectively, D ′′′i1 ).

Proof. As in the proof of Lemma 7.3, we start with j = i1 and Li1 is the Schubert line in
Yw̃i1 . By Lemma 7.3, we have

Li1 = V (τi1) with τi1 = σi1 ∩ σ′i1 .
By definition of LI , we have

σ0
i2−1 ◦ · · · ◦ σ0

i1+1(Li1) = Li1 in Yw̃i2−1

and

σ1
i2
◦ σ0

i2−1 ◦ · · · ◦ σ0
i1+1(Li1) = L{i1,i2} in Yw̃i2 .

By repeating the process we conclude that

LIi1 = V (τi1) with τi1 = σi1 ∩ σ′i1 ,

where σi1 and σ′i1 are as described in the statement. This completes the proof of the
proposition. �

Recall NE(X) is the real convex cone in N1(X) generated by classes of irreducible
curves. The Mori cone NE(X) is the closure of NE(X) in N1(X) and it is a strongly
convex cone of maximal dimension (see for instance [CLS11, Chapter 6, page 293]). Now
we describe the Mori cone of the toric limit Yw̃ in terms of the curves LIij ’s defined above.

For this we need the following notation (see also [Cha]). Fix 1 ≤ i ≤ r. Define:

(1) Let r ≥ j > j1 = i ≥ 1 and define a1,j := βj1j.
(2) Let r ≥ j2 > j1 be the least integer such that a1,j > 0, then define for j > j2

a2,j := βij2βj2j − βij.
(3) Let k > 2 and let r ≥ jk > jk−1 be the least integer such that ak−1,j < 0, then

inductively, define for j > jk

ak,j := −ak−1,jkβjkj + ak−1,j.

(4) Let Ĩi := {i = j1, . . . , jm}.

Example 7.6. Let G = SL(5,C) and let w̃ = sβ1 · · · sβ7 = sα2sα1sα3sα1sα2sα1sα2 . Let

i = 1. Then j1 = 1 and (1) a1,2 = β12 = 〈β2, β̌1〉 = 〈α1, α̌2〉 = −1 ; (2) a1,3 = β13 =

〈β3, β̌1〉 = 〈α3, α̌2〉 = −1 ;
(3) a1,4 = β14 = 〈β4, β̌1〉 = 〈α1, α̌2〉 = −1 ; (4) a1,5 = β15 = 〈β5, β̌1〉 = 〈α2, α̌2〉 = 2 ;

(5) a1,6 = β16 = 〈β6, β̌1〉 = 〈α1, α̌2〉 = −1 ; (6) a1,7 = β17 = 〈β7, β̌1〉 = 〈α2, α̌2〉 = 2 .

Then by definition of j2, we have j2 = 5 and (1) a2,6 = β15β56−β16 = 〈β5, β̌1〉〈β6, β̌5〉−
〈β6, β̌1〉 = 〈α1, α̌2〉 = −1 ; (2) a2,7 = β15β57 − β17 = 〈α2, α̌2〉 = 2 . Then by definition

of j3, we have j3 = 6 and a3,7 = −a2,6β67 + a2,7 = −(〈β6, β̌5〉)(〈β7, β̌6〉) + (〈β7, β̌5〉) =

−(−1)(−1) + (2) = 1. Therefore, we get Ĩ1 = {1, 5, 6} .



18 B.N. CHARY

Example 7.7. We use Example 7.6, for i = 1, we have I1 = {1, 5, 6}. Then

D ′′1 = {e+
1 , e

+
2 , e

+
3 , e

+
4 , e

−
5 , e

−
6 , e

+
7 } and D ′′′1 = {e−1 , e+

2 , e
+
3 , e

+
4 , e

−
5 , e

−
6 , e

+
7 }.

Fix 1 ≤ i ≤ r. Let
Ii := Ĩi = {i = j1, j2, . . . , jm}

where jk’s are as above. With this notation we prove the following (see [PK16, Theorem
22]):

Theorem 7.8. The set {LIi : 1 ≤ i ≤ r} of classes of curves forms a basis of N1(Yw̃)Z
and every torus invariant curve in N1(Yw̃) lie in the cone generated by {LIi : 1 ≤ i ≤ r}.

Proof. By [Cha, Proposition 4.16], for 1 ≤ i ≤ r the curve r(Pi) (see Section 2 for the
definition of r(Pi)) is given by

r(Pi) = [V (τi)],

where τi = σi ∩ σ′i and σi (respectively, σ′) is generated by D ′′i (respectively, D ′′′i ). From
Proposition 7.5, we see that the class of the curve LIi is r(Pi) in N1(Yw̃)Z. By [Cha,
Theorem 4.7], we have

NE(Yw̃) =
r∑
i=1

R≥0r(Pi).

Also by [Cha, Corollary 4.8], the set {r(Pi) : 1 ≤ i ≤ r} forms a basis of N1(Yw̃)Z. Hence
we conclude the assertion of the theorem. �

We recall some definitions: Let V be a finite dimensional vector space over R and let
K be a (closed) cone in V . A subcone Q in K is called extremal if u, v ∈ K, u + v ∈ Q
then u, v ∈ Q. A face of K is an extremal subcone. A one-dimensional face is called an
extremal ray. Note that an extremal ray is contained in the boundary of K. Then we
have (see [PK16, Theorem 30]):

Corollary 7.9. The extremal rays of the toric limit Yw̃ are precisely the curves LIi for
1 ≤ i ≤ r.

Proof. This follows from the proof of the Theorem 7.8. �

Let X be a smooth projective variety. An extremal ray R in the Mori cone NE(X) ⊂
N1(X) is called Mori if R ·KX < 0, where KX is the canonical divisor in X. Recall that
NE(Yw̃) is a strongly convex rational polyhedral cone of maximal dimension in N1(Yw̃).
We have the following (see [PK16, Theorem 35]):

Corollary 7.10. Fix 1 ≤ i ≤ r, the class of curve LIi is Mori ray if and only if either
|γPi(1)| = 0, or |γPi(1)| = 1 with cj = 1 for γj ∈ γPi(1).

Proof. Since Yw̃ is a Bott tower (see Corollary 4.2), then the result follows from Proposition
7.5 and [Cha, Theorem 8.1]. �

Now we prove a general result for smooth projective toric varieties,
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Lemma 7.11. Let X be a smooth projective toric variety of dimension r. Then X is
Fano if and only if every extremal ray is Mori.

Proof. By [CLS11, Theorem 6.3.20] (Toric Cone Theorem), we have

NE(X) =
∑

τ∈Σ(r−1)

R≥0[V (τ)]. (7.4)

If X is Fano, then by definition, −KX is ample. By toric Kleiman criterion for ampleness
[CLS11, Theorem 6.3.13], we can see that −KX · V (τ) > 0 for all τ ∈ Σ(r − 1). Then
KX · V (τ) < 0 for all τ ∈ Σ(r − 1). In particular, every extremal ray is Mori.

Conversely, let R≥0[V (τ)] be an extremal ray, by assumption it is a Mori ray. Then
by definition of a Mori ray, we have KX · V (τ) < 0. This implies −KX · V (τ) > 0.
By (7.4), NE(X) is a polyhedral cone and hence the extremal rays generate the cone
NE(X). Hence we see that −KX · C > 0 for all classes of curves [C] in NE(X). Again
by toric Kleiman criterion for ampleness, we conclude that −KX is ample and hence X
is Fano. �

Then we have the following (see [PK16, Corollary 36]):

Corollary 7.12. The toric limit Yw̃ is Fano if and only if every extremal ray in NE(Yw̃)
is Mori.

Acknowledgements: I would like to thank Michel Brion for valuable discussions and
many critical comments.
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