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Abstract

We introduce an intuitive method, called Marionette by the authors, for the modelling of free-form architecture with

planar facets. The method takes inspiration from descriptive geometry and allows to design complex shapes with one

projection and the control of elevation curves. The proposed framework achieves exact facet planarity in real-time,

and considerably enriches previous geometrically-constrained methods for free-form architecture. A discussion on the

design of quadrilateral meshes with a fixed horizontal projection is first proposed, and the method is then extended to

various projections and patterns.

The method used is a discrete solution of a continuous problem. This relation between smooth and continuous problem

is discussed and shows how to combine the marionette method with modelling tools for smooth surfaces, like NURBS

or T-splines. The result is a versatile tool for shape modelling, suited to engineering problems related to free-form

architecture.
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1 Introduction

The design of complex architectural shapes has benefited
from great advances from the computer graphics community
in the last decade. For instance, significant efforts were made
to develop numerical methods for the covering of free-form
surfaces with planar panels. These methods differ from the
common knowledge of architects and engineers. Although
properly implemented methods are efficient and relatively
simple to use, they remain black boxes providing little insight
on the nature of the design constraints imposed by facet
planarity. The technique proposed in the present article aims
thus at modelling efficiently meshes with planar facets and
at providing the designers with an understanding of the
design space. The proposed method takes inspiration from
descriptive geometry, a tool used by architects for centuries,
and turns it into a real-time design tool for PQ-meshes.

1.1 Prior works

Geometrically-constrained approach Planar quadrilaterals
have been identified by practicians as an important
optimisation target for the construction of double curved
surfaces, as they avoid using curved panels (Glymph

et al. 2004). Several techniques for generating exact
planar quadrilateral meshes were proposed, mostly relying
on affine transformations, which preserve planarity, a
notion illustrated in (Pottmann et al. 2007). For example,
Scale-trans surfaces, introduced in (Schober 2002) use
composition of two affine transformations: translation and
homothetic transformations. The designer control the shape
with two curves, making the process highly intuitive. Despite
formal limitations, these shapes have been used in many
projects.

The term of geometrically-constrained design approach
has been introduced by (Bagneris et al. 2008). Constrained
geometric approaches use shapes that are well-known
and can be rationalised efficiently, for example towards
a high repetition of nodes or panels (Mesnil et al.
2015). More recenty, other design strategies exploring more
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complex shapes based on Möbius transformations and
inspired by (Bobenko and Huhnen-Venedey 2012) have been
proposed (Mesnil et al. 2017b). The idea to use groups of
transformations to study geometrical properties of surfaces is
not new (Klein 1893), but recent applications to architecture
show that this has a great potential. Generally speaking,
these methods suffer however from a lack of flexibility
and form a restricted design space. New geometrically-
constrained techniques merging fabrication and structural
considerations have been proposed recently and extend the
potential of classical methods. For example, an elegant
design methodology based on planar pre-stressed networks
through Airy stress function allowed Adrianssens et al.

to design a funicular irregular gridshell with planar facets
Adriaenssens et al. (2012). The lack of flexibility of
usual modelling techniques led to the introduction of post-
rationalisation strategies in order to cover arbitrary shapes
with planar quadrilaterals (Liu et al. 2006).

Optimisation-based shape exploration Most recent meth-
ods propose hence to explore design space of feasible solu-
tions for a given mesh topology with the help of optimisation
techniques (Deng et al. 2015; Yang et al. 2011). The mesh is
interactively deformed by the user with the help of control
handles. The overall smoothness is checked with discrete
functions of the vertices. To go further, an efficient solver
handling quadratic constraints was presented in (Tang et al.
2014) and used in (Jiang et al. 2014).

Projections and subspace exploration are efficiently
used for constrained-based optimisation in (Bouaziz et al.
2012; Deng et al. 2013, 2015). These methods provide a
great design freedom, but illustrations shown in the cited
references are local,handle-based, deformations of meshes.
Local deformations of shapes are of particular interest in the
computer graphics community, but architectural modelling
paradigms are generally thought as ways to steer a shape as
a whole.

The idea here is to use the notion of projection, which is
commonly used in architecture, especially with plane view
and elevations, and to link subspace exploration techniques
with representation techniques based on projections in
architecture.

Descriptive Geometry Descriptive geometry is a technique
of shape representation invented by French mathematician
Gaspard Monge (Monge 1798; Javary 1881). It is based
on planar orthogonal projections of a solid. The planes, in
which the projections are done, are usually the horizontal
and vertical planes. Figure 1 is a typical drawing of
descriptive geometry: it describes an ellipsoid with a plane

view, displayed with some elevations. The curve network
corresponds to the horizontal projection of lines of curvature
(Leroy 1857).

Figure 1. Lines of curvatures of an ellipsoid with descriptive
geometry (Leroy 1857).

Because architectural objects have to deal mainly with
gravity and vertical forces, it makes naturally sense to
separate projections in vertical and horizontal planes. The
idea to use these projections to guide structural design
was used recently in computational frameworks based on
the Thrust Network Analysis (Block and Ochsendorf 2007)
where compression-only structures are found from a planar
network at equilibrium (Rippmann et al. 2012; Miki et al.
2015). The objective of this paper is to show that descriptive
geometry can be turned into a general tool for the design
of PQ meshes and their structural optimisation. The method,
called Marionette method is presented in Section 2, where
the relation between smooth and discrete geometry for
PQ-meshes is discussed. Section 3 explores then some
applications in architecture. Section 4 shows finally the
generality of the proposed method, which can be extended to
meshes other than regular quadrilateral meshes and therefore
constitute a promising versatile tool to intuitively integrate
fabrication constraints into architectural design.

2 Marionette Meshes

2.1 Marionette Quad

The principles of descriptive geometry can be transposed
to architectural shape modelling. The use of appropriate
projections provides a simple interpretation of the problem
of meshing with flat quadrilaterals. For simplification, we
discuss the case of a projection in the (XY ) plane in this
section: the generalisation to other projections is illustrated
in Section 4.
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Consider first Figure 2: four points have a prescribed plane
view ABCD in the horizontal plane (P1). Three points A′,
B′ and D′ have prescribed heights zA, zB and zD. In general,
there is only one point C′ with the imposed projection C so
that A′B′C′D′ is planar.

Figure 2. Creation of a Marionette Quad with a plane view and
two elevations.

The planarity constraint reads:

det (A′B′,A′C′,A′D′) = 0 (1)

Expressing coordinates in a cartesian frame of
(P1), and writing dBC = det2D (AB,AC), dBD =

det2D (AB,AD) and dDC = det2D (AD,AC), if the
points A, B and D are not aligned, then, one gets:

(zC − zA) =
(
dBC
dBD

)
· (zD − zA) +

(
dDC
dBD

)
· (zB − zA)

(2)

Figure 2 shows vertical lines used for construction,
recalling the strings of a marionette, which gives the name
marionette quad. Note that the system is under-constrained
if the points A, B and D are aligned: in that case, the vectors
AB and AD are colinear and dBD is equal to zero. This
configuration corresponds to vertical a quad. A projection in
the horizontal plane thus allows only for the modelling of
height fields. This limitation can be overcome by using other
projections (see Section 4).

2.2 Regular Marionette Meshes

Consider now a quadrangular mesh without singularity as
depicted in Figure 3. The plane view in the horizontal plane
is fixed, and two intersecting curves are defined on the
projection planes P2 and P3. Then, provided that the planar
projection admits no degenerated quad (i.e. quad where three
points are colinear), equation (2) can be propagated through
a strip, and by there, through the whole mesh. Indeed, on
the highlighted strip of Figure 3, the first quad (top left) has
three prescribed z−values, and equation (2) can be used and
so forth. The same applies for all the quads of the strip.

P1

P3

P2

Figure 3. Two elevations and a planar projection define a
unique Marionette Mesh.

For a N ×M mesh, the propagation requires NM

applications of equation (2), the memory needed is 3NM .
The marionette technique guarantees hence that the number
of operations varies linearly with the number of nodes within
a structure. The method performs thus in real-time even for
meshes with thousands of nodes, as discussed in Section 3.1.

2.3 Link with smooth geometry

Partial differential equation The proposed method has some
interesting relations with smooth geometry. The problem of
covering curved shapes with planar panels is linked with the
integration of conjugate curves networks (Liu et al. 2006;
Bobenko and Suris 2008). Conjugate networks correspond
to parameterisations (u, v) satisfying the following equation
(Bobenko and Suris 2008):

det
(
∂u, ∂v, ∂

2
uv

)
= 0 (3)

Consider now that the components in x and y are fixed, like
in the problem solved by the Marionette technique. We are
looking for the height functions fz satisfying equation 3.
Adopting the notation fu to denote differentiation of f with
respect to u, equation (3) is reformulated into:

det

f
x
u fxv fxuv

fyu fyv fyuv

fzu fzv fzuv

 = 0 (4)

Equation (4) is defined if the parameterisation in the plane
(XY ) is regular, which means if the study is restricted to
height fields. We expand (4) using adjugate matrices:

∣∣∣∣∣fxu fxv

fyu fyv

∣∣∣∣∣fzuv +
∣∣∣∣∣fxv fxuv

fyv fyuv

∣∣∣∣∣fzu −
∣∣∣∣∣fxu fxuv

fyu fyuv

∣∣∣∣∣fzv = 0 (5)
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Equation (5) is a second order linear equation in fz (u, v).
The only term of second order is fzuv: the equation is thus
hyperbolic. Hyperbolic equations often correspond to the
propagation of informations in a system (think of the wave
equation). It is thus no surprise that the marionette method
corresponds to a propagation algorithm. Loosely speaking,
it can be shown that solutions of hyperbolic equations retain
discontinuities of initial conditions. The smoothness of the
shape obtained by the marionette method is thus dependent
on the smoothness of the input data (plane view and elevation
curves) (Alinhac 2009).

Boundary conditions With the marionette method, we pre-
scribe the values of fz on two boundaries. Mathematically,
we choose two functions f1 (v) and f2 (u) which correspond
to the height of the two guide curves:

fz (u = u0, v) = f1 (v)

fz (u, v = v0) = f2 (u)

f2 (u0) = f1 (v0)

(6)

The last equality correponds to a compatibility condition
between equation f1 (v) and f2 (u), so that the height
of fz (u0, v0) is known without ambiguity. This equation
corresponds to an integration of the second member of
equation (7). Writing f3 (u) = ∂f2

∂u (u), we have:

 fz (u = u0, v) = f1 (v)

∂fz

∂u
(u, v = v0) = f3 (u)

(7)

We see now that we specify the height of a guide curve
and the slope on the second curve. This kind of boundary
condition based on both values and derivatives is called
Cauchy boundary condition and is particularly suited for
hyperbolic equations (Alinhac 2009). The smooth problem
solved by the marionette method is thus a classical problem
in the theory of partial differential equations. Classical
results on the existence, uniqueness and regularity of solution
can be applied, even though it is not the purpose of this paper.

2.4 Marionette Meshes with singularities

The modelling of complex shapes requires the introduction
of internal vertices with a valence other than four, called
singularities in the following. For example, the mesh
displayed in Figure 4a has one singularity: the central node
has a valence of six. The mesh can be subdivided into six
patches with no inner singularity (in blue and white). This
kind of procedure can be applied to any quad-mesh. Each
patch is a regular mesh, and the Marionette technique can

be applied. There are however restrictions on the curves
used as guide curves due to compatibility between patches.
For example, in Figure 4a, it is clear that the six curves
attached to the singularity can be used as guides for the six
patches, whereas choosing the 12 curves on the perimeter
over-constrain the problem.

P1

P2

(a) Decomposition of a complex mesh into simple
patches.

(b) The corresponding lifted mesh

Figure 4. A Marionette Meshes with a singularity.

For an arbitrary quad-mesh, it is possible to compute
the number of guide curves that can be used to generate a
Marionette Mesh. The mesh can be decomposed into simple
quad domains without any singularity, for example by using
the methods described in Tarini et al. (2011) or Takayama
et al. (2013). For example, Figure 4a has six domains, the
mesh in Figure 5a has nine domains. These domains are four
sided, and it is possible to extract independent families of
strip-domains, like displayed in Figure 5. Depending on the
n-colorability of the mesh, the number of families varies. The
example showed is two-colorable. As a result, two families
of strips can be found and are shown in Figure 5b and 5c.
Exactly one curve can be chosen across each strip-domain.
Since strips are independent, the height of these nine curves
can be chosen independently and will not over-constrain the
problem.
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(a) Initial mesh (b) Family of four strip-domains (c) Family of five strip-domains

Figure 5. Decomposition of a mesh into 2 families of strip-domains. Marionette Meshes can be generated by choosing one guide
curve across each strip-domain.

2.5 Closed Marionette Meshes

Closed strips Marionette Meshes create PQ-meshes by
propagation of a planarity constraint along strips. One can
easily figure that if the strip is closed, the problem becomes
over-constrained. Indeed, consider Figure 6: the plane view
of a closed strip and the height of the points (Pi) of one
polyline are prescribed. If the height of the first point used
for the propagation P ∗0 is chosen, the planarity constraint can
be propagated along the strip. The points of the outer line
are therefore imposed by the method, and the designer has
no control on them. The last point P ∗N is therefore generally
different from the initial point P ∗0 , leading to a geometrical
incompatibility of PQ-meshes.

P0
*

PN
*

P0=PN

Figure 6. Closed Marionette Strip with incompatible closing
condition induced by the prescription of the plane view of the
whole strip (yellow) and the heights of the inner curve (blue).

In the following, we develop a method to deal with
the geometrical compatibility of closed strips. The results
however can then be extended to general Marionette Mesh
with closed strips. Suppose that the two prescribed curves
are defined as the inner closed curve and one radial curve
(see Figure 6). By propagation of equation (2), we easily see
that the height of the last point z∗N depends linearly on the
height of the first point z∗0 and on the heights of the points on
the inner curve Z. It also depends on the in-plane projection
of the strip. Formally, there exists a vector V and a scalar a,

both functions of the plane view so that:

V · Z+ a · z∗0 = z∗N (8)

We are interested in the case where z∗0 = z∗N . There are two
possibilities:

1. a = 1: in this case, the condition restricts to V · Z =

0 and does not depend on z∗0 . The vector Z is in
the hyperplane of V, which leaves N − 1 degrees of
freedom.

2. a 6= 1: there is only one solution for z∗0 . This is the
most constrained case: the designer can only control
the inner curve of the strip.

Detailed calculations on closed strips and particular
examples satisfying the condition a = 1 are given in
Appendix A.

Closed meshes The meshes with one solution are less
flexible, but they can still generate interesting shapes, like
the one displayed on Figure 7, which recalls the example of
Figure 6. The designer has a total control on the height of the
inner curve and the plane view, but cannot manipulate freely
the outer curve.

Figure 7. Architectural design with a closed Marionette Mesh,
the height of the inner curve is prescribed, the designer does
not have control on the outer curve.

The most interesting case occurs when the designer has
potentially the control of two curves. It relies on a condition
on the planar projection explained above. A simple case
where this condition is fulfilled is when it has a symmetry.
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In this case, there is a N − 1 parameters family of solutions
for the height of the inner curve. The elevation of a closed
guide curve can be chosen arbitrarely and projected into the
hyperplane of normal V, keeping the notations of equation
(8). This operation is straight forward and allows to control
the elevation of a second curve, like for open meshes. An
example of this strategy is displayed in Figure 8, where all
the meshes have the same planar projection, which has a
plane of symmetry. The marionette mesh on the second row,
and the column on the right in Figure 8 has however no plane
of symmetry.

Figure 8. Some shapes with planar faces and a closed mesh
generated with the method proposed in this paper. All the
shapes are built from the same planar projection

Another look at the problem The problems specific
to closed strips or meshes can be understood by the
consideration of the equivalent smooth problem. The partial
differential equation (5) remains unchanged but the boundary
conditions expressed by equation (7) are not valid anymore.
Indeed, a closed surface imposes a periodicity of the solution.
Consider the case where we want the curves (u = constant)

to be closed, there exist a certain period T so that:


fz (u = u0, v) = f1 (v)

∂fz

∂u
(u, v = v0) = f3 (u)

∀u, fz (u, v + T ) = fz (u, v)

(9)

This additional boundary condition might over-constrain
the problem and the existence of a solution is not certain.

3 Architectural design with Marionette
Meshes

3.1 Computational set-up

The algorithms described in this paper have been imple-
mented in the visual-scripting plug-in Grasshopper™for the
modelling software Rhino™. This allows interaction with
other numerical tools necessary for architectural design, like
finite-element analysis software Karamba™. An example of
interaction between fabrication-aware shape generation and
structural analysis is shown in section 3.4.

Marionette Meshes only require the solution of a sparse
linear system. The computation time is thus low, typically
it takes 3 ms to lift a mesh of 10,000 faces, with no
pre-factorisation involved. Real-time computation provides
great design flexibility, even for large meshes. It also opens
possibilities to perform optimisation with numerous function
calls, for example with genetic algorithms, as discussed in
Section 3.4.

The basic input of the method are a planar projection and
several elevation curves. The marionette framework allows
the architect and the engineer to choose a topology and some
mesh features (like alignment of the mesh to a boundary) and
generates a design space of feasible solutions. In comparison,
post-rationalisation techniques fit perfectly a target geometry
(for example with conjugate fields integration), with less
control over the grid topology. Since parametrisation is
equally important as shape in the overall æsthetics and
structural behaviour of a grid structure, the marionette
technique,like some optimisation-based algorithms (Tang
et al. 2014; Deng et al. 2015), offers an interesting alternative
to post-rationalisation.

In our framework, the planar projections are generated
with NURBS patches, and the elevation curves are drawn
as Bézier curves. The smoothness of the final mesh depends
thus on the smoothness of the in-plane parametrisation. AC0

projection yields a C0 solution to the hyperbolic equation
(4), so that shape functions with creases can easily be
propagated through the mesh (Mesnil et al. 2017a). Figure
9 shows a corrugated shape generated from a C0 planar
projection and smooth guide curves. Such corrugations can
be used in folded plate structures, and could extend the
formal possibilities of methods developed in (Robeller et al.
2015) or discussed in (Lebée 2015).

3.2 Geometrical optimisation

General remarks The method used in this paper constructs
a space of solutions with planar facets. This space is a
vector space, which has some interesting implications for
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Figure 9. A non-smooth mesh with planar facets generated
with the Marionette method.

some optimisation problems. We can indeed see the planarity
constraint as a linear constraint on the coordinates of all the
vertices of a mesh. There exists a matrix A and list of heights
z and zp so that:

A · zp = z (10)

The marionette method gives an intuitive way to construct
this matrix, as zp corresponds to the heights of vertices on
the guide curves and A depends on the planar projection.
For a mesh with NM faces, A is a matrix of size
(N +M + 1, (N + 1) · (M + 1))

It is a well-known fact that minimisation of quadratic
functions under linear constraints is equivalent to the solving
of a linear system (Nocedal and Wright 2006). An example
of such optimisation problems with useful applications for
architectural design is given in the following.

Surface fitting A common problem described in the
literature is the approximation of a given shape with a
PQ-mesh. In the followings, we consider that the designer
prescribes a planar projection and looks for the closest
Marionette Mesh to a reference surface.

z0-z

Figure 10. Optimisation problem: approximation of a reference
surface with a given planar projection (dashed lines).

The problem is illustrated in Figure 10: the height of the
vertices in the Marionette Mesh are written z, the heights
of the points on the reference surface are written z0. The
function to minimize is written as follows.

J (z) = (z− z0)
T
(z− z0) (11)

The design space is the Marionette Meshes which have the
considered planar projection. This constraint is written in
equation (10). The optimisation problem follows:

min
z=Azp

J (z) = min (Azp − z0)
T
(Azp − z0) (12)

Expanding the equation, one gets:

Jp (zp) = zp
TATAzp − 2zTpA

Tz0
T
+ z0

T z0 (13)

A necessary condition to find a solution is to verify that
∇Jp = 0. The system reduces therefore to:

ATAzp = ATz0 (14)

Equation (14) is typical of least square problem. It is clear
that the rank of the matrix A is (N +M + 1). It follows
that the rank of ATA is also (N +M + 1). Since ATA ∈
M (N +M + 1, N +M + 1), this matrix is invertible.
Equation (14) has therefore one unique solution. Since ATA

is clearly definite positive, it follows that the extremum is in
fact a local minimum. Finally, the behavior when ‖zp‖ −→
∞ demonstrates that this is a global minimum.

Figure 11. A target surface (left), and the optimal
approximation by a surface of translation (right).

An application is illustrated in Figure 11, where a target
NURBS is approached by a surface of translation, which
are well-known in architectural design (Glymph et al. 2004).
This optimal can be considered poor, but the key information
is that it is the best in the design space chosen by the
designer, so that the designer knows that to improve the
solution, he has to explore other planar projections or mesh
topologies. The surface displayed is indeed the best solution
possible for the planar projection chosen by the designer.
As computation are done in real-time, it is easy to generate
very quickly different plane views with different topologies,
keeping control of the aesthetic and layout of the cladding.
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The mesh topologies could be generated from a catalogue,
like the ones generated in (Takayama et al. 2014) and their
relevance for the shape-fitting problem could be efficiently
assessed with the marionette method. The selection of a
proper mesh topology remains however open for future work.

3.3 Shape exploration with Marionette Meshes

The framework introduced here intrinsically account for
planarity of panels. Its mathematical formulation is however
suited for many architectural constraints. Hard constraints
must be fulfilled exactly, whereas soft constraints are
included into the function to minimize (Nocedal and
Wright 2006). Since the planarity constraint is linear, soft
constraints expressed as linear or quadratic functions can
easily be included in the objective function. In this case,
the optimisation problem will be similar to a classical least
square problem and can be solved efficiently.

Hard constraints defined by linear equations are treated
effectively within the proposed framework. Examples of
linear constraints are prescribed volume or a maximal
allowable height. The marionette method imposes NM −
(N +M − 1) out of NM parameters, this means that
another N +M − 1 linear constraints can be applied
without over-constraining the optimisation problem.

Perhaps the most interesting application is the prescription
of a boundary, as depicted in Figure 12. In this figure,
the planar projection is imposed and the user prescribes
the height of some points of the mesh along a curve
(white circles). In this case, the number of prescribed
points is superior to the number of degrees of freedom,
and the problem might be overconstrained. It might hence
be preferable to turn this problem into a soft constrained
problem with a quadratic function to minimize.

Figure 12. A plane view (thin lines) with a prescribed boundary
(thick lines).

Other constraints could be used. For example, in the
manner of NURBS-modelling, the user could control the
height of some handle-points, each handle decreasing the

size of the space of solution by 1 dof. This kind of approach
has been used in optimisation-based shape exploration, but it
looses the notion of global shape control.

3.4 Case study: fabrication-aware structural
optimisation

The formal possibilities offered by Marionette Meshes are
broad enough to offer an interesting design space for
engineering problems. Among them, structural optimisation
is a particularly relevant. The quick generation of a
parameterised design space and the coupling with advanced
analysis software seems particularly promising (Preisinger
and Heimrath 2014). Indeed, non-linear criteria, like the
buckling capacity, are of high importance for practical design
of thin shell or grid shells (Firl and Bletzinger 2012).

An illustration of the potential of Marionette Meshes for
a structurally-informed architectural design is proposed in
Figure 13: the shell is a Marionette mesh spanning over
an ellipse. The plane view is inspired by Figure 1. The
mesh is consituted of six NURBS patches and has two
singularities (white dots in the image), guide curves are
found with the method proposed in this paper. The boundary
curve is constrained in the horizontal plane (blue curve on
Figure 13). One curve in the other direction (orange curve
in Figure 13) defines the whole elevation of the dome. The
shell is submitted to gravity load. All the translations at the
outer boundary are restricted and rotations at the supports
are allowed (hinges). The model is computed with Finite
Element software Karamba3D™. The shape generation of a
1000 faces mesh requires less than 1ms with the Marionette
technique, far less than the assembly and computation of a
shell model with FEM.

The structure is optimised towards a minimum of the
total elastic energy by the means of genetic algorithms. In
Figure 13, the color scheme is used to represent the maximal
principal stress σ11 on the upper side of the shell. Area with
tensile stress should appear in blue, but are not visible on the
Figure. Indeed, tensile stress in Figure 13 are almost non-
existent: the maximal tensile stress is of .2MPa for a dome
with a span of 40m and a shell thickness of 10cm. Hence, if
defined properly with an accurate number of singularities,
the design space offered by Marionette Meshes is wide
enough to find compression-dominant shapes by the means
of structural optimisation.
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Figure 13. A result of an optimisation procedure: the shell
structure is a Marionette Mesh constructed from six patches
(top) minimising total elastic energy. Middle: guide curves and
top view. Bottom: red areas indicate compression, the shell
works mostly with compression.

4 Generalisation of the method

4.1 General projections

It appeared that prescribing a horizontal view and applying
the propagation technique presented here only allows for
the modelling of height fields. This is a limitation of this
method, although height fields surfaces are commonly used
for roof covering. Other projections can be used for more
shape flexibility. The planarity constraint for a quad can be
extendend to the case of non-parallel projections, like in
Figure 14.

Some projections are of practical interest for archetypal
projects. Towers and facades can be modelled with
cylindrical projections. Stadia can be designed using
projections on torus or on moulding surfaces, the offset

A

B D

C

zAzA

zDzB

P1

P2
P3

P1

Aʹ

Bʹ Dʹ
Cʹ

A

B D

C

Aʹ

Bʹ Dʹ

Figure 14. A Marionette Quad with non-parallel guide lines.

directions corresponding to the normals of the smooth
surface. Moulding surfaces fit naturally the geometry of
stadia (see Figure 15a) and have some interesting features,
discussed in (Mesnil et al. 2015):

• Their natural mesh contains planar curves, which are
geodesics of the surface: the planarity is preserved by
the marionette transformation.

• They are naturally meshed by their lines of curvatures,
which gives a torsion-free beam layout on the initial
surface, and on the final shape.

4.2 Extension to other patterns

This section proposes to extend the Marionette method to
other patterns than quads. First, we discuss the estimation
of the size of the design space offered by the marionette
technique in the most general cases. We illustrate then
those remarks on the generality of the method with various
patterns.

Size of the design space The facet planarity constraint is
linear, which means that the space of meshes with planar
facets is a vector space. (Deng et al. 2013) proposed a
criterion to evaluate the dimension of this vector space.
For each facet, three points can be chosen independently
(3 d.o.f for each points) and the remaining points must be
chosen in the constructed plane (1 d.o.F deleted for these
nodes). Writing nF the number of vertices for each face,
the estimation of the size of the space of meshes with planar
facets follows (Deng et al. 2013):

N ∼ 3Nnodes −
∑
Faces

(nF − 3) (15)

For a quad mesh, we get N ∼ 2Nnodes. This number
is high and is difficult to interpret for the designer. The
projection technique used in this paper reduces the size of
the design space. Since the planar projection is prescribed,
each point looses 2 d.o.f. Equation (15) writes:
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(a) Reference moulding surface (b) Non-symmetrical design (c) Symmetrical design

Figure 15. Design of stadia obtained from a projection on a moulding surface: the prescribed curves are the inner ring and a
section curve.

Nmarionette ∼ Nnodes −
∑
Faces

(nF − 3) (16)

The size of the design space is reduced compared to
general methods, but the smoothness of the final shape is
easily controlled. Note that techniques relying on generation
of the whole vector space have to introduce fairing energies,
as the design space contains both smooth and non-smooth
meshes.

For a quadrilateral mesh with n×m faces without
singularity, we have Nnodes = (n+ 1) · (m+ 1), and nm

faces. The application of equation (16) shows that the size
of the design space is n+m+ 1, which is exactly what is
found by the marionette method.

Application to non-standard patterns Equation (16) can be
applied to meshes composed of triangles and hexagons, also
known as Kagome lattices. It reveals that the number of d.o.f
is comparable to the one of quadrilateral meshes. There is
therefore a straight forward way to lift Kagome lattices with
the marionette technique. Figure 16a shows the guide curves
for the Kagome pattern. Other isolated points are required to
lift the mesh. The height of these points can for example be
chosen in order to optimise mesh fairness, which has been
characterised in numerous works by an energy F defined in
equation (17), where vi is the ith vertex of a polyline:

F =
∑

polylines

∑
i

‖vi − 2vi+1 + vi+2‖2 (17)

The functional is quadratic and is not difficult to minimise
under linear constraints. Figure 16c shows a mesh derived
from an hexagonal pattern: three guide curves can be used
to lift the mesh. The number of degrees of freedom of the
examples of Figure 16 are evaluated in Appendix B.

Illustration Figure 17 shows a Kagome lattice covered with
planar facets generated with the marionette method. The

design started from a planar projection generated with a
NURBS patch, a Kagome was then generated following the
isoparametric lines and lifted with the marionette technique.
One of the guide curve is the parabolic arch of the entrance,
the other is an undulating curve following the tunnel. Like
for PQ-meshes, the computation is done in real-time.

5 Conclusion

We have introduced an intuitive technique for interactive
shape modelling with planar facets. It is based on descriptive
geometry, which has been used by architects and engineers
for centuries. The concept has many applications, in
particular the modelling of PQ-meshes with or without
singularity. Some examples show the formal potential of
our method. The framework was also extended to Kagome
and dual-Kagome lattices. It is likely that other polyhedral
patterns can be treated with the Marionette technique. The
generality of the method has also been demonstrated by
changing the projection direction, a method with large
potential if used on mesh with remarkable offset properties.

Our discussion on marionette meshes with singularities
highlights the fact that the choice of mesh topology
influences greatly the size and nature of the design space
for meshes with planar facets. Selecting a proper mesh
topology is thus crucial in practice. This article dealt with the
definition and implementation of the marionette method as a
parametric design space exploration. The choice of a relevant
mesh topology a priori from boundary conditions should be
addressed in future work.

Quadratic optimisation problems, like surface-fitting
problems can be solved efficiently with the marionette
technique. A simple example where only the heights of
the guide curve are the only parameters was detailed, but
controlling the plane view with NURBS patches could
allow for a more general solution of such problems. The
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(a) Kagome lattice (b) Dual Kagome lattice (c) Hex pattern

Figure 16. Marionette method applied to several patterns, white dots correspond to prescribed heights.

Figure 17. Free-form design covered by planar Kagome lattice.

separation of variables in horizontal plane and vertical plane
can potentially give birth to efficient numerical methods for
geometrical optimisation.

Furthermore, we made a comment on the underlying
smooth problem solved by the method, which gives
indications on the smoothness of the shapes arising form
this framework. We have seen that this smoothness depends
on the smoothness of both the planar projection and the
guide curves, which can be generated with any usual
modelling tool based on NURBS, T-spline and Bézier curves.
Moreover, it was shown that marionette meshes give an
intuitive illustration on the principle of subspace exploration,
a powerful tool for constrained optimisation of meshes. It
was shown in Section 3.4 that the marionette method could
be used as an alternative to NURBS modelling for the
parametrisation of structural optimisation problems for thin
shells or gridshells. The relative performances of the two
modelling technique in the context of structural optimisation
should be assessed in future work.
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A Some results on closed strips

The aim of this section is to discuss with more detail the
problem of closed strips. First, we write the propagation
problem on a strip. This step is purely computational, but
is necessary to introduce a quantity of interest. We interpret
then the geometrical meaning of the compatibility condition
with respect to the mathematical formalism introduced.
Then, we present some particular cases where the closing of
a strip is possible regardless of the choice of the height on
the outer curve.

A.1 Propagation equation

Consider the closed strip discussed in Section 2.5. For each
facet, we can apply the planarity constraint of equation (2).
Writing zi the height of the ith point of the inner curve and
z∗i the height of the ith point of the outer curve, we can
rewrite this equation. For the sake of simplicity, we replace
the ratios of the 2D determinants by scalars ai and bi. We
make following identifications:

Pi ⇔ A

Pi+1 ⇔ B

P ∗i ⇔ C

P ∗i+1 ⇔ D

ai ⇔
det2D (AB,AC)

det2D (AB,AD)

bi ⇔
det2D (AD,AC)

det2D (AB,AD)

We get hence following equation:

z∗i+1 = (1− ai − bi) zi + aiz
∗
i + bizi+1 (18)

We make the following hypothesis, which is easily verified
by recurrence:

∀i > 0, z∗i+ =

i∑
k=0

vkzk +Aiz
∗
0 (19)

In fact, we can be even more precise and compute the value
of Ai. We make the hypothesis that:

∀i > 0, Ai =

i−1∏
k=0

ak (20)

Proof This is true for i = 1 due to equation (18). Then,
we proceed by recurrence. Assume that (20) is true for i,
then we show that this is true for i+ 1. We plug equation
(19) into equation (18) and get:

z∗i+1+ = (1− ai − bi) zi + ai

(
i∑

k=0

vkzk +Aiz
∗
0

)
+ bizi+1

There is only one term in z∗0 , and it verifies equation (20).

A.2 Geometrical interpretation

The ratios ai can be interpreted with elementary plane
geometry. Consider Figure 18: the ratio a is defined with 2D
determinants and can be expressed with the vectors norms
and angles. We have:

a =
‖AB‖‖AC‖ sinβ
‖AB‖‖AD‖ sinα

(21)

We recognise the areas of the triangles ABC and ABD,
so that a can be rewritten as:

a =
AABC
AABD

(22)

A

B

C

D
α

β Inner curve

γ

Figure 18. Planar projection of a quadrilateral and angle
notations

The two triangles used for the computation of ai are shown
in Figure 19.

A

B

D
A

B

C

A

B

C

D

Figure 19. The two triangles used to compute ai.
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A.3 General solutions for a closed strip

Recall that we are interested in finding the solutions so that
z∗N = z∗0 , which also writes:

z∗N − z∗0 =

N∑
k=0

vkzk +

(
N−1∏
k=0

ak − 1

)
z∗0 = 0 (23)

We also want the space of solutions to be as large as possible,
and therefore, we don’t want it to depend on the choice of the
height on the outer curve z∗0 . This implies a new equation:

N−1∏
k=0

ak = 1 (24)

In the following, we discuss the invariance of this equation
under some transformations and show some particular cases
where it is satisfied.

A.4 Invariance

To have a complete overview on the problem of closed
strips, we provide transformations that map compatible
strips to other compatible strips. The study of group of
transformations that preserve a given quantity is at the core
of modern geometry, and for the sake of completeness, we
show this point of view dating back from Felix Klein (Klein
1893).

Linear maps The transformations we are interested in
preserve equation (24). The most straight forward way
to do this is to preserve each ai. It is clear that all
linear transformation in the plane (translation, scaling,
shearing) preserve each individual ratio. Consider indeed
transformations defined by:

f (x, y) =

(
m11 m12

m21 m22

)
·

(
x

y

)
+

(
X0

Y0

)
(25)

Consider two points (x0, y0) and (x1, y1). We write their
image by f respectively(x′0, y

′
0) and (x′1, y

′
1). We call M the

matrix written in equation (25), then we have:

det

(
x′0 x′1

y′0 y′1

)
= (detM)

2
det

(
x0 x1

y0 y1

)
(26)

It is clear that the linear map preserves the ratio of 2D
determinant, since the factor detM depends only on the
parameters of the transformations. Linear maps preserve thus
the geometrical compatibility of closed strips. This is not a
surprise, since linear maps preserve PQ-meshes (Pottmann
et al. 2007).

Combescure maps We give now another set of transforma-
tions that preserve the geometrical compatiblity. We re-write
now equation (21) by using the properties of area of triangles:

ai =
‖BC‖ sin γ
‖AD‖ sinα

(27)

Computing the product of all these values, we notice that
the lengths cancel out (each length is exactly one time at the
numerator and one time at the denominator, so that:

N−1∏
i=0

ai =

N−1∏
i=0

sin γi
sinαi

(28)

Therefore, a transformation that preserves discrete angles
preserves also the geometrical compatibility. Such trans-
formations are known as Combescure transformation. The
image of a mesh by a Combescure transformation has its
edges parallel to the initial mesh, but it does not necessary
preserve lengths. Examples of such transformations are given
in Mesnil et al. (2015).

A.5 Particular cases

We give three simple examples where equation (24) is
verified.

Example 1: parallel edges Equation (24) is verified when
all the ak are equal to one. This condition translates into:

‖AC‖
‖AD‖

=
sinβ

sinα
(29)

We write the equation of A,B,C,D in the cartesian plane
where eXis parallel to AB, we have:

AB =

‖AB‖
0

0



AC = ‖AC‖

cosβ

sinβ

0



AD = ‖AD‖

cosα

sinα

0



(30)

We plug then equation (29) into equation (30) and compute
the vector CD. We get following result:

CD = ‖AD‖


sinα
sin β cosβ − cosα

0

0

 (31)
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Remarkably, we notice that the vectors CD and AB are
parallel. Reciprocally, if these two vectors are parallel, then
equation (29) is satisfied. Therefore, a closed strip where
all the projected quads are trapezoids satisfies equation (24).
Such planar projections provide thus a large design space and
the maximal design flexibility for closed strips.

Example 2: symmetry Consider the case where the planar
projection of the strip has an axis of symmetry. Consider
Figure 19: each ai is defined as the ratio of the area of the
blue and orange triangles. When the curve has a symmetry,
like the one depicted in Figure 20, the role of orange and blue
triangle is inverted by the symmetry. Two faces related by a
symmetry have therefore inverse values of ai. Their product
is naturally equal to 1, which proves that strips with an axis
of symmetry satisfy equation (24).

Figure 20. A curve with an axis of symmetry and the inversion
of the blue and orange triangles.

Example 3: orthogonal fields The first two examples are
based on equation (24) where the ai are expressed as ratios of
areas. The propagation rule is applied to each quadrilateral,
but in the case of closed curves it is also interesting to look
at each vertex.

Consider Figure 21, equation (28) is verified if γ0 = α1,
γ1 = α2 and so forth. In other terms, if the transverse edge is
the bisecting line of the inner curve, then we have a solution
to the problem of closed strips. This condition is a discrete
counterpart of orthogonality of vector fields. Examples of
such meshes are obtained by moulding surfaces or Monge’s
surfaces (Mesnil et al. 2015). Discretisation of orthogonal
parameterisation of the plane will therefore yield strips that
are very close to be geometrically compatible. The smooth
counterpart of this problem would be looked at carefully in
further work.

α0

γ0

α1
α2

α3

α4α5

γ1

γ2

γ3

γ4

γ5

Figure 21. A closed curve and the angles used in equation (28)
.

B Size of the design space for periodic
patterns

We propose here to count the number of degrees of freedom
for the meshes drawn in Figure 16. We use equation (16)
to estimate the available degrees of freedom and compare
this number with the number of prescribed points drawn in
Figure 16. Each time, it is easy to propagate the heights in
the manner of what has been done with quadrilateral meshes.
We illustrate here the fact that the formula (16) is exact for
meshes with no closed curves.

Kagome pattern The Kagome pattern shown in Figure 16a
features 191 vertices, 112 triangles, 48 hexagons and 8

pentagons. The estimated number of degrees of freedom
given by the marionette method follows:

N = 191− (112 · (3− 3) + 48 · (6− 3) + 8 · (5− 3))

N = 191− (0 + 144 + 16)

N = 31

This is exactly the number of prescribed nodes in Figure 16a.

Dual-Kagome pattern The dual-Kagome pattern shown in
Figure 16b has 185 vertices and 156 quadrilateral facets.

N = 185− 156 · (4− 3)

N = 29

This is the number of vertices with prescribed heights in
Figure 16b.

Hexagonal pattern The pattern derived from an hexagonal
mesh has 183 vertices and 162 quadrilateral facets. The
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number of d.o.f is thus:

N = 183− 162 = 21 (32)

Remark The calculation provided here shows hints for the
number of guide curves to use to lift the mesh. Notice
however that the d.o.f must be uncoupled: for example it is
not possible to prescribe independently the four heights of
the vertices of a quadrilateral face. Our choice of guide points
does not violate this constraint.

For both the dual Kagome and the hexagonal pattern,
the planarity constraint cannot be propagated throughout
the whole mesh, additional isolated heights have to be
prescribed.
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