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Hierarchical robust performance analysis of uncertain large scale systems

Khaled Laib, Anton Korniienko, Marc Dinh, Gérard Scorletti and Florent Morel

Abstract— In this paper, the problem of robust performance
analysis of interconnected uncertain systems with hierarchical
structure is invstigated. The computational load associated to
such problems does not allow a direct application of robustness
analysis usual tools. To overcome this difficulty, we exploit the
hierarchical structure of the problem and propose an algorithm
to perform robustness analysis using IQC “propagatio” along the
hierarchical structure. This algorithm allows to establish a trade-
off between computation time required to perform the analysis
and the conservatism of the obtained results. Furthermore, it is
possible to perform parallel computation using the proposed al-
gorithm.

Index Terms— Uncertain large scale systems, robustness analy-
sis, IQC analysis, LMI optimization, hierarchical approach, IQC
propagation.

I. INTRODUCTION

RObustness analysis of uncertain large scale systems (LSS)
to ensure a certain level of performance in the worst case

scenario is a major topic in the automatic control community.
These LSS (networks) are obtained by interconnecting smaller
subsystems within the objective of ensuring some global tasks.
Therefore, it is natural to consider the hierarchical structure
of networks: subsystems define the local level while their
interconnection define the global level. In this paper, we
are interested in robustness analysis of uncertain large scale
systems with hierarchical structure.

Robustness analysis of uncertain LSS is a problem with
many challenges. Major difficulties that frequently arise in
this problem are: robustness analysis and large scale aspects.
Although the robustness analysis is an NP hard problem [1],
many efficient methods have been developed based on re-
laxations as convex optimization problem under Linear Ma-
trix Inequality (LMI) constraints [2], see e.g. the µ−upper
bound [3] in the µ-analysis approach [4] or the Integral
Quadratic Constraint (IQC) approach [5].
The second aspect is the large scale associated to networks.
Even when we consider the interconnection of systems without
any uncertainties, the analysis problem remains complicated
and the network stability is not easy to certify. In this case, the

Khaled Laib, Anton Kornnienko, Gérard Scorletti and
Florent Morel are with Laboratoire Ampère Dpt. EEA of the
Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully
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robustness of the LSS is discussed with respect to the network
size and its interconnection topology.

The objective is to establish decentralized conditions to
ensure the stability of the LSS i.e. conditions that subsystems
have to satisfy with respect to their interconnection matrix
to guarantee the overall stability of the network. These con-
ditions are obtained in different frameworks: [6] and [7] for
dissipativity approaches, [8] and [9] for S-hull convexification
approaches, [10] and [11] for graph theory approaches, etc..
Nevertheless, when considering both aspects (robustness and
large scale), the complexity and the computation time dramat-
ically increase due to the large size optimization problem we
have to solve. Therefore, the robustness analysis usual tools
cannot be practically applied directly.

In order to reduce this computational load, researchers
focused on exploiting the particular characteristics of the
subsystems and their interconnections. The authors of [12] pro-
pose a decomposable approach to investigate the robustness of
uncertain LSS. The obtained conditions involve the structured
singular values of the individual systems and the eigenvalues
of the interconnection matrix. However, these results are
valid only when the subsystems are homogeneous. Within the
framework of IQC, characterizations of local systems and/or
interconnections are used to obtain robust stability conditions
in the case where the interconnection matrix is normal [13],
unitarily diagonalized [14] or sparse with a chordal pattern [15]
and [16].

However for a given LSS, it could be difficult to model
the network with a normal, unitarily diagonalized or inter-
connection matrix with a chordal pattern. Furthermore, even
if the network presents one of these structures, the previous
methods allow only to investigate the stability. Introducing
extra signals to investigate the performance may change the
structure. In addition, these results do not exploit an important
aspect of the problem which is the hierarchical structure. In
this context, the Hierarchical approach was initially introduced
in [17], in the case of conic uncertainty i.e. non structured
dynamical uncertainty, to split the overall analysis problem
into several low dimensional ones. Each uncertain system
in the network can be characterized with conic properties
which are a special case of IQC. The overall analysis is
then performed in a hierarchical manner by propagating conic
properties along the hierarchical structure. Nevertheless, this
approach was not really exploited and implemented because it
has neither been explained nor formulated how to obtain these
IQC characterizing uncertain systems.



In this paper, we adapt the hierarchical approach and extend
it to the case of structured uncertainties. As a first contribution
of this paper, we define a set of IQC characterizing different
informations on the uncertain system: gain uncertainty, phase
uncertainty, mixed gain-phase uncertainty. The IQC set thus
defines a basis to characterize uncertain systems. In order to
reduce the conservatism of this approach, a size measure is
defined and minimized for each of the basis element. The
problem of minimizing each size measure is formulated as an
LMI optimization problem which can be solved efficiently. A
second contribution of this paper is an algorithm to investigate
the robust performance of the overall uncertain large scale
system using basis propagation along the hierarchical structure.
This algorithm allows to establish a trade-off between compu-
tation time required for the analysis and the conservatism of
the results. Preliminary results can be found in [18]–[20].

Paper outline

This paper is organized as follows: Section II presents the
formulation of uncertain LSS performance analysis problem.
Section III presents the usual approach to perform robustness
analysis of uncertain systems using dissipativity properties.
Section IV presents the proposed approach to solve the
problem of robustness analysis of uncertain LSS using basis
propagation. The formulation and practical computation of the
basis elements are presented in Section V. The benefits of the
hierarchical approach, compared to the direct analysis method,
are illustrated through two application examples in Section VI.
We discuss in Section VII the algorithmic complexity and
the computation time required to perform robustness analysis
for a sub-class of uncertain LSS with hierarchical structure.
Conclusions and perspectives are presented in Section VIII.

Notations

R and C are the sets of real and complex numbers re-
spectively. R+

= R+ ∪ {+∞} where R+ is the set of real
positive numbers including 0. C+

denotes the closed right half
of complex plane including imaginary axis and infinity. The
maximum singular value of a matrix M is denoted σ̄ (M). If
the index of a matrix or a signal is not relevant and can be
understood from the context, then this index will be omitted or
replaced with ”•”. The real and imaginary parts of the complex
entity • are denoted Re (•) and Im (•) respectively. RH∞
(respectively RL∞) denotes the set of matrices of stable (resp.
non causally stable) rational transfer functions.

We consistently denote elementary uncertainties by ∆
and interconnections by M which can be partitioned
into M =

(
M11 M12

M21 M22

)
. For several matrices Mj , bdiagj (Mj)

denotes the block diagonal matrix composed of Mj . We
denote by ∆ ? M the set {∆ ? M, ∀ ∆ ∈ ∆}, referred
to as an uncertain system, defined by ∆ ? M = M22 +

M21∆ (I −M11∆)−1 M12 with ? standing for the Redheffer
star product and it will be referred to as the Linear Fractional
Transformation (LFT) interconnection of M and ∆.

Finally, we denote by LS (•,Φ11,Φ12,Φ22) the matrix(
•
I

)∗ ( −Φ22 −Φ∗12
−Φ12 −Φ11

)(
•
I

)
and we denote by LP (•,Φ11,Φ12,Φ22, X, Y, Z, ε) the matrix(

•
I

)∗ −Φ22 0 −Φ∗12 0
0 X − εI 0 Y
−Φ12 0 −Φ11 0

0 Y ∗ 0 Z − εI

( •I
)
.

II. PROBLEM FORMULATION

A. LSS Hierarchical Structure

Inspired by [17] and [18], an uncertain large scale system is
defined by a tree composed of leaves interconnected through
branches. These leaves and branches will be organized by
levels. An example of tree is illustrated in Fig. 1 where a
hierarchical structure arises with l = 4 levels.

 

Ω

Ω

… 

… 

Fig. 1: Uncertain linear large scale system T 1
1 with hierarchical

structure of four levels
An index i is associated to each level i.e. i = 1, . . . , l. At

each level i, two types of components may be found: leaves
and branches.

The leaves represent the elementary uncertain components
and they are denoted ∆i

j∆
∈ ∆ with j∆ ∈

{
1, . . . , N i

∆

}
where N i

∆ is the number of elementary uncertain components
at level i and ∆ is the uncertainty set traditionally considered
in robust analysis literature. It is given as a block diagonal
combination of elementary uncertainties

∆ =

∆

||∆||∞ < 1

∆ = bdiag(δr1Ir1 , . . . , δ
r
nr
Irnr

,

δc1Ic1 , . . . , δ
c
nc
Icnc

,

∆1, . . . ,∆nf )

 (1)

where
• δrj ∈ R is a real parametric uncertainty,
• δcj ∈ C is a complex uncertainty,
• ∆j is a LTI system which represents a dynamical uncer-

tainty with kjm inputs and kjl outputs.



The input output signals of ∆i
j∆

are qij∆ and pij∆ respec-
tively. The elementary uncertain components ∆i

j∆
, of level i,

are the end of the tree i.e. leaves since they are only connected
to the certain components of the level i− 1.

The branches are certain components denoted M i
jM

, as-
sumed to be LTI systems, with jM ∈

{
1, . . . , N i

M

}
where N i

M

is the number of certain components at the level i. In contrast
with ∆i

j∆
, which are only connected to certain components

of the level below, M i
jM

are connected to both levels: below
and above. The certain components M i

jM
are connected to

certain and to uncertain components from level i+ 1 and to
certain components from level i− 1. The signals wijM and pi+1

•
(and possibly zi+1

• ) are the input signals of M i
jM

while zijM
and qi+1

• (and possibly wi+1
• ) are the output signals.

After showing the different levels of the LSS with its
different certain and uncertain components (which can be seen
as an horizontal decomposition), it is possible to regroup the
components connected vertically. The result will be an uncer-
tain system denoted T ij , where i stands for the hierarchical
level and j for the index of the uncertain system at this
hierarchical level. The signals wij and zij are the input and
output signals of the uncertain system T ij . The number of
uncertain systems at each level i is N i

T = N i
M .

Each uncertain system T ij is the LFT interconnection of M i
j

with either just only elementary uncertain components of the
next hierarchical level (∆i+1

• for example) or a block diagonal
composition of elementary uncertain components ∆i+1

• and
uncertain systems T i+1

• from the next hierarchical level.
For the ease of notation, and for the purpose of this paper,

both cases will be combined into block diagonal augmented
uncertainty that will be denoted Ωi+1

• ∈ Ω where Ω is the
extension of the elementary uncertainty set (1), that is

Ω =

{
Ω Ω = bdiag

j
(Ωj)

}
(2)

where Ωj is either an elementary uncertain block i.e. Ωj ∈∆,
or an uncertain LTI system that belongs to a bounded and
connected set without a priori “known” bound.
It is now possible to model the LSS as

∀ i ∈ {1, . . . , l − 1}

∀ j ∈
{

1, . . . , N i
T

}
zij = Ωi+1

j ? M i
j︸ ︷︷ ︸

T i
j

wij
(3)

with

Ωi+1
j = bdiag

 bdiag
m∈N∆(Mi

j )

(
∆i+1
m

)
, bdiag
n∈NT (Mi

j )

(
T i+1
n

) (4)

where NT (M i
j) is the index set of the uncertain systems T i+1

•
connected to M i

j and N∆(M i
j) is the index set of the elemen-

tary uncertain components ∆i+1
• connected to M i

j respectively.

For illustration purposes, let us consider the LSS presented
in Fig. 1 where w1 and z1 are the input and the output
signals respectively. They define the system T 1

1 for which we
want to investigate the performance as it will be formally
defined later. At level 2, the components can be regrouped
into n + 1 uncertain systems T 2

j , for ∀j ∈ {1, . . . , n+ 1},
interconnected through M1

1 to form T 1
1 . Each T 2

j is the LFT
interconnection of M2

j with Ω3
j . Two types of Ω3

j appear: either
Ω3
j = ∆3

j for j = {1, . . . , n} or Ω3
n+1 = bdiag

(
∆3
n+1, T

3
1

)
.

This last uncertain system T 3
1 , used to construct Ω3

n+1, is
in itself the interconnection of M3

1 with Ω4
1 which is the

block diagonal combination of two elementary uncertain com-
ponents: Ω4

1 = bdiag
(
∆4

1,∆
4
2

)
.

B. Problem statement

The LTI system performance is achieved if the maximum
singular value σ̄(•) of the system frequency response respects,
along the frequencies, some user-defined frequency dependent
constraints (see [21]). Since the uncertainties will impact
the system frequency response, we denote γω as an upper
bound on the system maximum singular value σ̄(•) over
all the uncertainties along the frequencies. Hence, the robust
performance analysis boils down to check if the computed
minimal value γω , for each frequency ω ∈ R

+, is less than the
user defined bound for all possible uncertainties.

Now, the robust performance analysis problem of uncertain
LSS can be formulated.

Problem 2.1 (Robust Performance): Given an uncertain
LSS defined by (3) and (4) with ∆i

j ∈∆, M i
j ∈ RH∞.

Given l, N i
T , NT (M i

j) and N∆(M i
j), test if the LSS is stable

∀ ∆i
j ∈∆ for all i, j. Furthermore, for every frequency

ω ∈ R
+

solve
min
γω

γω

subject to σ̄(T 1
1 (jω)) < γω ∀ ∆i

j ∈∆

Road-map
Problem 2.1 is the main problem under consideration in

this paper and it may be solved using robustness analysis
usual tools which will be presented in Section III if the
LSS size is not important. However, when the LSS size
becomes important, the efficient resolution of Problem 2.1 is
not possible using these tools due to the large size of the
associated optimization problem and the dramatic increase
of computation time. Algorithm 1 presented in Section IV
allows to solve Problem 2.1 efficiently by exploiting the LSS
hierarchical structure. Algorithm 1 allows to split the overall
analysis problem into several low dimensional ones. In order
to solve each of these problems, the input output signals of
each uncertain subsystem in the LSS are characterized using
and combining different relevant information such as gain
uncertainty, phase uncertainty, etc.. This characterization is
presented in Section V and it represents a generalization of
the robustness analysis usual tools presented in Section III.



The gain uncertainty problem (Problem 5.1) is solved using
Theorem 5.1, the phase uncertainty problem (Problem 5.3) is
solved using Theorem 5.3 and the mixed gain/phase uncer-
tainty problem (Problem 5.2) is solved using Theorem 5.2.

III. ROBUSTNESS ANALYSIS OF UNCERTAIN SYSTEMS

A. Uncertain systems

An uncertain system will be defined as an interconnec-
tion T = Ω ? M with M ∈ RH∞ and Ω ∈ Ω where
Ω is bounded and connected set of LTI systems as in (2).
Introducing internal signals and using frequency domain, we
obtain the following system description

p(jω) = Ω(jω) q(jω)(
q(jω)
z(jω)

)
= M(jω)

(
p(jω)
w(jω)

)
(5)

where w(jω) ∈ Cnw and z(jω) ∈ Cnz are the input and the
output signals respectively and they will be used to define and
evaluate the system performance as it will be explained later.
The signals p(jω) ∈ Cnp and q(jω) ∈ Cnq are internal signals.

B. Robustness analysis

We will use dissipativity properties to characterize the
performance of an uncertain system T . In the field of robust
control theory, IQC are often used to characterize the system
behavior in form of input-output signal relations (also known
as graph relations).

Definition 3.1 (IQC [5]): The two signals w(jω) and z(jω)
are said to satisfy the IQC defined by Φ = Φ∗ of RL∞,
if ∃ ε > 0 and∫ +∞

−∞

(
z(jω)
w(jω)

)∗
Φ(jω)

(
z(jω)
w(jω)

)
dω ≥ ε

∫ +∞

−∞

(
z(jω)
w(jω)

)∗ (
z(jω)
w(jω)

)
dω

Since the problem considered in this paper is
the performance analysis of uncertain LTI systems
i.e. z(jω) = T (jω)w(jω), the integral term could be dropped
which gives a Quadratic Constraint (QC). Furthermore if

Φ(jω) =

(
X(jω) Y (jω)
Y (jω)∗ Z(jω)

)
with X = X∗, Z = Z∗ and Y are transfer functions of RL∞,
the QC thus defines a dissipativity property and the uncertain
system Ω ? M is said to be {X(jω), Y (jω), Z(jω)} dissipa-
tive if(

Ω(jω) ? M(jω)
I

)∗(
X(jω) Y (jω)
Y (jω)∗ Z(jω)

)(
Ω(jω) ? M(jω)

I

)
≥ ε

(
Ω(jω) ? M(jω)

I

)∗(
Ω(jω) ? M(jω)

I

) (6)

Remark 3.1: The performance constraint of the LSS T 1
1

in Problem 2.1 can be expressed in terms of dissipativity
properties as following σ̄(T 1

1 (jω)) < γω, ∀∆i
j ∈∆ ⇐⇒ T 1

1 is
{−I, 0, γ2

ωI} dissipative ∀∆i
j ∈∆.

In order to keep the discussion as general as possible, we
will use, in this paper, a general performance measure defined
by a general {X(jω), Y (jω), Z(jω)} dissipativity.

The following theorem gives necessary and sufficient con-
ditions to perform the robust performance analysis of an
uncertain system Ω ? M for every Ω ∈ Ω

Theorem 3.1: Let Ω be a bounded and connected set of
LTI systems. The uncertain system Ω ? M is stable and
{X(jω), Y (jω), Z(jω)} dissipative for every Ω ∈ Ω if and
only if

1) There exists Ω0 ∈ Ω such that Ω0 ? M is stable.
2) There exists a function Φ = Φ∗ ∈ RL∞ such that Ω is
{Φ11(jω),Φ12(jω),Φ22(jω)} dissipative for every Ω ∈ Ω

3) There exists ε > 0 such that LP (M(jω),Φ11(jω), . . .

. . . ,Φ12(jω),Φ22(jω), X(jω), Y (jω), Z(jω), ε) ≥ 0

Proof: The proof can be found in [22].
Theorem 3.1 presents necessary and sufficient conditions for

the uncertain system Ω?M to be {X(jω), Y (jω), Z(jω)} dis-
sipative for every Ω ∈ Ω. This theorem requires
• the existence of Ω0 ∈ Ω such that Ω0 ? M is stable;
• the verification of conditions 2) and 3) for every ω ∈ R

+
.

Satisfying condition 1) is not difficult and it is sufficient to
take any Ω0 ∈ Ω and test if Ω0 ?M is stable. If it is the case,
we can continue testing conditions 2) and 3). Otherwise, we
can conclude that Ω ? M is not stable for all Ω ∈ Ω.

Testing conditions 2) and 3) along the frequencies ω ∈ R
+

is impossible from a practical point of view due to the infinity
of tests to be performed.

To overcome this difficulty and as it is usual for LTI systems,
a frequency by frequency approach can be performed without
loss of generality [23] and a frequency griding W is defined
where W is a finite set of frequencies.

In this case and given a frequency ω0 ∈ W , we define the
static uncertain system Ω(jω0) ? M(jω0) where M(jω0) is a
given matrix and Ω(jω0) ∈ Ω(jω0) where Ω(jω0) is given by

Ω(jω0) =

{
Ω(jω0) Ω(jω0) = bdiag

j
(Ωj(jω0))

}
(7)

Furthermore, the static uncertain system Ω(jω0) ? M(jω0)
is said to be {X(jω0), Y (jω0), Z(jω0)} dissipative if the condi-
tion (6) is respected with ω = ω0 for every Ω(jω0) ∈ Ω(jω0)
with X(jω0) = X(jω0)∗ and Z(jω0) = Z(jω0)∗.

Assuming the existence of Ω0 ∈ Ω such that Ω0 ? M is
stable and after introducing the frequency griding set W , the
robust performance analysis problem boils down to a set of
matrix problems which can be interpreted as the robustness
analysis of the static uncertain system Ω(jω0)?M(jω0). Each
of these problems is given by

Problem 3.1: Let Ω(jω0) ? M(jω0) be a static uncertain
system where M(jω0) is a given matrix and Ω(jω0) ∈
Ω(jω0) where Ω(jω0) is given by (7). Given the ma-
trices X(jω0), Y (jω0) and Z(jω0) with X(jω0) = X(jω0)∗

and Z(jω0) = Z(jω0)∗. Test if the static uncertain system
Ω(jω0) ? M(jω0) is {X(jω0), Y (jω0), Z(jω0)} dissipative for
every Ω(jω0) ∈ Ω(jω0).



The following theorem gives necessary and sufficient con-
ditions to perform the robust performance analysis of a static
uncertain system Ω(jω0) ? M(jω0).

Theorem 3.2: Given the matrices M(jω0), X(jω0), Y (jω0)
and Z(jω0) and the set Ω(jω0) of Problem 3.1, the static un-
certain system Ω(jω0)?M(jω0) is {X(jω0), Y (jω0), Z(jω0)}
dissipative for every Ω(jω0) ∈ Ω(jω0) if and only if

1) There exists a matrix Φ(jω0) = Φ(jω0)∗ such that
Ω(jω0) is {Φ11(jω0),Φ12(jω0),Φ22(jω0)} dissipative
for every Ω(jω0) ∈ Ω(jω0)

2) There exists ε > 0 such that LP (M(jω0),Φ11(jω0), . . .

. . . ,Φ12(jω0),Φ22(jω0), X(jω0), Y (jω0), Z(jω0), ε) ≥ 0

Proof: The proof is similar to the proof of Theorem 3.1
without considering the stability part.

In the sequel, for ease of notation, the frequency dependence
will be dropped i.e. we write {X,Y, Z} dissipativity instead
of {X(jω0), Y (jω0), Z(jω0)} dissipativity. Furthermore, if the
static uncertain system Ω ? M is {X,Y, Z} dissipative for
every Ω ∈ Ω, then the static uncertain system set Ω ? M
is {X,Y, Z} dissipative. Moreover, for the sake of simplicity,
the static uncertain system set will be referred to as the static
uncertain system.

Theorem 3.2 presents necessary and sufficient conditions for
the static uncertain system Ω?M to be {X,Y, Z} dissipative.
Testing these conditions is a convex optimization problem.
Nevertheless, it is infinite dimensional since condition 1) has
to be tested for all Ω ∈ Ω which is impossible from a
computational point of view.

In order to obtain a finite dimensional convex optimization
problem, let us introduce the set

ΦΩ =

ΦΩ =

bdiag
j

(
(Φ11)j

)
bdiag
j

(
(Φ12)j

)
bdiag
j

(
(Φ∗12)j

)
bdiag
j

(
(Φ22)j

)



such that condition 1) is satisfied for all Ω ∈ Ω. Let us
introduce as well the sets associated to each Ωj ∈ ΦΩj as

ΦΩj =

{
ΦΩj =

(
(Φ11)j (Φ12)j
(Φ∗12)j (Φ22)j

)}

Furthermore, for each Ωj , let us define BdissΩj
sets of coni-

cally independent elements Φkj ∈ ΦΩj with k ∈ {1, · · · , ndj},
i.e. each Φkj cannot be expressed as the conic com-
bination of Φlj , l ∈ {1, · · · , ndj} \ {k}. Please note, since
Φkj ∈ ΦΩj for all k ∈ {1, · · · , ndj}, the uncertainty Ωj is
{(Φ11)

k
j , (Φ12)

k
j , (Φ22)

k
j } dissipative with(

(Φ11)kj (Φ12)kj

(Φ∗12)kj (Φ22)kj

)
= Φkj ∈ BdissΩj

(8)

Then, let us define Φ(BdissΩ ) a set of block diagonal conic
combinations of the elements of BdissΩj

as

Φ(BdissΩ ) =



ΦΩ

∃ αkj ≥ 0, k ∈ {1, · · · , ndj }

ΦΩ =

(
ΦΩ

11 ΦΩ
12(

ΦΩ
12

)∗
ΦΩ

22

)

ΦΩ
gh = bdiag

j

 nd
j∑

k=1

αkj
(
Φgh

)k
j


with g, h ∈ {1, 2}
and Φkj ∈ BdissΩj



(9)

Since ΦΩ is a convex cone, we have Φ(BdissΩ ) ⊆ ΦΩ.
A counterpart of Theorem 3.2 with sufficient conditions only

is given in the following corollary.
Corollary 3.1: Given the matrices M , X , Y and Z and the

set Ω of Problem 3.1 and if there exist basis sets BdissΩj
of

conically independent elements Φij as in (8) for which Ωj
is {(Φ11)

k
j , (Φ12)

k
j , (Φ22)

k
j } dissipative ∀ k, then the static

uncertain system Ω?M is {X,Y, Z} dissipative if there exists
a ΦΩ ∈ Φ(BdissΩ ) as in (9) and there exists ε > 0 such that

LP
(
M,ΦΩ

11,Φ
Ω
12,Φ

Ω
22, X, Y, Z, ε

)
≥ 0 (10)

Proof: This is an immediate consequence of Theorem 3.2
after the parametrization of Φ as in (9).

Remark 3.2: In contrast with Theorem 3.2 and if there exist
the basis BdissΩj

, Corollary 3.1 presents sufficient conditions for
the static uncertain system Ω?M to be {X,Y, Z} dissipative.
Testing these conditions is a finite dimensional convex opti-
mization problem under LMI constraints with αij as decision
variables. It can be solved efficiently [2]. The consequence
of introducing this parametrization Φ(BdissΩ ) is a possible
conservatism. However, it can be reduced by an appropriate
choice of BdissΩj

, depending on the class of the uncertainty
sets Ωj . The conservatism depends also on how precise each
element of BdissΩj

characterizes Ωj . Furthermore, the larger
BdissΩj

sets are, the less conservative results can be obtained.
In the case where the uncertainty set Ω is an elementary

uncertainty set i.e. Ω = ∆, the associated basis can be easily
obtained from [3] and [4] and it will be denoted by Bdiss∆ . In
this case Bdiss∆ can be defined as the well-known D or DG
scaling sets according to (9).

C. Application to uncertain LSS

A solution to Problem 2.1 can be obtained by applying
the tools presented in this section if the LSS is expressed
as (5). After gathering all the different ∆i

j in ∆̃, defining
the global uncertainty set ∆̃, while the different M i

j and the
interconnections are gathered in M̃ using LFT algebra, the
global system T 1

1 will be given by

T 1
1 = ∆̃ ? M̃ (11)

with
∆̃ = bdiag

i

(
bdiag
j

(
∆i
j

))
, ∆i

j ∈∆, (12)



Please note that M̃ ∈ RH∞. It is a direct consequence of the
fact that the LSS is designed to be stable (in the nominal case).

As explained earlier, if there exists ∆̃0 ∈ ∆̃ such that
∆̃0?M̃ is stable and after considering a finite frequency setW ,
then Problem 2.1 can be treated as a set of robust performance
analysis problems of the static uncertain system ∆̃ ? M̃ . In
these problems, we denote γω0

as an upper bound on the
system maximum singular value σ̄(•) over all the uncertainties
for a given frequency ω0 ∈ W . After dropping the frequency
dependence, each of these problems is given by

Problem 3.2: Let the static uncertain system T 1
1 = ∆̃ ? M̃

where M̃ is a given matrix and ∆̃ ∈ ∆̃ a set of the uncertain
matrices ∆̃. Given a frequency ω0, solve

min
γω0

γω0

subject to σ̄(T 1
1 ) < γω0

∀ ∆̃ ∈ ∆̃

We can try to solve Problem 3.2 using a direct application
of Corollary 3.1. Since ∆̃ is the block diagonal composition of
elementary uncertainties ∆i

j ∈∆, the associated basis Bdiss
∆̃

can easily be chosen from [3] and [4]
This approach will be referred to as the Direct LSS Robust

Performance Analysis (Direct LSS RPA) method and it is
summarized in the following corollary.

Corollary 3.2 (Direct LSS RPA): Given a frequency ω0,
Problem 3.2 can be solved with the following optimization
problem

min
γ2
ω0

Φ̃∈Φ(Bdiss
∆̃ )

γ2
ω0

subject to

∃ ε > 0 s.t LP
(
M̃, Φ̃11, Φ̃12, Φ̃22,−I, 0, γ2

ω0
I, ε
)
≥ 0. (13)

Proof: Corollary 3.2 is a direct application of Corol-
lary 3.1 with X = −I, Y = 0 and Z = γ2

ω0
I (see Remark 3.1)

and the minimization of γ2
ω0

to obtain the lowest upper bound
on σ̄(T 1

1 ) at a given frequency ω0.
Remark 3.3: If there are no performance signals (w1

1 and
z1

1), it is possible to investigate the robust stability of a network
using this direct approach. The robust stability condition is
given by | det(I − ∆̃(s)M̃11(s))| > 0 for every ∆̃ ∈ ∆̃ and
for every s ∈ C+

, see [24]. To test this condition, we have
to find ∆̃0 ∈ ∆̃ such that ∆̃0-M̃11 is stable. Thereafter, we
have to solve a set of matrix problems concerning the static
interconnection ∆̃(jω0)-M̃11(jω0) at each frequency ω0 ∈ W .
Each of these problems can be solved using Corollary 3.2 by
replacing condition (13) with LS

(
M̃11, Φ̃11, Φ̃12, Φ̃22

)
≥ 0.

This approach will be referred to as the Direct LSS Robust
Stability Analysis (LSS RSA).

As it will be shown later with numerical examples, the direct
methods cannot be practically applied when the size of the LSS
becomes too important. This is due to the important number of
decision variables in the optimization problem in Corollary 3.2
which leads to a dramatic increase of the computation time.

In the next section, we propose a method that allows to take
advantage of the hierarchical structure to practically investigate
the robust performance of uncertain LSS within a reasonable
computation time.

IV. HIERARCHICAL APPROACH

In the previous section, we have shown that the performance
can be characterized using dissipativity properties. Neverthe-
less, Corollary 3.1 reveals that to ensure robust performance,
defined by the {X,Y, Z} dissipativity property, it is suf-
ficient (and sometimes necessary) to exhibit a dissipativity
property, defined by ΦΩ ∈ Φ(BdissΩ ), satisfied by all Ω ∈ Ω
i.e. Ω is

{
ΦΩ

11,Φ
Ω
12,Φ

Ω
22

}
dissipative such that

LP
(
M,ΦΩ

11,Φ
Ω
12,Φ

Ω
22, X, Y, Z, ε

)
≥ 0

holds true. Therefore, the dissipativity properties are suitable
to characterize both uncertainty and performance.

Corollary 3.1 allows to characterize the performance
with {X,Y, Z} dissipativity property knowing that all the
uncertainties Ω are

{
ΦΩ

11,Φ
Ω
12,Φ

Ω
22

}
dissipative where ΦΩ is

constructed from the basis of the uncertainty Ωj as in (8)
and (9). Thereafter, if we have a method, which will use
necessarily Corollary 3.1, that allows to find a basis BdissT for
the static system T = Ω ? M from the basis BdissΩ of the uncer-
tainty, then Problem 3.2, which corresponds to Problem 2.1 at a
given frequency ω0 (as explained in the previous section), can
be solved efficiently in a hierarchical manner. This method will
be known as “basis propagation” and it consists in propagating
the basis from one hierarchical level to another starting from
level l where the uncertainty basis is known since Ωij = ∆i

j .
This basis propagation method will be performed from basis
of level i to basis of level i− 1 until reaching level 1 where
the objective is to minimize γω0 .

The proposed Hierarchical Robust Performance Analy-
sis (HRPA) approach is summarized in the following algorithm

Algorithm 1 Hierarchical Robust Performance Analysis
% First Step: level l-1

1: for j ← 1 to N l−1
T do

2: Find a basis Bdiss
T l−1
j

for each static uncertain system

T l−1
j from the given basis Bdiss

∆l
j

of elementary uncer-

tainties ∆l
j .

3: end for
% Intermediate Steps: level l-2 to level 2

4: for i← l − 2 to 2 do
5: for j ← 1 to N i

T do
6: Find a basis Bdiss

T i
j

for each static uncertain

system T ij using the given basis Bdiss
∆i+1

m
of the el-

ementary uncertainties ∆i+1
m and the basis Bdiss

T i+1
n

of the static uncertain systems T i+1
n obtained at

level i+ 1.
7: end for
8: end for



Algorithm 1 (Continued)
% Last Step: level 1

9: Find the smallest γω0
such that the static system T 1

1 is
{−I, 0, γ2

ω0
I} dissipative by applying Corollary 3.1 using

the given basis Bdiss∆2
m

of the elementary uncertainties ∆2
m

and the basis BdissT 2
n

of the static uncertain systems T 2
n

obtained at level 2.

Remark 4.1: The robust stability problem of Remark 3.3
can be solved efficiently using basis propagation. As explained
in Remark 3.3, the robust stability problem boils down to a
set of matrix problems at each frequency ω0 ∈ W . Each of
these problems can be solved using Algorithm 1 by replacing
condition (10) of Corollary 3.1 in the last step of Algorithm 1
with LS

(
(M11)

1
1 ,Φ

Ω
11,Φ

Ω
12,Φ

Ω
22

)
≥ 0. This will define the

Hierarchical Robust Stability Analysis Algorithm. Therefore,
Algorithm 1 can be used for both certification: stability and
performance after considering the corresponding static system
robustness analysis problems.

Remark 4.2: Algorithm 1 allows to investigate the perfor-
mance and the stability of uncertain LSS in an efficient manner
after considering the corresponding static systems problems.
The global LMI given in Corollary 3.2 will be replaced with
several hierarchical LMI of Corollary 3.1 linked with appropri-
ate condition in the next hierarchical levels. Furthermore, given
a hierarchical level i, the different uncertain systems T i• do not
interfere with each other since their interconnections appear in
level i−1 and levels below. Therefore, the analysis performed
at each level i (the performance analysis of the different T i•)
can be performed separately and in parallel. The consequence
of this parallel analysis will be a very important decrease of
the computation time as it will be shown in subsection VI-B.

Remark 4.3: In the case of parametric uncertainties and
when the size of the uncertain LSS is not too important such
that Corollary 3.2 can be practically applied, the basis Bdiss

∆̃
can be chosen in the form of the well-known DG scaling
from [3]. In order to reduce the conservatism resulting from
choosing this parametrization, the basis Bdiss

∆̃
can be chosen

in the from of DGL scaling from [25] instead of DG scaling.
In this case and since the basis is larger, the number of
decision variables is more important and Corollary 3.2 may
not be practically applied even if the size of the LSS is not
too important. Nevertheless, Algorithm 1 allows to overcome
this issue. Since the analysis in each level is performed on
small size systems T ij , it is possible to choose the basis Bdiss

∆i+1
m

in the from of DGL scaling. The consequence will be less
conservative results in the overall analysis compared to those
when using the hierarchical approach with DG scaling.

In the next section, we present three types of elements for
the basis BdissT•

•
and we formulate the problems of computing

each one of them as a convex optimization problem allowing
to minimize its size measure.

V. PRACTICAL FORMULATION AND COMPUTATION OF
BASIS ELEMENTS

In the previous section, we revealed how it is possible
to solve Problem 2.1 (subsequently Problem 3.2) with Algo-
rithm 1 using basis propagation from level i to level i−1 with
the assumption that we are able to find the basis elements of
each static uncertain system given the basis of its uncertainty.
However, the conservatism of the overall result highly depends
on the choice of the propagated basis. For this reason, it is
important to define and compute the “best” basis for a given
uncertain system. In the sequel, we consider a static uncertain
system T such that z = Tw as in (5) with a given uncertainty
basis BdissΩ .

Corollary 3.1 gives sufficient conditions to obtain {X,Y, Z}
dissipativity property for the static uncertain system T by
solving the following feasibility optimization problem

LP
(
M,ΦΩ

11,Φ
Ω
12,Φ

Ω
22, X

k, Y k, Zk, ε
)
≥ 0

with ΦΩ ∈ Φ(BdissΩ ) is of the form (9) with a priori
known BdissΩj

. This feasibility optimization problem is convex
and can be solved efficiently. The obtained {X,Y, Z} dissi-
pativity property will define an element of the basis BdissT .
However, in order to ensure that this characterization is the
best, it is important to define a size measure for each element
i.e. characterize T with the optimal {X,Y, Z} in the sense
that this size is minimized. In addition, one can characterize
the static uncertain system T not with just one dissipativity
property but with N different dissipativity properties which
will be used to construct the basis BdissT(

Xk Y k(
Y k
)∗

Zk

)
∈ BdissT ,∀ k = 1, . . . , Nd

In order to construct the “best” basis BdissT , all its elements
should be conically independent and capture information, of
different nature, characterizing the static uncertain system T
such as gain or phase information.

For the sake of simplicity, the term ”static” will be dropped
and the static uncertain system will be referred to as the
uncertain system.

In this section, for every frequency ω0 and in order to
have a geometric interpretation of each element of BdissT , we
characterize the uncertain system T in the signals space using
the system input and output signals w and z. Within this
context, a system T is said to be {X,Y, Z} dissipative if(

z
w

)∗(
X Y
Y ∗ Z

)(
z
w

)
> 0 (14)

Therefore, the search of each element of BdissT consists in the
following: find {X,Y, Z} dissipativity property such that (14)
is ensured for all non null input signals w with its resulting
output z = Ω ? Mw for all Ω ∈ Ω.

A. Ellipsoid

If X < 0, constraint (14) rewrites in the signals space as
(z − zc)∗(−X)(z − zc) < w∗

(
Z − Y ∗X−1Y

)
w



with zc = −X−1Y w and
(
Z − Y ∗X−1Y

)
is hermitian

positive definite matrix since X < 0 and constraint (14) holds.
Then, for all non null input signal w, the corresponding

output signal z belongs to the ellipsoid Ew (nz dimensional
space) centered at zc and characterized with Pw such that

EPw = {z ∈ Cnz | (z − zc)∗Pw(z − zc) < 1} (15)

where the matrix Pw determines how far the ellipsoid extends
in every direction. Pw is given by

Pw =
−X

w∗ (Z − Y ∗X−1Y )w

We are now interested in finding X , Y and Z corresponding
to the smallest ellipsoid EPw

for all inputs such that1 ‖w‖ = 1
and the uncertain system Ω?M is {X,Y, Z} dissipative. For
this purpose, a size measure v for the ellipsoid EPw

can be
defined as its volume v = vol (EPw), which is given by

v = β
√

det
(
P−1
w

)
where β is a positive scalar which depends on nz .

Problem 5.1: Let Ω?M be an uncertain system. Find X , Y
and Z which

minimize maximize maximize v2

over X,Y,Z
X<0 over Ω ∈ Ω over w

s.t.
{
‖w‖ = 1
(Ω ? M)w ∈ EPw

Theorem 5.1: An upper bound ṽopt on vopt optimal value
of Problem 5.1 can be obtained by finding X , Y , Z, ΦΩ

11,
ΦΩ

12 and ΦΩ
22 with ΦΩ =

(
ΦΩ

11 ΦΩ
12

(ΦΩ
12)

∗
ΦΩ

22

)
∈ Φ

(
BdissΩ

)
that

minimize
log
(
det
(
−X−1

))
subject to

1) ∃ ε > 0 s.t LP
(
M,ΦΩ

11,Φ
Ω
12,Φ

Ω
22, X, Y, Z, ε

)
≥ 0

2)
(
I 0
0 0

)
≥
(
Z Y ∗

Y X

)
.

The upper bound ṽopt is given by ṽopt = β

√
det
(
−X̃−1

)
where X̃ = argmin log

(
det
(
−X−1

))
such that condition 1)

and condition 2) of Theorem 5.1 hold.
This optimization problem is a determinant maximization

under linear matrix inequality constraints [26] and is convex.
Proof: Problem 5.1 rewrites

minimize maximize maximize v2

over X,Y,Z
X<0 over Ω ∈ Ω over ‖w‖ = 1

subject to Ω ? M is {X,Y, Z} dissipative

Let us introduce the logarithm function on v2, which is strictly
increasing according to its argument

log
(

v2
)

= 2 log (β) + log
(
det
(
−X−1

))
+ log

(
w∗
(
Z − Y ∗X−1Y

)
w
)

1The normalization of the input signal w is absorbed in Pw .

Maximizing log
(

v2
)

over the inputs ‖w‖ = 1 and with
σ̄ as the maximal singular value of

(
Z − Y ∗X−1Y

)
, it is

possible to write

max
‖w‖=1

log
(

v2
)

= 2 log (β) + log
(
det
(
−X−1

))
+ log (σ̄)

Since
(
Z − Y ∗X−1Y

)
is hermitian definite positive, then its

maximal singular value is equal to its largest eigenvalue λmax.
We thus have λmaxI ≥

(
Z − Y ∗X−1Y

)
. Furthermore, as

a dissipativity property is defined up to a strictly positive
multiplicative coefficient and as {X,Y, Z} dissipativity defines
the same ellipsoid as {τX, τY, τZ} dissipativity for any τ > 0.
Then, one can search for X , Y and Z such that λmax = 1 with-
out loss of generality. Since β is a constant, the optimization
problem is equivalent to

minimize maximize log
(
det
(
−X−1

))
over X,Y,Z

X<0 over Ω ∈ Ω

subject to
Ω?M is {X,Y, Z} dissipative
I≥(Z−Y ∗X−1Y )

The last optimization problem is solved by applying Corol-
lary 3.1 which gives condition 1) of Theorem 5.1 while
condition 2) is obtained by applying Schur’s lemma [27]
on I ≥

(
Z − Y ∗X−1Y

)
. Please note that since Corollary 3.1

presents sufficient conditions, we are only able to compute an
upper bound ṽopt on the optimal volume vopt.

Remark 5.1: The interest of finding a bounded and con-
nected set as an ellipsoid, for which belongs the output z, is
to characterize the gain of the uncertain system T . At each
frequency ω0, the frequency response of the uncertain system
is embedded in this ellipsoid i.e. it is possible to compute
boundaries for the system gain at this frequency ω0.

B. Band

In the signal space and if X = 0, constraint (14)
rewrites as ξ∗z − η > 0 with ξ = 2Y w ‖2Y w‖−1 and
η = −w∗Zw ‖2Y w‖−1. This last inequality expresses that
for a given non null input signal w, the output signal z
belongs to a half plane which is characterized by the hy-
perplane: {z | ξ∗z = η} where ξ is a vector normal to the
hyperplane and η is twice the distance of the hyperplane
to the origin (the dot product of any point of the hyper-
plane with ξ). In addition to a half plane, it is possible to
define a band B(η1,η2)w

as the intersection of two parallel
half planes with the same normal direction ξ but opposite
sign, i.e. two parallel half planes defined by two dissipativity
properties {0, Y, Z1} and {0,−Y, Z2}, that is

B(η1,η2)w
=

{
z ∈ Cnz

∣∣∣∣ ξ∗z − η1 > 0
−ξ∗z − η2 > 0

}
with ξ =

2Y w

‖2Y w‖
, η1 = −w

∗Z1w

‖2Y w‖
and η2 = −w

∗Z2w

‖2Y w‖
.

Our objective now is to find the band B(η1,η2)w
with the

smallest size measure, for all inputs such that ‖w‖ = 1
and provided that the uncertain system Ω ? M is {0, Y, Z1}



and {0,−Y, Z2} dissipative. We can define a weighted size
measure d as the weighted width of the band

d = ‖2Y w‖ |η2 − η1|
Problem 5.2: Let Ω ? M be an uncertain system. Find Y ,

Z1 and Z2 which
minimize maximize maximize d
over Y,Z1,Z2 over Ω ∈ Ω over w

subject to
{
‖w‖ = 1
(Ω ? M)w ∈ B(η1,η2)w

Theorem 5.2: An upper bound d̃opt on dopt the optimal
value of Problem 5.2 can be obtained by finding Y , Z1, Z2,(
ΦΩ

11

)i
,
(
ΦΩ

12

)i
and

(
ΦΩ

22

)i
with

(
ΦΩ
)i

=

(
(ΦΩ

11)
i

(ΦΩ
12)

i

(ΦΩ
12)

i∗
(ΦΩ

22)
i

)
∈

Φ
(
BdissΩ

)
where i = {1, 2} that minimize

d 2

subject to
1) ∃ ε1 > 0 s.t. LP

(
M,
(
ΦΩ

11

)1
,
(
ΦΩ

12

)1
,
(
ΦΩ

22

)1
, 0, Y, Z1, ε1

)
≥ 0;

2) ∃ ε2 > 0 s.t. LP
(
M,
(
ΦΩ

11

)2
,
(
ΦΩ

12

)2
,
(
ΦΩ

22

)2
, 0,−Y, Z2, ε2

)
≥ 0;

3)
(

d 2I (Z1 − Z2)∗

(Z1 − Z2) I

)
≥ 0.

The upper bound d̃opt is given by d̃opt =
√

argmin d 2 such
that conditions 1 and 2 of Theorem 5.2 hold.

This optimization problem is the minimization of a linear
cost under LMI constraints [27].

Proof: Problem 5.2 rewrites

minimize maximize maximize |w∗ (Z1 − Z2)w|
over Z1,Z2 over Ω ∈ Ω over ‖w‖ = 1

subject to Ω?M is {0, Y, Z1} dissipative
Ω?M is {0,−Y, Z2} dissipative

The maximum of |w∗ (Z1 − Z2)w| over ‖w‖ = 1 is equal to
d constrained by

(Z1 − Z2)
∗

(Z1 − Z2) ≤ d 2I.
The optimization is thus equivalent to

minimize maximize d 2

over Z1,Z2 over Ω ∈ Ω

subject to
Ω?M is {0, Y, Z1} dissipative
Ω?M is {0,−Y, Z2} dissipative
(Z1−Z2)∗(Z1−Z2)≤d 2I

Finally, condition 1) and condition 2) of Theorem 5.2
are obtained by applying Corollary 3.1 while condition 3)
is obtained by applyin Schur’s lemma [27] on d 2I −
(Z1 − Z2)

∗
(Z1 − Z2) ≥ 0. Again, since Corollary 3.1

presents sufficient conditions, we are only able to compute
an upper bound d̃opt on the optimal width dopt.

C. Cone Sector

The phase uncertainty presents another important charac-
terization of the uncertain system behavior. In contrast with
the system gain, and beside for single input single output
systems, there is no unique definition of multiple input multiple

output systems phase. Furthermore, taking into account uncer-
tainties in the system makes the phase characterization more
complicated. It is possible to compare the direction variation
between the input and the output signals to measure the phase
of a system by measuring input direction variation introduced
by the system. Furthermore, within this context, the phase
uncertainty is characterized using the notion of numerical
range as shown in [20] and [28]. The numerical range of a
complex matrix Γ is defined to be a compact and convex set
of C and it is given by [29]

N (Γ) = {w∗z | z = Γw,w ∈ Cnw and ‖w‖ = 1} (16)
In order to define the phase of an uncertain system Ω ? M ,

the numerical range is extended to the union of numerical
ranges N (Ω ? M) for any Ω ∈ Ω. Let us define in the com-
plex plane the cone sector centered at the origin and containing
all these numerical ranges. It is defined by a spread angle α
such that 0 < α < π and the angle β measured between the
bisectrix of α and the real axis direction. Please refer to [20]
for more details. The angle β can be set to zero by introducing
a scaling matrix Ψ ∈ Cnz×nw . More generally, it is possible to
introduce an offset zc characterized with a matrix C ∈ Cnz×nw

such that zc = Cw and search for the cone sector C(0,α)

containing N (Ψ∗ (Ω ? M − C)) with

C(0,α) =


w∗zs

∣∣∣∣∣∣∣∣∣∣∣

(
zs
w

)∗(
0 Y1

Y ∗1 Z1

)(
zs
w

)
> 0(

zs
w

)∗(
0 Y2

Y ∗2 Z2

)(
zs
w

)
> 0

w ∈ Cnw and ‖w‖ = 1


(17)

where
• zs belongs to the signal set for which the dot product

with the signal w gives the cone sector C(0,α);
• Y1 = Ψ

(
I + j cot

(α
2

)
I
)

and Z1 = − (Y ∗1 C + C∗Y1);

• Z2 = Ψ
(
I − j cot

(α
2

)
I
)

and Z2 = − (Y ∗2 C + C∗Y2).
with 0 < α < π. We are now interested in finding Yi
and Zi corresponding to the smallest C(0,α) for all inputs such
that ‖w‖ = 1. This inclusion ensures that the uncertain system
Ω ? M is {0, Y1, Z1} and {0, Y2, Z2} dissipative. This problem
can be solved by finding Ψ such that the union of the numerical
ranges N (Ψ∗ (Ω ? M − C)) is in the right half plane and then
search for α. Furthermore, to obtain the smallest cone, a size
measure a for C(0,α) is needed. It can be defined as the tangent
of the angle α

a = tan
(α

2

)
Problem 5.3: Let Ω ?M be an uncertain system and given

a complex matrix C. Find Ψ and α such that the union of
the numerical ranges N (Ψ∗ (Ω ? M − C)) is in the right half
plane and which
minimize maximize maximize a
over Ψ, a over Ω ∈ Ω over w

s.t.
{
‖w‖ = 1
N (Ψ∗ (Ω ? M − C)) ⊂ C(0,α)



Theorem 5.3: The union of numerical ranges
N (Ψ∗ (Ω ? M − C)) of Problem 5.3 is located in the
right half plane if ∃ Ψ and ∃ Φ̂ ∈ Φ

(
BdissΩ

)
and ∃ ε > 0

such that (
M
I

)∗
B

(
M
I

)
≥ 0 (18)

where

B =


−Φ̂Ω

22 0 −
(

Φ̂Ω
12

)∗
0

0 −εI 0 Ψ

−Φ̂Ω
12 0 − Φ̂Ω

11 0
0 Ψ∗ 0 −(Ψ∗C + C∗Ψ)− εI

 .

Furthermore, an upper bound ãopt on aopt, optimal value of

Problem 5.3, can be obtained by finding a, Φ̂Ω and
(

Φ̃Ω
)i

with Φ̂Ω + a−1
(

Φ̃Ω
)1

∈ Φ
(
BdissΩ

)
and Φ̂Ω − a−1

(
Φ̃Ω
)2

∈
Φ
(
BdissΩ

)
that minimize

a

subject to

1) a
(
M
I

)∗
B

(
M
I

)
+

(
M
I

)∗
A1

(
M
I

)
≥ 0

2) a
(
M
I

)∗
B

(
M
I

)
+

(
M
I

)∗
A2

(
M
I

)
≥ 0

3) Condition (18)

where Ai = (−1)i−1 × . . .

· · ·×


−
(

Φ̃Ω
22

)i
0 −

((
Φ̃Ω

12

)i)∗
0

0 0 0 jΨ

−
(

Φ̃Ω
12

)i
0 −

(
Φ̃Ω

11

)i
0

0 (jΨ)∗ 0 j(Ψ∗C − C∗Ψ)

 .

The upper bound ãopt is given by ãopt = argmin a such that
conditions 1), 2) and 3) of Theorem 5.3 hold.

Minimizing a in Theorem 5.3 such that conditions 1), 2)
and 3) hold is a generalized eigenvalues problem which has
been proved that it is a quasiconvex optimization problem [27]
and it can be solved efficiently [30].

Proof: The union of the numerical
ranges N (Ψ∗ (Ω ? M − C)) is in the right half plane if
and only if

Re (N (Ψ∗ (Ω ? M − C))) ≥ 0.

By (16), which defines the numerical range, the previous
condition rewrites as(

z
w

)∗(
0 Ψ

Ψ∗ − (Ψ∗C + C∗Ψ)

)(
z
w

)
≥ 0 (19)

where z = Ω ? M . This constraint expresses that the un-
certain system Ω ? M is {0,Ψ,− (Ψ∗C + C∗Ψ)} dissipa-
tive for all Ω ∈ Ω. By applying Corollary 3.1, (19) is
implied by (18) with Φ̂ ∈ Φ

(
BdissΩ

)
. Then, the minimiza-

tion of a is well-posed when the union of numerical
ranges N (Ψ∗ (Ω ? M − C)) is in the right half plane, that

is 0 <
α

2
<

π

2
. With a = tan

(α
2

)
, Yi and Zi introduced

in (17) become
Yi = Ψ + (−1)i−1ja−1Ψ

Zi = − (Ψ∗C + C∗Ψ) + (−1)ija−1 (Ψ∗C − C∗Ψ)
(20)

The problem of minimizing a rewrites

minimize maximize maximize a
over Ψ, a over Ω ∈ Ω over ‖w‖ = 1

subject to Ω?M is {0, Y1, Z1} dissipative
Ω?M is {0, Y2, Z2} dissipative

where Yi and Zi are given in (20). Nevertheless, since the
conditions of Corollary 3.1 are only sufficient, we are able
to compute only an upper bound ã on aopt, solution of
Problem 5.3. Applying Corollary 3.1 gives

LP
(
M,
(

ΦΩ
11

)1

,
(

ΦΩ
12

)1

,
(

ΦΩ
22

)1

, 0, Y1, Z1, ε

)
≥ 0

LP
(
M,
(

ΦΩ
11

)2

,
(

ΦΩ
12

)2

,
(

ΦΩ
22

)2

, 0, Y2, Z2, ε

)
≥ 0

(21)

with
(
ΦΩ
)1 ∈ Φ

(
BdissΩ

)
,
(
ΦΩ
)2 ∈ Φ

(
BdissΩ

)
. Yi and Zi are

given in (20). However, since a−1 is multiplied by Ψ, the
optimization problem is bilinear in a−1 and Ψ. In general,
optimization problems involving bilinear matrix inequalities
are NP hard, except if e.g. it belongs to the particular sub-class
of generalized eigenvalue problems which are quasiconvex
optimization problems and they can be solved efficiently [27].
In the sequel, we reveal that the minimization of a can be
rewritten as a generalized eigenvalue problem. To this purpose,
it is necessary to transform the inequalities (21) in order
to obtain bilinear terms which are a multiplied by positive
semidefinite matrices. To this purpose, we enforce

(
ΦΩ
)i

= Φ̂Ω

with i ∈ {1, 2}. Nevertheless, fixing this structure to
(
ΦΩ
)i

will increase the conservatism. The latter can be reduced
with a more appropriate choice of

(
ΦΩ
)i

such as
(
ΦΩ
)1

=

Φ̂Ω + a−1
(

Φ̃Ω
)1

and
(
ΦΩ
)2

= Φ̂Ω − a−1
(

Φ̃Ω
)2

. This choice

is interesting in the sense that Φ̂Ω will be used to make

N (Ψ∗ (Ω ? M − C)) in the right half plane while
(

Φ̃Ω
)i

will
ensure extra degree of freedom to minimize ã. Developing (21)
and factorizing a−1 give(

M
I

)∗
B

(
M
I

)
+ a−1

(
M
I

)∗
A1

(
M
I

)
≥ 0;(

M
I

)∗
B

(
M
I

)
+ a−1

(
M
I

)∗
A2

(
M
I

)
≥ 0.

Since 0 < α < π, then a = tan
(α

2

)
> 0 and we obtain

a
(
M
I

)∗
B

(
M
I

)
+

(
M
I

)∗
A1

(
M
I

)
≥ 0;

a
(
M
I

)∗
B

(
M
I

)
+

(
M
I

)∗
A2

(
M
I

)
≥ 0.

Minimizing a with the latter conditions is a generalized eigen-
value problem since condition (18) holds. Please note that since
Corollary 3.1 presents sufficient conditions, we are only able
to compute an upper bound ãopt on the optimal aopt.



Remark 5.2: The interest of finding a cone sector is to be
able to characterize the phase variation by embedding the
numerical range of the uncertain system inside the cone sector.
This phase uncertainty information can be very important
and critical in some applications such as the active control
of vibrations. Please note that for SISO system, the offset
zc = Cw, with ‖w‖ = 1, boils down to one point zc = C
and it is possible to interpret the cone sector C(0,α) containing
N (Ψ∗ (Ω ? M − C)) as the cone sector C(zc,α,arg(Ψ)) con-
taining N (Ω ? M). Furthermore, if C = 0 and Ω = 0, the
numerical range boils down into one point and the cone sector
is nothing else than the phase of the nominal SISO system,
according to the origin, at a given frequency ω0.

In the next section we present two applications examples to
investigate the robustness of uncertain LSS using the hierar-
chical approach.

VI. APPLICATIONS OF THE HIERARCHICAL APPROACH

A. Performance analysis of PLL network

We consider in this first example the performance analysis
of the active clock distribution network of [31]. It is composed
of N = 16 mutually synchronized Phase Locked Loop (PLL)
delivering clock signals to the chip. In order to synchronize
all the network, the PLLs exchange information through an
interconnection structure. This example is suitable for illus-
tration of the proposed hierarchical analysis approach as the
performance is naturally evaluated in the frequency domain.

1) PLL network description: The description of the N PLLs
frequency responses are given by

Tj(jω0) =
kj(jω0 + aj)

−ω2 + kjjω0 + kjaj
∀ j ∈ {1, . . . , N}

where kj and aj are the PLL parameters and ω0 is the
current frequency defined by griding. Due to the manufacturing
process, technological dispersions are inevitable and the PLL
parameters kj and aj are uncertain: kj ∈ [0.76, 6.84]× 104

and aj ∈ [91.1, 273.3]. Furthermore, all the PLLs are homo-
geneous i.e. have the same description and uncertainty set ∆.
Therefore, and after normalization, it is possible to present the
PLLs as the interconnection of a certain part and uncertain one

Tj(jω0) = ∆j ? MPLL ∆j ∈∆ ∀ j ∈ {1 . . . , N}
where ∆ is given by

∆ =

{
∆ =

(
δk 0
0 δa

)
δk ∈ R, δa ∈ R ||∆||∞ < 1

}
The information exchange between PLLs is modeled by

an interconnection matrix Mint defined in the equation (13)
of [18].

Therefore, the PLL network has a three level hierarchical
structure ans it is a sub-class of the LSS of (3) and (4). The
different parameters of this hierachical structure are presented
in TABLE I.

l 3

N i
T N1

T = 1, N2
T = N

N∆(M i
j)
N∆(M2

j ) = {j} ∀ j ∈
{

1, . . . , N2
T

}
N∆(M1

1 ) = ∅

NT (M i
j)
NT (M2

• ) = ∅
NT (M1

1 ) = {1, . . . , N}

M i
j M1

1 = Mint, M2
j = MPLL ∀ j ∈

{
1, . . . , N2

T

}
TABLE I: Three level hierarchical structure parameters

The network performance is characterized by its global input
and output signals wg and zg using the global frequency
response magnitude bound (more details in [18] and [19]).

2) Hierarchical Approach: Algorithm 1 is applied in two
steps.

– Local step: compute a basis BdissTj
for each PLL by

applying Corollary 3.1 using the given basis Bdiss∆j
of

the elementary uncertainties ∆j . In order to construct
the basis BdissTj

, we consider several elements
• ellipsoid: we can use Theorem 5.1 to find a disc2

center and an upper bound on the optimal radius;
• band: we can use Theorem 5.2 to find an upper

bound on the band width with free orientation;
• cone sector: given a scalar C, we can use Theo-

rem 5.3 to find an upper bound of the cone angle.
Please note that since all the PLLs are homogeneous,
the basis BdissTj

obtained for one PLL is valid for all the
16 PLL. Therefore, computation time of the local step
is equal to computation time required to find the basis
elements for one PLL.

– Global step : compute the smallest γω0
such that the net-

work, denoted T 1
1 , is {−I, 0, γ2

ω0
I} dissipative by apply-

ing Corollary 3.1 using the basis BdissTj
obtained in local

step. In this step, one can combine the elements of BdissTj

to characterize each PLL by: ellipsoid alone, ellipsoid
and band, ellipsoid and cone, etc. Then, propagate these
characterizations to investigate the performance of the
network in the global step.

3) Results:
– Local step : In this step, we are interested in find-

ing three elements of the basis BdissTj
: ellipsoid, band

and cone sector. The frequency response of a PLL is
presented in Fig. 2 in the complex plane for a given
frequency ω0 = 480 rad/s. The red dot is the nominal
frequency response and the green dots represent a sam-
pling of the uncertain frequency responses obtained for
a sampling of aj and kj for illustration purposes only.
The three elements of BdissTj

are interpreted in geometric
terms and presented in Fig. 2. The obtained disc is pre-

2In single input single output case, the ellipsoid boils down to a disc.
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Fig. 3: The PLL network performance analysis

sented in black with its center. We can see that the radius
is minimized. The blue lines represent the obtained band
with a free direction and the band width is also mini-
mized. The red lines represent the obtained cone sector
with its center C fixed as C = cdisc + j× 1.1× rdisc
where cdisc and rdisc are the disc center and radius
respectively and the cone angle is minimized. Please note
that since the uncertainty ∆ is parametric and in order
to reduce the conservatism, the basis Bdiss∆ is chosen in
the form of DGL scaling from [25], see Remark 4.3.

– Global step: The performance analysis results of the
PLL network are presented in Fig. 3 and summarized
in TABLE II. Please note that the direct approach
corresponds to the approach of Corollary 3.2.

4) Discussion: All the analysis reveal that the PLL network
is able to track a ramp as the slope of frequency response
magnitude at low frequencies is 40 dB/dec (see [31] for
more details) and the performance specifications are satisfied.

Approach Maximum peak Computation time
Direct 6.01 dB 361.7s
Hierarchical: ellipsoid 13.44 dB 16.9s
Hierarchical: ellipsoid+band 12.97 dB 53.5s
Hierarchical: ellipsoid+cone 6.45 dB 115.9s

TABLE II: Comparison between the different approaches

The direct approach presents the less conservative results
with a maximum peak of 6.01dB compared to the different
hierarchical approaches. However, computation time is signif-
icant: 361.7s. TABLE II illustrates the trade-off between con-
servatism and computation time that can be set by the user with
the hierarchical approach. Please note that TABLE II gives the
overall computation time for each approach i.e. computation
time required for both steps. When using the disc alone, the
results are conservative but they are obtained faster. The results
are less conservative when using the disc with the band, but
they are obtained in more time. However the maximum peak
is also important. When using the disc with a cone sector, the
results are much less conservative. Actually, they are close to
the results of the direct approach: the difference in the maximal
peak value with direct approach is +0.39 dB, that corresponds
to 4.73 % of ratio. In addition, the results are obtained in
32.04 % of the time needed for direct approach.

B. Stability Analysis of a Chain of Uncertain Systems

In this second example, we consider the stability analysis
of a chain of uncertain systems taken from [16]. Our objective
is to compare the computation time required in our hierar-
chical method, the direct analysis approach and the method
proposed in [16].

1) Uncertain system chain description: Consider a chain of
N uncertain system Tj . The uncertainties are assumed to be
scalar reals: δ1, . . . , δN i.e. each system has one parametric
uncertainty. The inputs and the outputs of each system Tj are
denoted wj and zj .
For j = {2, . . . , N − 1}, each system Tj has two inputs and
two outputs i.e. wj , zj ∈ C2 while wj , zj ∈ C for j = {1, N};
hence it is possible, after normalization, to represent each
uncertain system as

Tj = ∆j ? Mj ∆j ∈∆

with ∆ is given by
∆ = {∆ = δ, δ ∈ R ||∆||∞ < 1} .

Since each uncertain system Tj is only connected to Tj−1

and to Tj+1, see Fig.4, the interconnections in this chain are
defined by: w2

j = z1
j+1 and w1

j = z2
j−1 for j = {2, . . . , N − 1}

and by w1 = z1
2 and wN = z2

N−1 for j = {1, N}. The global
system is given by

Tglobal = bdiagj (Tj) ? Mglobal

where Mglobal is the global interconnection matrix. This matrix
is sparse and it corresponds to a chordal graph, please refer
to [16] for more details.

The systems are generated randomly as explained in [16]
where the authors considered three conditions that different
systems should satisfy: each system has to be nominally and
robustly stable and the chain of N systems has to be nominally
stable.

A possible application corresponding to the uncertain system
chain of Fig. 4 is when an electric current is flowing through
a line with a length that is not negligible compared to the
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Fig. 4: Chain of N uncertain systems

current wave length at the considered frequency. An example
is a railway power supply line. Indeed, the line length can
be more than 100 km while trains generate current harmonics
at frequencies in the kHz range (wave length in tens of km).
These kind of systems are often modeled with cascaded blocks
where each block models a short part of the line (this part
should be of short length compared to the wave length).
Usually blocks are modeled as quadripoles which are electrical
circuits with two pairs of terminals to connect to external
circuits, see [32] and the references within. Because of the
modeling errors, the quadripole characteristic parameters are
not precisely known and uncertainties should be considered to
study the worst case stability scenario.

2) Hierarchical approach: Let us suppose, without loss
of generality, that N the number of systems in the chain
is given by N = 2ν where ν is a positive integer. It is
possible to consider a three levels hierarchical structure as in
TABLE I, with M1

1 = Mglobal and M2
j = Mj (the randomly

defined), and perform the analysis in two steps as for the PLL
application.

However, with this three level hierarchical structure, we will
not exploit to the most the network structure which is sparse
with a chordal pattern. To exploit this pattern, special optimiza-
tion algorithms can be used as shown in [16]. Nevertheless,
our hierarchical approach is flexible enough to capture this
structure and exploit the chordal pattern. Since each system Tj
is only connected to its direct neighbors, let us define a two
by two3 fully split hierarchical structure.

The chain of uncertain systems with two by two fully
split hierarchical structure is a sub-class of the LSS of (3)
and (4). The different parameters of this hierarchical structure
are summarized in TABLE III.

Since the LSS of Fig. 4 has no input output performance
signal, we will use the Hierarchical Robust Stability Analysis
Algorithm of Remark 4.1. The new hierarchical analysis setup
will be performed in several steps.

– First step : find a basis Bdiss
T l−1
j

for each uncertain sys-

tem T l−1
j by applying Corollary 3.1 using the given

basis Bdiss
∆l

j
of the elementary uncertainties ∆l

j .

– Intermediate steps : for every i = l − 2, . . . , 2 and for
every j = 1, . . . , N i

T , find a basis Bdiss
T i
j

for each uncer-

3Except level l and level l − 1, we regroup systems two by two at each
hierarchical level.

l ν + 2

N i
T 2i−1

N∆(M i
j)

N∆(M l−1
j ) = {j} ∀ j ∈

{
1, . . . , N l−1

T

}
N∆(M i

•) = ∅ ∀ i ∈ {1, . . . , l − 1}

NT (M i
j)

NT (M l−1
• ) = ∅

NT (M i
j) = {2j − 1, 2j} , ∀ i ∈ {1, . . . , l − 2}

M i
j

M1
1 = ( 0 1

1 0 ) , M l−1
j =Mj , ∀ j ∈

{
1, . . . , N l−1

T

}
M i

1=
(

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
,M i

Ni
T

=
(

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
, ∀ i ∈ {2, . . . , l − 2}

M i
j=

 0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0

 ∀ i ∈ {2, . . . , l − 2}
∀ j ∈

{
2, . . . , N i

T − 1
}

TABLE III: Two by two fully split hierarchical structure
parameters

tain system T ij using the basis Bdiss
T i+1
n

of the uncertain
systems T i+1

n obtained at level i+ 1.
– Last step : given the basis Bdiss

T 2
j

obtained at level 2, test

if LS
(
M1

1 ,Φ
Ω
11,Φ

Ω
12,Φ

Ω
22,
)
≥ 0.

The Robust Stability Analysis Algorithm (see Remark 4.1)
will be used by considering only one element: ellipsoid at
each level. Furthermore and as we have seen, the uncertain
systems of each hierarchical level i are interconnected at
level i − 1 and levels below, it is hence easy to perform
the hierarchical approach using parallel computation as it is
explained in Remark 4.2.

3) Results: The objective here is to compute the ratio
between the time required in the direct and the hierarchical
approach and to compare it to that obtained in [16]. Therefore,
we will apply the different approaches: direct and parallel
hierarchical only for a single frequency.

The analysis is performed for 10 realizations of the network
presented earlier with different N . The evolution according
to N of the average CPU time required to perform the analysis
of 10 realizations for each approach is plotted in Fig.5.
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Fig. 5: Average CPU computation time versus N



Please note that in order to compare our results with those
of [16], the basis Bdiss

∆̃
is the D-scaling from [4].

The average CPU time required for the direct approach
increases dramatically when increasing the size of the network
and it can reach 37.40s for a chain of 200 systems. For the
hierarchical approach, the analysis is performed in a parallel
manner at each hierarchical level. The required CPU time, at
level i, is the maximum among all the CPU time required for
the analysis of each subsystem T ij and the global CPU time
is the sum of the computation time of each level. The average
CPU time required for N = 200 is 0.2552s which gives a ratio
of 154 between the time required in direct and hierarchical
approaches. For comparison, this ratio is 10 in [16].

Please note that for small size chains (less than approxi-
mately 36), the computation time of the hierarchical approach
is more important compared to the direct approach. When the
chain size is increasing, the computation time of the direct
approach becomes more and more important compared to
the hierarchical approach. This behavior can be explained by
analyzing how the network size N affects the computation
time in both approach. The objective of the next section is to
discuss how the computation time grows according to N .

VII. COMPUTATION TIME FOR A SUB-CLASS OF
UNCERTAIN LSS

The hierarchical structure introduced in the second example
of the previous section can be generalized by regrouping
systems ns by ns instead of two by two, to obtain ns by ns
fully split hierarchical structure. Without loss of generality,
let us suppose that N the number of systems in the chain is
given by N = nκs where κ is a positive integer.

The chain of uncertain systems with ns by ns fully split
hierarchical structure is a sub-class of the LSS of (3) and (4).
The different parameters of this hierarchical structure are given
as in TABLE III with the following differences
• l = κ+ 2;
• N i

T = ni−1
s ;

• NT (M i
j) = {ns(j − 1) + 1, . . . , nsj};

• M i
j , for i 6= l − 1, are adapted according to ns.

Furthermore, the stability problem considered in the previous
section can be extended to a performance problem i.e. inves-
tigate if the chain is {X1, Y1, Z1} dissipative for all possible
uncertainties by introducing the global performance signal wg
and zg and adapting M1

1 .
For illustration purpose of the computation time, and with-

out lost of generality, we suppose that all the uncertainties ∆l
j

are homogeneous. Furthermore, again and without lost of
generality, we perform basis propagation in hierarchical ap-
proaches, from level l − 1 to level 2, with only one element
of Bdiss

T i
j

such as the ellipsoid.
The objective is to characterize the computation time re-

quired to perform robustness analysis, at a given frequency ω0,
using the different approaches: direct, hierarchical and parallel
hierarchical.

Computation complexity

Computation time of an algorithm characterizes how fast or
slow this algorithm performs. This computation time depends
on the algorithm complexity which is defined as a numerical
function of the number of variables n.
Given an optimization problem under LMI constraints, the
algorithmic complexity is O

(
n3
)

when using the interior point
method [30]. The computation time of an algorithm depends
on implementation details such as: processor speed, instruction
set, etc.. For this reason, in the sequel, the computation time
is referred to as the algorithmic complexity.

A. Direct approach

For the direct analysis approach and given a dissipativity
property {X1, Y1, Z1}, the number of decision variables of the
robust performance analysis is η{X1,Y1,Z1} +

∑N
k=1 η∆k

where
η{X1,Y1,Z1} is the number of decision variables corresponding
to {X1, Y1, Z1} and η∆k

is the number of decision variables
corresponding to each elementary uncertainty ∆k. In the case
where all the uncertainties are homogeneous, all the η∆k

become η∆ and the required computation time is given by

TDA = O
((
η{X1,Y1,Z1} +Nη∆

)3)
which is cubic according to N .

B. Hierarchical approach

Given l = κ+ 2 and N i
T = ni−1

s . The total number
of analysis to be performed for all levels is the sum
of κ + 1 first terms of a geometric progression, that is

1︸︷︷︸
level 1

+ns + n2
s + · · ·+ nκ−1

s︸ ︷︷ ︸
intermediate levels

+ nκs︸︷︷︸
level l− 1

=
Nns − 1

ns − 1

The algorithmic complexity of the hierarchical approach
depends on the number of performed tests. The latter changes
according to the considered hierarchical structure i.e. the
number of levels and the number of analysis at each level
• each of the N analysis problem, at level l − 1,

has
(
η∆ + η{X,Y,Z}

)
decision variables with η{X,Y,Z}

is the number of decision variables corresponding to
one {X,Y, Z} dissipativity property to be propagated.
The computation time is N O

((
η∆ + η{X,Y,Z}

)3)
.

• each of the N
1

ns − 1
−

ns
ns − 1

intermediate analysis

problems, from level l−2 to level 2, has
(
ns + η{X,Y,Z}

)
decision variables4. The required computation time

is
(
N

1

ns − 1
− ns
ns − 1

)
O
((
ns + η{X,Y,Z}

)3)
.

• at level 1, the objective is to investigate if T 1
1 (jω0)

is {X1, Y1, Z1} dissipative. The analysis problem

4Here ns corresponds to the number of αkj of (9), with k = 1
and j ∈ {1, . . . , ns}, corresponding to the ns dissipativity properties propa-
gated from level i+ 1.



has
(
ns + η{X1,Y1,Z1}

)
decision variables and the com-

putation time is O
((
ns + η{X1,Y1,Z1}

)3)
.

Then the global computation time, at a given frequency ω0,
of the hierarchical approach THA is

THA = N O
((
η∆ + η{X,Y,Z}

)3)
+O

((
ns + η{X1,Y1,Z1}

)3)
+

(
N

1

ns − 1
− ns
ns − 1

)
O
((
ns + η{X,Y,Z}

)3)
which is affine with respect to N .

C. Parallel hierarchical approach

In this approach, the computation time at each level i is the
maximum among computation time required for the analysis
problems at this level i.
• at level l − 1, the required computation time

is O
((
η∆ + η{X,Y,Z}

)3)
• from level l − 2 to level 2, since the number of in-

termediate levels is l − 3 and since (l − 2) = κ,
that is logns

(N), the required computation time
is
(
logns

(N)− 1
)
O
((
ns + η{X,Y,Z}

)3)
• at level 1, the computation time

is O
((
ns + η{X1,Y1,Z1}

)3)
The global computation time required in this parallel hier-

archical approach TPHA is

TPHA = O
((
η∆ + η{X,Y,Z}

)3)
+O

((
ns + η{X1,Y1,Z1}

)3)
+ logns

(N) O
((
ns + η{X,Y,Z}

)3)−O ((ns + η{X,Y,Z}
)3)

which is logarithmic according to N .
We are now able to explain the results of Fig.5. Since the

objective is to test the stability of the chain, η{X1,Y1,Z1} = 0
and the computation time TDA becomes

TDA = O
(

(Nη∆)
3
)

For the parallel hierarchical approach with ns = 2, the
computation time TPHA becomes

TPHA = O
(

(2)
3
)

log2 (N) O
((

2 + η{X,Y,Z}
)3)

+O
((
η∆ + η{X,Y,Z}

)3)
The algorithmic complexity of the direct approach is cubic

according to N . For N < 36, the algorithmic complexity is
not really costly from computation time point of view and
the analysis can be performed relatively fast. In the parallel
hierarchical approach, even if finding one {X,Y, Z} for each
uncertain systems is not costly (since we are dealing with small
size systems), the overall algorithmic complexity is important
compared to direct approach because of the multiplication term
by log2 (N). However, when N is increasing, the evolution of
the logarithmic function is less important than the cubic evolu-
tion which makes TDA really significant compared to TPHA.
Fig.5 confirms this trend. Please note that the scales in this
figure are logarithmic.

Remark 7.1: It is possible to perform the same analysis for
the case when N 6= nκs . The number of levels and systems at
each level will change and the expressions of THA and TPHA
will be slightly different. However, the affine and logarithmic
evolution of THA and TPHA remain valid.

VIII. CONCLUSION AND FUTURE WORK

In this paper, robustness analysis of uncertain large scale
systems with hierarchical structure is considered. In order to
reduce the computational load, a hierarchical robust perfor-
mance analysis algorithm is proposed. This algorithm performs
several hierarchical analysis using basis propagation from one
hierarchical level to another. We have also presented how to
formulate and compute several basis elements. The efficiency
of this algorithm is illustrated through two examples: PLL
network and chain of uncertain systems. The proposed algo-
rithm allows to establish a trade-off between conservatism and
computation time. Furthermore, we discuss the computation
time for a sub-class of uncertain LSS. In contrast with cubic
evolution of computation time with respect to N in the direct
approach, the computation time grows in an affine manner
in the hierarchical approach and logarithmic manner in the
parallel hierarchical approach. Therefore, the hierarchical ap-
proaches are more suitable and adapted to perform the robust-
ness analysis when N becomes very significant. Nevertheless,
in this paper, we did not discuss how it is possible to obtain
hierarchical structures neither the advantage of one hierarchical
structure with respect to another. Therefore, major future work
directions are
• establish a systematic approach to obtain the optimal

hierarchical structure with respect to computation time
and conservatism;

• combine the hierarchical approach with other approaches
as the one presented in [15] and [16] i.e. introduce
specialized solvers into the hierarchical approach.
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Normandie, France. Currently, he is a professor of
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