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Abstract
We linearize the inverse branches of the iterates of holomorphic endomorphisms of Pk

and thus overcome the lack of Koebe distortion theorem in this setting when k ≥ 2. We
review several applications of this result in holomorphic dynamics.
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1 Introduction

Let f : Pk → Pk be a holomorphic endomorphism of algebraic degree d ≥ 2. This is a ramified
covering of Pk of degree dk. The equilibrium measure µ of f is a mixing f -invariant measure,
see [DS, Section 1.3]. The Lyapunov exponents of (f, µ) are larger than or equal to log

√
d,

see [BD] or [DS, Section 1.7]. Setting J := Supp µ, we thus have a non-uniform hyperbolic
dynamical system (J, f, µ).

The aim of the present article is to provide a substitute to the Koebe distortion theorem,
which is only valid for k = 1, to control the geometry of the iterated inverse branches of f on
Pk. Our proof is based on a normalization of f along µ-typical backward orbits. Although it
should face a major difficulty due to resonances on the Lyapunov spectrum, we use a simple
trick to get rid of all possible resonances and stay in the setting of linear normalizations.

Our Distortion Theorem allows to skip the use of delicate results on the Lie group struc-
ture of resonant maps, see [GK, JV, KS, BDM]. This is a typical feature of our approach. At
the end of the article we review various applications which illustrate how it can be used.

Let us now introduce our framework. To deal with inverse branches, we introduce the
natural extension of f . Let

O := {x̂ = (xn)n∈Z : xn+1 = f(xn)}

be the set of orbits of f and let τ : O→ O be the right shift sending (· · · , x−1, x0, x1, · · · ) to
(· · · , x−2, x−1, x0, · · · ). We say that a function φε : O →]0, 1] (resp. O → [1,+∞[) is ε-slow
(resp. ε-fast) if

∀x̂ ∈ O , e−εφε(x̂) ≤ φε(τ(x̂)) ≤ eεφε(x̂).
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Similarly, a sequence (δn)n∈Z in ]0, 1] is ε-slow if e−εδn ≤ δn+1 ≤ eεδn for every n ∈ Z. Let
µ̂ be the unique τ -invariant measure on O satisfying π∗µ̂ = µ, where π(x̂) := x0, see [CFS,
Chapter 10]. The measure µ̂ is mixing as µ. Since the equilibrium measure µ is a Monge-
Ampère mass with bounded local potentials, it does not give mass to the critical set C of f .
In particular, the τ -invariant subset

X := {x̂ = (xn)n∈Z : xn /∈ C , ∀n ∈ Z}

satisfies µ̂(X) = 1. For every x̂ ∈ X, we denote f−nx̂ the inverse branch of fn which sends x0

to x−n, it is defined in a neighbourhood of x0. We denote dist the distance on Pk induced by
the Fubini-Study metric and Bx(r) the ball centered at x of radius r.

Theorem A : Let f be a holomorphic endomorphism of Pk and let µ be its equilibrium
measure. Let Λl < · · · < Λ1 be the distinct Lyapunov exponents of (f, µ) and let kj ≥ 1 be
their multiplicities.
Then for every ε < γ � Λl and for µ̂-almost every x̂ ∈ X, there exist

- an integer nx̂ ≥ 1 and real numbers hx̂ ≥ 1 and 0 < rx̂, ρx̂ ≤ 1,
- a sequence (ϕx̂,n)n≥0 of injective holomorphic maps

ϕx̂,n : Bx−n(rx̂e
−n(γ+2ε))→ Dk(ρx̂enε)

sending x−n to 0 and satisfying

en(γ−2ε)dist(u, v) ≤ |ϕx̂,n(u)− ϕx̂,n(v)| ≤ en(γ+3ε) hx̂ dist(u, v),

- a sequence of linear maps (Dx̂,n)n≥0 which stabilize each

Lj := {0} × · · · × Ckj × · · · × {0},

satisfying

∀v ∈ Lj , e−nΛj+n(γ−ε)|v| ≤ |Dx̂,n(v)| ≤ e−nΛj+n(γ+ε)|v|,

for which the following diagram commutes for every n ≥ nx̂:

Bx0(rx̂)
f−nx̂ //

ϕx̂,0
��

Bx−n(rx̂e
−n(γ+2ε))

ϕx̂,n
��

Dk(ρx̂)
Dx̂,n // Dk(ρx̂enε).

Moreover, the fonctions x̂ 7→ h−1
x̂ , rx̂, ρx̂ are measurable and ε-slow on X.

The following corollary shows how Theorem A can be used to estimate the convexity
defect of the inverse branches f−nx̂ (Bx0(rx̂)). A special case of such a property was recently
put forward in [BB].
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Corollary (Convexity defect) Let f be a holomorphic endomorphism of Pk and let µ be
its equilibrium measure. We keep the notations of Theorem A. Let r′x̂ := rx̂/hx̂ and, for every
0 < t ≤ 1, let

E−nx̂ (t) := f−nx̂
(
Bx0(tr′x̂)

)
⊂ Ẽ−nx̂ (t) := f−nx̂ (Bx0(trx̂)) .

Then for every pair of points p, q ∈ E−nx̂ (t) there exists a smooth path connecting p and q in
Ẽ−nx̂ (t) and whose length is smaller than e5nεhx̂d(p, q).

Let us finally mention that Theorem A and its Corollary remain valid for every invariant
ergodic measure ν with positive Lyapunov exponents Λ′l < · · · < Λ′1 and, in particular, when
ν has metric entropy h(ν) > log dk−1, see [dT, D2].

2 Proof of Theorem A

In this Section, we explain how to deduce Theorem A from a linearization statement for chains
of holomorphic contractions (Theorem B in Subsection 2.5).

2.1 The bundle map over X generated by the inverse branches of f

We recall in Section 5 basic definitions and facts concerning bundle maps. Let (ψx)x∈Pk be
a collection of affine charts ψx : Ck → Pk with uniform bounded distortion and satisfying
ψx(0) = x (for instance fix an affine chart and rotate it thanks to unitary automorphisms of
Pk). To simplify the exposition, we shall ignore the distortions induced by these charts. For
every x̂ ∈ X, let Ex̂ := {x̂} × Ck and let ψx̂ : Ex̂ → Pk defined by

ψx̂(x̂, v) = ψx0(v).

Let f̂ := τ−1 be the left shift (· · · , x−1, x0, x1, · · · ) 7→ (· · · , x0, x1, x2, · · · ) on X, and let

Fx̂ := ψ−1

f̂(x̂)
◦ f ◦ ψx̂.

Since f is continuous on Pk there exist constants M1 ≤M0 such that the bundle map

F :
E(M1) −→ E(M0)

(x̂, v) 7−→
(
f̂(x̂), Fx̂(v)

)
is well defined. Note that Fτ(x̂) is invertible near 0 since x̂ ∈ X implies x−1 /∈ C. Let

F−1
x̂ := (Fτ(x̂))

−1 =
(
ψ−1
x̂ ◦ f ◦ ψτ(x̂)

)−1
.

The following lemma specifies the domains of definition of these mappings.

Lemma 2.1 For every ε > 0, there exists a ε-slow function ρε : X →]0, 1] such that the
bundle map

F−1 :
E(ρε) −→ E(M1)

(x̂, v) 7−→
(
τ(x̂), F−1

x̂ (v)
)

is well defined.

3



Proof : Let t(x̂) := |(dx−1f)−1|−2. There exists c > 0 depending on the first and second
derivatives of f on Pk such that F−1

x̂ exists on Ex̂(c t(x̂)) (see [BD, Lemma 2]). We let
ρ := min{c t, 1}. Since log ρ is µ̂-integrable (see [DS, Theorem A.31]), there exists a ε-slow
function ρε : X →]0, 1] such that ρε ≤ ρ (see [BDM, Lemme 2.1]). 2

2.2 Oseledec-Pesin ε-reduction

We recall that Λl < · · · < Λ1 denote the distinct Lyapunov exponents of (f, µ) and that kj ≥ 1
denote their multiplicities. For every j ∈ {1, · · · , l} we set

L̂j := ∪x̂∈X{x̂} ×
[
{0} × · · · × Ckj × · · · × {0}

]
= ∪x̂∈X{x̂} × Lj ,

so that ∪x̂∈X{x̂}×Ck is equal to L̂1⊕ · · · ⊕ L̂l. The Oseledec-Pesin’s theorem may be stated
as follows, see [KH, Theorem S.2.10, page 666].

Theorem 2.2 Let d0F−1 be the linear part of F−1. For every ε > 0 there exist an invertible
linear bundle map Cε over IdX and a ε-fast function hε : X → [1,+∞[ such that

1. the linear bundle map A := Cε ◦ d0F−1 ◦ C−1
ε satisfies for every 1 ≤ j ≤ l :

A(L̂j) = L̂j and ∀(x̂, v) ∈ L̂j , e−Λj−ε|v| ≤ |Ax̂(v)| ≤ e−Λj+ε|v|.

2. ∀x̂ ∈ X, ∀v ∈ Ck, |v| ≤ |Cε,x̂(v)| ≤ hε(x̂)|v|.

We conjugate the bundle map F−1 as follows:

W := Cε ◦ F−1 ◦ C−1
ε ,

its expansion is of the form W(x̂, v) := (τ(x̂),Wx̂(v)), where Wx̂ = Cε,τ(x̂) ◦F−1
x̂ ◦C

−1
ε,x̂ . Since

F−1 : E(ρε)→ E(M1) by Lemma 2.1, Item 2 of Theorem 2.2 implies that

W : E(ρε)→ E(M1hε).

By using d0W = A and applying Lemma 5.1 on tame bundle maps with ε′ = ε, we obtain a
ε-slow function, still denoted ρε, such that

W : E(ρε)→ E(ρε) and LipW ≤ e−Λl+2ε. (1)

2.3 Resonances and constraints on γ, ε

As before, Λl < · · · < Λ1 denote the distinct Lyapunov exponents of (f, µ) and kj ≥ 1 denote
their multiplicities. One defines the k-tuple

(λi)1≤i≤k := (Λ1, · · · ,Λ1, · · · ,Λl, · · · ,Λl)

by repeating kj times Λj . For j ∈ {1, · · · , l}, one defines the set of j-resonant indices by:

Rj := {α ∈ Nk : |α| ≥ 2 and α1λ1 + · · ·+ αkλk = Λj}.
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Since Λl < · · · < Λ1, one immediately sees that one has 2 ≤ |α| ≤ [Λj/Λl] ≤ [Λ1/Λl] and
α1 = · · · = αk1+···+kj = 0 for every α ∈ Rj , where [·] stands for the entire part.

For each γ > 0 one defines a shifted Lyapunov spectrum by setting:

Λγj := Λj − γ.

Likewise, one defines the k-tuple (λγi )1≤i≤k by repeating kj times the Λγj :

(λγi )1≤i≤k = (Λγ1 , · · · ,Λ
γ
1 , · · · ,Λ

γ
l , · · · ,Λ

γ
l )

and one denotes

Rγ
j := {α ∈ Nk : |α| ≥ 2 and α1λ

γ
1 + · · ·+ αkλ

γ
k = Λγj }.

We now fix a constant 0 < a < ln 4 such that

α1λ1 + · · ·+ αkλk − Λj /∈ [−a, a] (2)

for every j ∈ {1, · · · , l} and for every α ∈ Nk \Rj satisfying 2 ≤ |α| ≤ [2Λ1/Λl].

One easily checks that ∪lj=1R
γ
j = ∅ if γ is small enough, hence there is no resonance

relation for the shifted Lyapunov spectrum. More precisely, setting

b :=
1

2
min{γ, a},

one has α1λ
γ
1 + · · ·+αkλ

γ
k−Λγj /∈ [−b, b] for j ∈ {1, · · · , l} and 2 ≤ |α| ≤ [Λγ1/Λ

γ
l ] (see Lemma

5.4 in the Appendix). We actually impose the following precise Constraints on γ and ε, they
will play an important role in our future estimates. We stress that these constraints only
depend on the Lyapunov exponents (Λj)j .

Constraints 2.3 We shall assume that γ, ε satisfy the following properties.

1. The number γ > 0 is fixed and sufficently small so that:

γ < Λl/2 , γ([Λγ1/Λ
γ
l ]− 1) < a/2 and 4γ(Λγ1/Λ

γ
l + 1) ≤ Λγl .

2. Any choice of ε > 0 is supposed to be small enough so that:

2ε < γ , 4ε+ 2γ < Λl and ε([Λγ1/Λ
γ
l ] + 3) < b.

2.4 Preparatory diagram along a negative orbit

Let γ, ε > 0 satisfying Constraints 2.3. Let ρε be the ε-slow function provided by (1) in Section
2.2. Let x̂ ∈ X. For every n ∈ Z one sets:

ρn := ρε(τ
n(x̂)) , Wn := Wτn(x̂).
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The sequence (ρn)n is ε-slow and according to (1) we have:

Wn : Dk(ρn)→ Dk(ρn+1) , LipWn ≤ θ := e−Λl+2ε.

Let (rn)n be any ε-slow sequence such that (rn)n ≤ (ρn)n. We set

rx̂ := r0/hε(x̂) , rγn := rne
−nγ , nx̂ := min{n ≥ 0 , en(−Λl+4ε+γ)hε(x̂) ≤ 1}.

The integer nx̂ is well defined since 4ε+ γ < Λl by our Constraints 2.3. We have defined the
charts ψx̂ : Ex̂ → Pk in Section 2.1.

Lemma 2.4 The following diagram commutes for every n ≥ nx̂:

Bx0(rx̂)
f−nx̂ //

Cε,x̂◦ψ−1
x̂
��

Bx−n(rx̂e
−n(2ε+γ))

Cε,τn(x̂)◦ψ−1
τn(x̂)

��
Dk(r0)

Wn−1◦···◦W0 // Dk(rγn).

Proof : The commutation follows from our previous definitions so we only have to check
that each arrow is well defined. We recall that, to simplify, we do not take into account the
distortion induced by the charts ψx̂.

The left vertical arrow is well defined since rx̂ = r0/hε(x̂) and LipCε,x̂ ≤ hε(x̂). Similarly,
to see that the right vertical arrow is well defined too, we observe that

rx̂e
−n(2ε+γ)hε(τ

n(x̂)) = r0e
−n(2ε+γ)hε(τ

n(x̂))/hε(x̂) ≤ r0e
−n(ε+γ) ≤ rne−nγ = rγn.

Now, by Constraints 2.3 one has :

r0θ
n = r0e

n(−Λl+2ε) ≤ r0e
−n(ε+γ) ≤ rne−nγ = rγn

which, since LipWn−1 ◦ · · · ◦W0 ≤ θn, shows that the bottom horizontal arrow is well defined.
Finally, one sees that the top horizontal arrow is well defined since, according to the definition
of nx̂, the map Φn := (Cε,τn(x̂) ◦ ψ−1

τn(x̂))
−1 ◦Wn−1 ◦ · · · ◦W0 ◦ (Cε,x̂ ◦ ψ−1

x̂ ) satisfies

Lip (Φn) ≤ en(−Λl+2ε)hε(x̂) ≤ e−n(2ε+γ)

on the ball Bx0(rx̂) for every n ≥ nx̂. 2

2.5 Theorem A from the linearization of chains

Theorem A follows from Theorem B below, whose proof will be given in Section 3.

Theorem B Let Λl < · · · < Λ1 be positive real numbers. Let γ, ε > 0 satisfying Constraints
2.3. Let (ρn)n∈Z be a ε-slow sequence and let

Wn : Dk(ρn)→ Dk(ρn+1)

6



be a sequence of holomorphic contractions fixing the origin in Ck and such that

∀n ∈ Z , LipWn ≤ θ := e−Λl+2ε.

We assume the existence of a decomposition Ck = ⊕lj=1Lj, where Lj = {0}×· · ·×Ckj×· · ·×{0}
such that, for every n ∈ Z, the linear map An := d0Wn satisfies

An(Lj) = Lj , e
−Λj−ε|v| ≤ |An(v)| ≤ e−Λj+ε|v| for every v ∈ Lj .

Then there exists a ε-slow sequence (rn)n ≤ (ρn)n and a sequence of holomorphic maps

ϕn : Dk(rγn)→ Dk(rn) where rγn := rne
−nγ

such that

1. en(γ−2ε)|u− v| ≤ |ϕn(u)− ϕn(v)| ≤ en(γ+2ε)|u− v|,

2. the following diagram commutes:

· · ·
Wn−1 // Dk(rγn)

Wn //

ϕn
��

Dk(rγn+1)
Wn+1 //

ϕn+1

��

· · ·

· · ·
Aγn−1 // Dk(4rn)

Aγn // Dk(4rn+1)
Aγn+1 // · · ·

where the maps Aγn are given by Aγn := eγAn.

Theorem A is simply obtained by combining Lemma 2.4 with Theorem B and setting :

ρx̂ = 4r0 , ϕx̂,n = ϕn ◦ Cε,τn(x̂) ◦ ψ−1
τn(x̂) , Dx̂,n = Aγn−1 ◦ · · · ◦A

γ
0 .

Let us stress that the perturbation Aγn = eγAn precisely aims to shift the Lyapunov
spectrum of (An)n and cancel the resonances.

Remark 2.5 The statement of Theorem A only takes into account the right hand side part
of the commutative diagram of Theorem B, which corresponds to the negative coordinates (the
past) of x̂. The fact that Theorem B concerns sequences of mappings (Wn)n indexed by Z is
crucial. Indeed, we shall see in the proof of Lemma 3.3 that the construction of the change of
coordinates ϕx̂,n actually requires the positive and negative coordinates of x̂.

2.6 Proof of Corollary

Let y be either p or q. One sees on the commuting diagram in Theorem A that fn(y) ∈
Bx0(tr′x̂) and that Dx̂,n ◦ ϕx̂,0 (fn(y)) = ϕx̂,n(y). Taking into account the Lipschitz estimates
on ϕx̂,0 it follows that

ϕx̂,n(p) , ϕx̂,n(q) ∈ Dx̂,n(Dk(trx̂)). (3)
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Let us also check that

Dx̂,n(Dk(trx̂)) ⊂ ϕx̂,n
(
Bx−n(trx̂e

−n(γ+2ε))
)
. (4)

To see this we simply observe that

Dx̂,n

(
Dk(trx̂)

)
⊂ Dk

(
trx̂e

−n(Λl−γ−ε)
)
⊂ Dk

(
trx̂e

−4nε
)
⊂ ϕx̂,n

(
Bx−n(trx̂e

−n(γ+2ε))
)

where the second inclusion comes from Λl > 2γ + 4ε > γ + 5ε (see the Constraints 2.3) and
the last one from the Lipschitz estimate on ϕx̂,n.

Now, by (3) there exists a segment Γ connecting the two points ϕx̂,n(p), ϕx̂,n(q) within
the convex set Dx̂,n

(
Dk(trx̂)

)
. By the Lipschitz estimate on ϕx̂,n, this segment Γ satisfies

length(Γ) ≤ en(γ+3ε)hx̂d(p, q).

By (4), the image Γ̃ of Γ by the map (ϕx̂,n)−1 is a well defined smooth path connecting p and
q and contained in ϕ−1

x̂,n ◦Dx̂,n(Dk(trx̂)). Again by the Lipschitz estimate on ϕx̂,n we get

length(Γ̃) ≤ en(−γ+2ε)length(Γ) ≤ e5nεhx̂d(p, q).

Finally, Γ̃ ⊂ ϕ−1
x̂,n ◦Dx̂,n ◦ ϕx̂,0 (Bx0(trx̂)) = Ẽ−nx̂ (t) by the Lipschitz estimate on ϕx̂,0.

3 Linearization of chains of holomorphic contractions

This Section is devoted to the proof of Theorem B.

Step 1 : Shifting the spectrum

Lemma 3.1 Let Wn : Dk(ρn) → Dk(ρn+1) be a sequence of holomorphic contractions satis-
fying the assumptions of Theorem B. Let

ργn := ρne
−nγ , ∆n := enγIdCk , W γ

n := ∆n+1 ◦Wn ◦∆−1
n .

Then

• the following diagram commutes

· · ·
Wn−1 // Dk(ργn)

Wn //

∆n

��

Dk(ργn+1)
Wn+1 //

∆n+1

��

· · ·

· · ·
W γ
n−1 // Dk(ρn)

W γ
n // Dk(ρn+1)

W γ
n+1 // · · ·

• LipW γ
n = θeγ < 1 and the linear part Aγn := eγAn of W γ

n satisfies

e−Λ1−ε+γ |v| ≤ |Aγn(v)| ≤ e−Λl+ε+γ |v| for every v ∈ Ck.

Proof : Recall that according to Constraints 2.3 we have θe2γ = e−Λl+2ε+2γ < 1 and (ργn)n∈Z
is 2γ-slow since ε < γ. In particular LipW γ

n = eγLipWn = eγθ < 1. It remains to check that
Wn : Dk(ργn)→ Dk(ργn+1), which is clear since ργn · LipWn ≤ ργnθ ≤ ργn+1θe

2γ < ργn+1. 2
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Step 2 : Improving the order of contact with the linear part

Proposition 3.2 Let Wn : Dk(ρn) → Dk(ρn+1) be a sequence of holomorphic contractions
satisfying the assumptions of Theorem B. Let W γ

n : Dk(ρn) → Dk(ρn+1) be the sequence of
holomorphic contractions given by Lemma 3.1. There exist a ε-slow sequence (rn)n ≤ (ρn)n
and a sequence of holomorphic maps

T 1
n : Dk(rn)→ Dk(2rn)

such that d0T
1
n = IdCk and

1. ∀n ∈ Z, ∀(u, v) ∈ Dk(rn)× Dk(rn), e−ε|u− v| ≤ |T 1
n(u)− T 1

n(v)| ≤ eε|u− v| ,

2. the following diagram commutes

· · ·
W γ
n−1 // Dk(rn)

W γ
n //

T 1
n
��

Dk(rn+1)
W γ
n+1 //

T 1
n+1
��

· · ·

· · ·
Xn−1 // Dk(2rn)

Xn // Dk(2rn+1)
Xn+1 // · · ·

where Xn = Aγn +O([Λγ1/Λ
γ
l ] + 2) for every n ∈ Z.

The proof consists in applying a finite number of times Lemma 3.3 below. Let us say
for convenience that a sequence (Gn)n∈Z of holomorphic mappings Gn : Dk(an) → Dk(an+1)
is ε-slow if (an)n∈Z is a ε-slow sequence. Assume that the linear part of such a sequence
(Gn)n∈Z is equal to (Aγn)n∈Z. Then, according to our discussion in Subsection 2.3, the Λγj ’s
do not satisfy any resonance relation and thus, given any integer p ≥ 2, Lemma 3.3 allows to
conjugate (Gn)n∈Z to some new ε-slow sequence whose linear part is still equal to (Aγn)n∈Z
but with no homogeneous part of degree p in its Taylor expansion. The cancellation of the p-
homogeneous part of (Gn)n∈Z relies on the resolution of some so-called homological equations.
We shall only sketch the proofs, the details are in [BDM, Subsection 3.2] or [JV].

Lemma 3.3 Let (Gn)n∈Z be a ε-slow sequence of holomorphic contractions fixing the origin
and whose linear part is equal to (Aγn)n∈Z. Let p ≥ 2 and let G(p)

n be the p-homogeneous part
of the Taylor expansion of Gn. Then:

1. there exists a sequence of p-homogeneous polynomial maps (Hn)n∈Z such that

∀n ∈ Z , G(p)
n +Hn+1 ◦Aγn −Aγn ◦Hn = 0,

2. for S(p)
n := Id +Hn and ε′ > 0 there exists a ε-slow sequence (τn)n∈Z such that

∀n ∈ Z , ∀(u, v) ∈ Dk(τn)× Dk(τn) , e−ε
′ |u− v| ≤ |S(p)

n (u)− S(p)
n (v)| ≤ eε′ |u− v|
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and for which the following diagram commutes

· · ·
Gn−1 // Dk(τn)

Gn //

S
(p)
n
��

Dk(τn+1)
Gn+1 //

S
(p)
n+1
��

· · ·

· · ·
Gp̂n−1 // Dk(eετn)

Gp̂n // Dk(eετn+1)
Gp̂n+1 // · · ·

where Gp̂n = Aγn +G
(2)
n + · · ·+G

(p−1)
n + 0 +O(p+ 1).

Proof of Proposition 3.2

Let p∗ := [Λγ1/Λ
γ
l ] + 1 and ε′ := ε/p∗. We successively apply Lemma 3.3 with

p = 2 , Gn = W γ
n ,

and then with
p = 3 , Gn = (W γ

n )2̂ ,

and so on, up to
p = p∗ , Gn = (· · · ((((W γ

n )2̂)3̂)4̂) · · · )p̂∗−1 .

This yieds a ε-slow sequence (rn)n ≤ (ρn)n such that the following diagram commutes

· · ·
W γ
n−1 // Dk(rn)

W γ
n //

T 1
n
��

Dk(rn+1)
W γ
n+1 //

T 1
n+1
��

· · ·

· · ·
Xn−1 // Dk(ep∗εrn)

Xn // Dk(ep∗εrn+1)
Xn+1 // · · ·

where
Xn := (· · · ((((W γ

n )2̂)3̂)4̂) · · · )p̂∗ = Aγn +O([Λγ1/Λ
γ
l ] + 2)

and
T 1
n := S(p∗)

n ◦ · · · ◦ S(2)
n .

Since p∗ε < 1
2 ln 4 by Constraints 2.3, we have T 1

n : Dk(rn)→ Dk(2rn). Since p∗ε′ = ε, we also
have e−ε|u− v| ≤ |T 1

n(u)− T 1
n(v)| ≤ eε|u− v| on Dk(rn). 2

Proof of Lemma 3.3

To prove Item 1 amounts to show that the following linear operator Γ, defined on the space
of slow sequences of p-homogeneous mappings, is surjective:

Γ : (Hn)n∈Z 7→ (Hn+1 ◦Aγn −Aγn ◦Hn)n∈Z.

To simplify we suppose that every exponent Λj has multiplicity kj = 1 (therefore l = k and
λj = Λj for 1 ≤ j ≤ k). Let us fix

α ∈ Nk such that 2 ≤ |α| ≤ [Λγ1/Λ
γ
l ] + 1.

10



We are going to exhibit a preimage for Γ to the sequence

G(p)
n = (0, · · · , anzα, · · · , 0),

where anzα is at the j-th place.
For this purpose, we shall use the control α1λ

γ
1 + · · ·+αkλ

γ
k −Λγj /∈ [−b, b] (see Subsection

2.3) and treat separately the cases α1λ
γ
1 +· · ·+αkλγk−Λγj > b and α1λ

γ
1 +· · ·+αkλγk−Λγj < −b.

In the first case, we shall solve the equation Γ((Hn)n∈Z) = (G
(p)
n )n∈Z by averaging on n ≥ 0

(which correspond to the past of x̂) and by averaging on n ≤ 0 (which correspond to the
future of x̂) in the second case.

• If α1λ
γ
1 + · · ·+ αkλ

γ
k − Λγj > b, we set

∀n ∈ Z , Hn := (Aγn)−1G(p)
n +

∑
r≥1

(Aγn)−1 · · · (Aγn+r)
−1 G

(p)
n+r A

γ
n+r−1 · · ·A

γ
n. (5)

A formal computation shows that Γ((−Hn)n∈Z) = (G
(p)
n )n∈Z, which means:

∀n ∈ Z , G(p)
n +Hn+1 ◦Aγn −Aγn ◦Hn = 0.

The convergence of the series (5) relies on the block diagonal property of (Aγn)n∈Z. To
simplify, let us assume that the (Aγn) are truly diagonal. WritingHn asHn = Pn,0+

∑
r≥1 Pn,r,

we obtain

|Pn,r(z)| ≤ |(Aγn)−1 · · · (Aγn+r)
−1 G

(p)
n+r

(
e−rλ

γ
1+rε z1 , · · · , e−rλ

γ
k+rε zk

)
|

≤ |(Aγn)−1 · · · (Aγn+r)
−1
(

0 , · · · , an+r e
−r(α1λ

γ
1 + ···+αkλ

γ
k )+|α|rε zα , · · · , 0

)
|

≤ erΛ
γ
j+rε e−r(α1λ

γ
1 + ···+αkλ

γ
k )+|α|rε |an+r| |zα|

≤ e−rber(|α|+1)ε |an+r| |zα|
≤ e−rber([Λ

γ
1/Λ

γ
l ]+3)ε |an| |zα|.

where the last inequality uses |α| ≤ [Λγ1/Λ
γ
l ]+1 and the fact, easily checked by using Cauchy’s

estimates, that (an)n∈Z is a ε-slow sequence. By Constraints 2.3, b− ([Λγ1/Λ
γ
l ] + 3)ε > 0 and

thus the series (5) converge.

• If α1λ
γ
1 + · · ·+ αkλ

γ
k − Λγi < −b, we proceed as before by setting

∀n ∈ Z , Hn := −G(p)
n−1(Aγn)−1 −

∑
r≥1

Aγn−1 · · ·A
γ
n−r G

(p)
n−(r+1) (Aγn−r)

−1 · · · (Aγn)−1.

Let us now deal with Item 2 of Lemma 3.3. We first set S(p)
n := Id +Hn and observe that

(S
(p)
n )−1 = Id−Hn +O(p+ 1) and

(S
(p)
n+1)−1◦Gn◦S(p)

n =
(
Aγn +G(2)

n + · · ·+G(p−1)
n

)
+
(
G(p)
n +Hn+1 ◦Aγn −Aγn ◦Hn

)
+O(p+1).

The second term in the right hand side vanishes by construction of (Hn)n. Finally, Lemma
5.2 on bundle maps ensures the existence of a ε-slow sequence (τn)n satisfying the required

11



properties.

In order to prove the general case where G(p)
n is a p-homogeneous map but not a monomial

map, we proceed by linearity in Item 1 to obtain:

G(p)
n +

∑
Hj,α
n+1 ◦A

γ
n −Aγn ◦

∑
Hj,α
n = 0,

where the sum ranges over j ∈ {1, · · · , l} et |α| = p. Item 2 then follows by performing the
change of coordinates S(p)

n := Id +
∑
Hj,α
n . 2

Step 3: Conjugation to a linear mapping and conclusion

Proposition 3.4 below is a special case of Theorem 1.1 in [BDM], it shows that a slow sequence
of holomorphic mappings (Xn)n∈Z is conjugated to the sequence of its linear part (Aγn)n∈Z
once these two sequences have a sufficiently large contact order. Let us stress that this step
does not require the fact that (Aγn)n∈Z is block diagonal.

Proposition 3.4 Let (Xn)n∈Z be a ε-slow sequence of holomorphic mappings with linear parts
(Aγn)n∈Z. Assume that there exist 0 < m ≤M < 1 such that

∀n ∈ Z , ∀v ∈ Ck , m|v| ≤ |Aγn(v)| ≤M |v|

and that
Xn = Aγn +O(q + 1) where q ≥ 1 satisfies (Me2ε)q+1 < me−ε.

Then there exist a ε-slow sequence (rn)n∈Z and a sequence
(
T 2
n

)
n∈Z of holomorphic mappings

T 2
n : Dk(rn)→ Dk(2rn) such that d0T

2
n = Id and

1. ∀n ∈ Z, ∀(u, v) ∈ Dk(rn)× Dk(rn), e−ε|u− v| ≤ |T 2
n(u)− T 2

n(v)| ≤ eε|u− v| ,

2. the following diagram commutes:

· · ·
Xn−1 // Dk(rn)

Xn //

T 2
n
��

Dk(rn+1)
Xn+1 //

T 2
n+1
��

· · ·

· · ·
Aγn−1 // Dk(2rn)

Aγn // Dk(2rn+1)
Aγn+1 // · · ·

Proof of Proposition 3.4

To deduce the Proposition from Theorem 1.1 of [BDM] we observe that the proof of this
theorem starts by fixing a number θ such that M q+1/m < θ < 1 and then chosing ε > 0
small enough so that Me2ε ≤ 1 and e(q+3)εM q+1/m ≤ θ. Our assumption (Me2ε)q+1 < me−ε

implies both of these conditions, with θ = e−qε for the second one.
For the reader’s convenience we now sketch the proof of Proposition 3.4, details can be

found in [BDM, Subsection 3.1]. Let n ∈ Z and let

∀p ≥ 0 , Aγp,n := Aγn+p ◦ · · · ◦Aγn , Xp,n := Xn+p ◦ · · · ◦Xn

12



with the convention Aγ−1,n = X−1,n = Id. The germs of formal limits

T 2
n := lim

p→+∞
(Aγp,n)−1 ◦Xp,n

satisfy d0T
2
n = Id and give the commutative diagram of Proposition 3.4. Let us show the

convergence by induction. Let β := (Me2ε)q+1/m < 1 and consider the assertion

P(p) : ∀n ∈ Z , |((Aγp,n)−1 ◦Xp,n − (Aγp−1,n)−1 ◦Xp−1,n)(v)| ≤ (βp/mrq+1
n ) |v|q+1.

Then P(0) is satisfied: the property Xn = Aγn +O(q + 1) indeed shows that

∀n ∈ Z , |((Aγn)−1 ◦Xn − Id)(v)| = |(Aγn)−1 ◦ (Xn −Aγn)(v)| ≤ (1/mrq+1
n )|v|q+1.

The real numbers m and rq+1
n respectively come from the lower bound m|v| ≤ |Aγn(v)| and

from an estimate of (Xn −Aγn)(v) using Cauchy’s estimates. Now we show that P(p) implies
P(p + 1). Let us perform a right composition of P(p) by Xn (we have also replaced n by
n+ 1):

∀n ∈ Z , |((Aγp,n+1)−1 ◦Xp,n+1− (Aγp−1,n+1)−1 ◦Xp−1,n+1)(Xn(v))| ≤ (βp/mrq+1
n+1)|Xn(v)|q+1.

Then, by using the identity Xp,n+1 ◦Xn = Xp+1,n and the comparison of Xn to its linear part
Aγn given by Lemma 5.1:

∀n ∈ Z , |((Aγp,n+1)−1 ◦Xp+1,n − (Aγp−1,n+1)−1 ◦Xp,n)(v)| ≤ (βp/mrq+1
n+1)(Meε)q+1|v|q+1.

A left composition by (Aγn)−1 gives by using the fact that (rn)n is slow:

∀n ∈ Z , |((Aγp+1,n)−1 ◦Xp+1,n − (Aγp,n)−1 ◦Xp,n)(v)| ≤ (βp/mrq+1
n )

(Me2ε)q+1

m
|v|q+1.

This last quantity is equal to (βp+1/mrq+1
n )|v|q+1, which shows P(p + 1). Finally, it suffices

to apply Lemma 5.2 to end the proof of Proposition 3.4. 2

To complete the proof of Theorem B, we successively apply Lemma 3.1, Proposition 3.3
and Proposition 3.4 with

q = [Λγ1/Λ
γ
l ] + 1 , m = e−Λγ1−ε+γ , M = e−Λγl +ε+γ .

We have m|v| ≤ |Aγn(v)| ≤M |v| from Lemma 3.1 and (Me2ε)q+1 < me−ε from Lemma 5.3 (a
consequence of Constraints 2.3). Theorem B follows by setting

ϕn := T 2
n ◦ T 1

n ◦∆n.

This completes the proof of Proposition 3.4.
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4 Applications

We review here some results whose proofs crucially rely on our Distortion Theorem. Proving
similar results in the one-dimensional setting requires the classical Koebe distortion Theorem.

4.1 Multipliers of repelling cycles

The following result, first proved in [BDM], plays an important role in the study of bifurcations
within holomorphic families of endomorphisms (see [B] and [BBD]).

Theorem 4.1 Let f : Pk → Pk be a holomorphic endomorphism of degree d ≥ 2. Let
λk ≤ · · · ≤ λ1 be the Lyapunov exponents of its equilibrium measure. Then

lim
n→+∞

1

dkn

∑
p∈Rn

log Jac f(p) = (λ1 + · · ·+ λk)

where Rn is the set of n-periodic repelling points of f .

Sketch of proof: To start with, we reprove that the equilibrium measure µ of f
equidistributes the repelling cycles of f (this is a theorem due to Lyubich [L] for k = 1 and
Briend-Duval [BD] for k ≥ 1) we follow here Briend-Duval approach. Let B := Bx(r) be a
small ball around a µ-generic point x. Since µ is mixing, we have µ(f−nB ∩ B) ' µ(B)2 for
n large enough. Now let Fn(B) be the set of inverse branches gn of fn defined on B and with
image in B. By using f∗µ = dkµ and the fact that the inverse branches are pairwise disjoint,
the mixing property gives Card Fn(B) · µ(B)/dkn ' µ(B)2, therefore:

1

dkn
Card Fn(B) ' µ(B).

Since the Lyapunov exponents of µ are positive, every element gn of Fn(B) is a contracting
map from B to B, hence produces a repelling point p for the iterate fn. This implies

1

dkn
Card Rn ∩B ≥ µ(B).

Thus every cluster measure µ′ of 1
dkn

∑
p∈Rn δp satisfies µ′ ≥ µ. This implies µ′ = µ since the

number of n-periodic point of f is bounded above by dkn, see [DS, Proposition 1.3].

To obtain Theorem 4.1, we combine the Distortion Theorem with the above arguments to
get:

∀gn ∈ Fn(B) , ∀p ∈ gn(B) , dpf
n ' dgn(x)f

n. (6)

Since x is µ-generic, we deduce from (6) and from the definition of the Lyapunov exponents:

1

n
log |Jac fn(p)| ' (λ1 + · · ·+ λk).

Let us specify that to make the approximations ' precise, one has to work with the natural
extension of f and use the estimate concerning the change of coordinates ϕx̂,n.
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4.2 Dimension of measures

Let f : Pk → Pk be a holomorphic endomorphism and ν be an invariant measure. One defines
the pointwise dimensions dν and d̄ν by

∀x ∈ Pk , dν(x) := lim inf
r→0

log ν(Bx(r))

log r
, d̄ν(x) := lim sup

r→0

log ν(Bx(r))

log r
.

When ν is ergodic, these functions are ν-almost everywhere constant and their generic values
are denoted dν and d̄ν . Young ([Y]) proved that if a ≤ dν ≤ d̄ν ≤ b, then

a ≤ dimH(ν) ≤ b,

where dimH(ν) := inf{dimH(A), A Borel set , ν(A) = 1} is the Hausdorff dimension of ν.

For the equilibrium measure µ of any degree d ≥ 2 holomorphic endomorphism on Pk, it
has been conjectured by Binder and DeMarco [BDeM] that

dimH(µ) =
log d

λ1
+ · · ·+ log d

λk

where λk ≤ · · · ≤ λ1 are the Lyapunov exponents of µ.
When k = 1, this conjecture corresponds to a result of Mañé [M] who actually proved that

dµ = d̄µ = log d/λ. Our Distortion Theorem allows to obtain the following lower bounds in
any dimension.

Theorem 4.2 (Dupont [D1]) Let f : Pk → Pk be a holomorphic endomorphism of degree
d ≥ 2. Let ν be an ergodic measure with positive Lyapunov exponents λk ≤ · · · ≤ λ1 and
entropy hν . Then

dν ≥
log dk−1

λ1
+
hν − log dk−1

λk
.

The following corollary yields the lower bound of the above Conjecture in dimension k = 2.

Corollary 4.3 Let f : P2 → P2 be a holomorphic endomorphism of degree d ≥ 2. Let µ be
its equilibrium measure and let λ1 ≥ λ2 be the Lyapunov exponents of µ. Then

dµ ≥
log d

λ1
+

log d

λ2
.

The proof consists in studying the distribution of inverse branches of fn in Pk and, in
particular, uses an area growth argument which requires a precise description of the geometry
of these branches. This is where the Distortion Theorem enters into the picture.

Sketch of proof: We first establish an upper bound for the cardinality of inverse
branches of fn in generic balls of radius e−nλk . Let qn be the entire part of nλk/λ1 and let
BA
x (r) := Bx(r) ∩A.
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Fact For every ε > 0, there exist Ωε ⊂ Pk and r > 0 satisfying ν(Ωε) > 1 − ε and the
following property. Let Er ⊂ Pk be a maximal r-separated subset. Then for every x ∈ Ωε and
n large enough, the collection of inverse branches

Pn(x) :=
{
f−nŷn Bp(r) , y ∈ B

Ωε
x (re−nλk) , p ∈ Er , d(p, yn) < r

}
is well defined and satisfies Card Pn(x) ≤ d(k−1)(n−qn)enε.

We outline the proof of this Fact in three steps. It relies on Area estimates and on our
Distortion Theorem. Let ω denotes the Fubini-Study form on Pk and η : Dk−1(2)→ Pk be a
holomorphic polydisc. The first step is to show that

∀m ≥ 1 , Area fm ◦ η|Dk−1 :=

∫
Dk−1

(fm ◦ η)∗ωk−1 ≤ d(k−1)m. (7)

This is obtained by replacing ω by the Green current T of f (using cohomologous arguments
and integration by parts) and then using f∗T = dT , see [Di, D1] for more details.

For the second step, let x ∈ Ωε and denote by Ln the set of polydiscs Ln : Dk−1 →
Bx(e−nλk). Applying (7) to m = n− qn and η = f qn ◦ Ln yields

Area fn ◦ Ln = Area fn−qn(f qn ◦ Ln) ≤ d(k−1)(n−qn) for every Ln ∈ Ln. (8)

Note that qn is chosen to produce polydiscs of uniformly bounded sizes. Indeed, since λ1 is
the largest exponent and since qnλ1 ' nλk, we have

f qn(Ln) ⊂ f qn(Bx(e−nλk)) ⊂ Bfqn (x)(e
−nλk · eqnλ1) ' Bfqn (x)(1).

The third step is to prove the existence of Fn ⊂ Ln whose cardinality is at most enε and
such that for every Pn ∈ Pn(x) there exists a (k − 1)-polydisc Ln ∈ Fn satisfying

Area fn ◦ Ln|L−1
n (Pn) ≥ 1. (9)

This relies on the geometric description of inverse branches given by our Distortion Theorem:
every Pn ∈ Pn(x) is indeed a parallelepiped with dimensions e−nλ1 ≤ · · · ≤ e−nλk . Precisely,
the polydisc Ln is transverse to the e−nλk -direction of Pn and Fn is a collection of hyperplanes
parallel to the coordinates axis.

The Fact finally comes from (8) and (9) since the inverse branches are pairwise disjoint:
this gives Card Pn(x) ≤ d(k−1)(n−qn)enε as desired.

Let us now explain how the Fact implies Theorem 4.2. We shall ignore the e±nε error terms
due to the non-uniform hyperbolic setting. Let x ∈ Ωε and ρn := e−nλk . Since Pn(x) covers
the generic ball BΩε

x (ρn) (Fact) and since ν(P ) ' e−nhν for every P ∈ Pn(x) (Brin-Katok
Theorem), we get

ν(BΩε
x (ρn)) ≤

∑
P∈Pn(x)

ν(P ) ≤ Card Pn(x) · e−nhν .
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The Density Theorem then implies for ν almost every x ∈ Ωε and for n large enough:

ν (Bx(ρn)) ≤ 2 Card Pn(x) · e−nhν .

The upper bound on Card Pn(x) given by the Fact yields:

lim inf
r→0

log ν(Bx(r))

log r
≥ log dk−1

λ1
+
hν − log dk−1

λk
.

This estimate occurs ν-almost everywhere since Ω := lim sup Ω1/q has full ν-measure.

4.3 Dimension of currents

In this Subsection we study the thickness of currents S supporting dilating ergodic measures.
Precisely, we focus on a lower bound on their local upper pointwise dimension. Let S be a
positive closed current of bidegree (1, 1) on P2 and let

∀x ∈ P2 , d̄S(x) := lim sup
r→0

logS ∧ ω(Bx(r))

log r
.

We have d̄S(x) ≥ 2, see [D, Chapitre 3, §5]. For every Λ ⊂ P2, we set

d̄S(Λ) := sup
x∈Λ

d̄S(x).

Theorem 4.4 (de Thélin-Vigny [dTV]) Let f : P2 → P2 be a holomorphic endomorphism
of degree d ≥ 2. Let S be a positive closed current on P2 of bidegree (1, 1) and mass 1. Let
ν be an ergodic measure with positive Lyapunov exponents λ1 ≥ λ2. Assume that supp (ν) ⊂
supp (S). Let Λ ⊂ supp (ν) be a Borel set such that ν(Λ) > 0. Then

d̄S(Λ) ≥ 2
λ2

λ1
+
hν − log d

λ1
.

The proof in [dTV] uses delicate slicing arguments to analyse the pullback action of fn on
ω, our Distortion theorem allows to replace these arguments. As before we shall ignore the
e±nε error terms due to the non-uniform hyperbolic setting.

Sketch of the proof: Since (fn)∗ω is cohomologous to dnω on P2 we have

dn =

∫
P2

S ∧ (fn)∗ω =

∫
P2

(fn)∗S ∧ ω. (10)

Let {xi , 1 ≤ i ≤ Nn} be a (n, 2η)-separated subset of Λ. Brin-Katok Theorem implies that
Nn ' enhν . Since the dynamical balls (Bn(xi, η))i are pairwise disjoint, we get∫

P2

(fn)∗S ∧ ω ≥
Nn∑
i=1

∫
P2

(fn)∗
(
1Bn(xi,η)S

)
∧ ω =

Nn∑
i=1

∫
Bn(xi,η)

S ∧ (fn)∗ω. (11)
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Now we use Bxi(ηe−nλ1) ⊂ f−n
f̂n(x̂i)

(Bfn(xi)(η)) ⊂ Bn(xi, η) and (fn)∗ω ≥ e2nλ2ω, which can
be proved by using the Distortion Theorem.

Combining this with (10) and (11) we obtain

dn ≥ e2nλ2

Nn∑
i=1

(S ∧ ω)(Bxi(ηe
−nλ1)).

From the definition of d̄S(xi), and then from the definition of d̄S(Λ) and Nn ' enhν we get

dn ≥ e2nλ2

Nn∑
i=1

(ηe−nλ1)d̄S(xi) ≥ e2nλ2enhν (ηe−nλ1)d̄S(Λ).

The comparison of the exponential growth rates gives the desired lower bound on d̄S(Λ).

5 Appendix

5.1 Bundle maps

Let us recall that C is the critical set of f , that

X = {x̂ = (xn)n∈Z : xn+1 = f(xn) , xn /∈ C , ∀n ∈ Z}

and that τ : X → X is the right shift sending (· · · , x−1, x0, x1, · · · ) to (· · · , x−2, x−1, x0, · · · ).
We denote

E := ∪x̂∈X{x̂} × Ck

and Ex̂ := {x̂} × Ck. For every positive real number a > 0 we denote Ex̂(a) := {x̂} × Dk(a).
More generally, for every positive function a : X → R+

∗ , we let Ex̂(a) := Ex̂(a(x̂)) and

E(a) := ∪x̂∈XEx̂(a) = ∪x̂∈X{x̂} × Dk(a(x̂)).

Let σ ∈ {IdX , τ} and a, b : X → R+
∗ be two positive functions. A bundle map K : E(a)→ E(b)

over σ is a map of the form
K(x̂, v) = (σ(x̂),Kx̂(v)),

where
Kx̂ : Ex̂(a(x̂))→ Eσ(x̂)(b(σ(x̂)))

is holomorphic and satisfies Kx̂(0) = 0 for every x̂ ∈ X. The linear tangent bundle map
d0K : E → E is defined by

d0K(x̂, v) = (σ(x̂), d0Kx̂(v)).

We say that K is tame if there exist a ε-slow function rε and a ε-fast function sε satisfying

K : E(rε)→ E(sε).

18



5.2 Results on tame bundle maps

The following lemma simply relies on Cauchy’s estimates, see [BDM, Lemma 2.3]. It implies
in particular that if K is tame with a contracting linear part, then K : E(aε) → E(aε) for
some ε-slow function aε and thus K can be iterated.

Lemma 5.1 Let σ ∈ {IdX , τ}, let ε > 0 and let K be a tame bundle map over σ. Assume
that there exist 0 < α ≤ β such that

∀x̂ ∈ X , ∀v ∈ Ck , α|v| ≤ |d0Kx̂(v)| ≤ β|v|.

Then the following estimates occur.

1. For every κ > 0, there exists a ε-slow function φε : X →]0, 1] such that

∀x̂ ∈ X , Lip (Kx̂ − d0Kx̂) ≤ κ on Ex̂(φε).

2. For every ε′ > 0, there exists a ε-slow function φε : X →]0, 1] such that

∀x̂ ∈ X , ∀(u, v) ∈ Ex̂(φε)× Ex̂(φε) , αe
−ε′ |u− v| ≤ |Kx̂(u)−Kx̂(v)| ≤ βeε′ |u− v|.

In particular, if β < 1 (contracting case) and if βeε′ ≤ e−ε, then

K : E(ψε)→ E(ψε)

for every ε-slow function ψε satisfying ψε ≤ φε.

Proof : Let ε, ε′, κ > 0. Since K is tame, there exist a ε/3-slow (resp. fast) function rε/3
(resp. sε/3) such that K : E(rε/3) → E(sε/3). Let x̂ ∈ X. Cauchy’s estimates on Ex̂(1

2rε/3)
bound the second derivatives of Kx̂ by csε/3(σ(x̂))/rε/3(x̂)2 where the constant c only depends
on the dimension k. We deduce that for every ρ ≤ 1

2rε/3(x̂):

∀t ∈ Ex̂(ρ) , |dt(d0Kx̂ −Kx̂)| = |d0Kx̂ − dtKx̂| ≤
csε/3(σ(x̂))

rε/3(x̂)2
ρ. (12)

Let us define

φε :=
r2
ε/3

csε/3 ◦ σ
min{(eε′ − 1)β , (1− e−ε′)α , κ},

which is a ε-slow function. Item 1 is then a consequence of (12). To verify Item 2 we put
ρ = φε in (12) to obtain the following estimates on Ex̂(φε):

|Kx̂(u)−Kx̂(v)| ≤ |d0Kx̂(u)− d0Kx̂(v)|+ |(d0Kx̂ −Kx̂)(u)− (d0Kx̂ −Kx̂)(v)|
≤ β|u− v|+ csε/3(σ(x̂))

rε/3(x̂)2
φε(x̂)|u− v|

≤ βeε
′ |u− v|.

We obtain similarly |Kx̂(u)−Kx̂(v)| ≥ αe−ε′ |u−v|. If βeε′ ≤ e−ε and if ψε is a ε-slow function
satisfying ψε ≤ φε then |Kx̂(u)| ≤ βeε′ψε(x̂) ≤ e−εψε(x̂) ≤ ψε(σ(x̂)) on E(ψε). 2

The next lemma is useful for conjugating bundle maps, it is a corollary of Lemma 5.1.
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Lemma 5.2 LetM be a tame bundle map over IdX and let L be a tame bundle map over τ .
We assume that d0M = (IdX , IdCk) and that there exist 0 < α ≤ β < 1 such that

∀x̂ ∈ X , ∀v ∈ Ck , α|v| ≤ |d0Lx̂(v)| ≤ β|v|.

Let 0 < ε′ < ε such that βeε′ < e−ε. Then there exists a ε-slow function φε such that for every
ε-slow function ψε ≤ φε,

1. the bundle map L̃ :=M◦L ◦M−1 is well defined on E(eεψε).

2. the following diagram commutes:

E(ψε)
L //

M
��

E(ψε)

M
��

E(eεψε)
L̃ // E(eεψε).

3. ∀x̂ ∈ X, ∀(u, v) ∈ Ex̂(ψε)× Ex̂(ψε), e−ε
′ |u− v| ≤ |Mx̂(u)−Mx̂(v)| ≤ eε′ |u− v| .

Proof : Let 0 < ε′ < ε such that βeε′ < e−ε. Let φ1
ε be a ε/3-slow function provided by

Item 2 of Lemma 5.1 such that

∀(u, v) ∈ Ex̂(φ1
ε )× Ex̂(φ1

ε ) , |Lx̂(u)− Lx̂(v)| ≤ βeε′ |u− v| ≤ e−ε|u− v|.

In particular we have L : E(φ1
ε ) → E(φ1

ε ). Let φ2
ε be a ε/3-slow function provided by the

same lemma such that

∀(u, v) ∈ Ex̂(φ2
ε )× ∈ Ex̂(φ2

ε ) , e
−ε′ |u− v| ≤ |Mx̂(u)−Mx̂(v)| ≤ eε′ |u− v|,

hence we haveM : E(φ2
ε ) → E(eεφ2

ε ). We set φε := min{φ1
ε , φ

2
ε}, which is a ε-slow function.

Then L̃ := M◦ L ◦M−1 is well defined on E(e−εφε) and takes its values in E(eεφε). Since
d0L̃ = d0L is contracting, we can replace φε by a smaller ε-slow function to have L̃ : E(eεφε)→
E(eεφε). All these properties obviously hold for every ε-slow function ψε ≤ φε. 2

5.3 Constraints on γ, ε and cancellation of resonances

We use here the notations introduced in Subsection 2.3. Let us recall that 0 < a < ln 4 is
fixed such that

α1λ1 + · · ·+ αkλk − Λj /∈ [−a, a] (13)

holds for every j ∈ {1, · · · , l} and for every α ∈ Nk \Rj satisfying 2 ≤ |α| ≤ [2Λ1/Λl]. Let us
also recall the Constraints 2.3.

1. The number γ > 0 is fixed and sufficently small so that:

γ < Λl/2 , γ([Λγ1/Λ
γ
l ]− 1) < a/2 and 4γ(Λγ1/Λ

γ
l + 1) ≤ Λγl .
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2. Any choice of ε > 0 is supposed to be small enough so that:

2ε < γ , 4ε+ 2γ < Λl and ε([Λγ1/Λ
γ
l ] + 3) < 1

2 min{γ, a} =: b.

We now prove two elementary results.

Lemma 5.3

1. For every j ∈ {1, · · · , l} and every α ∈ Nk \Rj such that 2 ≤ |α| ≤ [Λγ1/Λ
γ
l ], we have

α1λ1 + · · ·+ αkλk − Λj /∈ [−a, a].

2. If q := [Λγ1/Λ
γ
l ] + 1, m := e−Λγ1−ε+γ et M := e−Λγl +ε+γ, then (Me2ε)q+1 < me−ε.

Proof : The first statement immediately follows from (13) after observing that γ < Λl/2
yields [Λγ1/Λ

γ
l ] ≤ [2Λ1/Λl]. For the second statement, one has

(−Λγl +3ε+γ)([Λγ1/Λ
γ
l ]+2) ≤ (−Λγl +3ε+γ)(Λγ1/Λ

γ
l +1) = −Λγ1−

{
Λγl −(3ε+γ)(Λγ1/Λ

γ
l +1)

}
and

{ }
≥ Λγl − 4γ(Λγ1/Λ

γ
l + 1) ≥ 0 > 2ε− γ. 2

Lemma 5.4 For every j ∈ {1, · · · , l} and every 2 ≤ |α| ≤ [Λγ1/Λ
γ
l ], one has

α1λ
γ
1 + · · ·+ αkλ

γ
k − Λγj /∈ [−b, b].

In particular, the λγi ’s do not satisfy any resonant relation: ∪lj=1R
γ
j = ∅.

Proof : Let us fix j ∈ {1, · · · , l} et α ∈ Nk such that 2 ≤ |α| ≤ [Λγ1/Λ
γ
l ]. We have

α1λ
γ
1 + · · ·+ αkλ

γ
k − Λγj = α · λ− γ|α| − (Λj − γ) = α · λ− Λj − γ(|α| − 1).

Assume first that α ∈ Rj . Since α · λ− Λj = 0 and |α| ≥ 2, one has

α1λ
γ
1 + · · ·+ αkλ

γ
k − Λγj = −γ(|α| − 1) ≤ −γ < −b.

Let us now assume that α /∈ Rj . We use here the first assertion of Lemma 5.3.
If α · λ− Λj > a then, as |α| ≤ [Λγ1/Λ

γ
l ], one gets

α1λ
γ
1 + · · ·+ αkλ

γ
k − Λγj > a− γ([Λγ1/Λ

γ
l ]− 1) > a/2 ≥ b.

If α · λ− Λj < −a then, as |α| ≥ 2, one gets

α1λ
γ
1 + · · ·+ αkλ

γ
k − Λγj < −a− γ(|α| − 1) ≤ −a < −b.

This completes the proof of the lemma. 2

21



References

[B] F. Berteloot, Bifurcation currents in holomorphic families of rational maps, Lecture
Notes in Mathematics 2075 CIME Fundation subseries (2013) Springer Verlag, 1-93.

[BB] F. Berteloot, F. Bianchi, Perturbations d’exemples de Lattès et dimension de Haus-
dorff du lieu de bifurcation, to appear in J. Math. Pures et Appl.

[BBD] F. Berteloot, F. Bianchi, C. Dupont, Dynamical stability and Lyapunov exponents
for holomorphic endomorphisms of Pk, to appear in Ann. Sci. Ecole Norm. Sup.

[BDM] F. Berteloot, C. Dupont, L. Molino, Normalization of bundle holomorphic contrac-
tions and applications to dynamics, Ann. Inst. Fourier, 58 (2008), no. 6, 2137-2168.

[BDeM] I. Binder, L. DeMarco, Dimension of pluriharmonic measure and polynomial endo-
morphisms of Cn, Int. Math. Res. Not., 11 (2003), 613-625.

[BD] J.Y. Briend, J. Duval, Exposants de Liapounoff et distribution des points périodiques
d’un endomorphisme de CPk, Acta Math., 182 (1999), no. 2, 143-157.

[CFS] I.P. Cornfeld, S.V. Fomin, Ya. B. Sinai, Ergodic theory, Grund. Math. Wiss. No 245,
Springer, 1985.

[D] J.-P. Demailly, Complex analytic and differential geometry, available at
https://www-fourier.ujf-grenoble.fr/ demailly/documents.html.

[dT] H. de Thélin, Sur les exposants de Lyapounov des applications méromorphes, Invent.
Math. 172 (2008), no. 1, 89-116.

[dTV] H. de Thélin, G. Vigny, On the measures of large entropy on a positive closed current,
Math. Z. 280 (2015), 919-944.

[Di] T.-C. Dinh, Attracting current and equilibrium measure for attractors on Pk, J.
Geom. Anal. 17 (2007), no. 2, 227-244.

[DS] T.-C. Dinh, N. Sibony, Dynamics in several complex variables: endomorphisms of
projective spaces and polynomial-like mappings, Lecture Notes in Math. 1998 (2010).

[D1] C. Dupont, On the dimension of invariant measures of endomorphisms of Pk, Math.
Ann. 349 (2011), 509-528.

[D2] C. Dupont, Large entropy measures for endomorphisms of CPk, Israel J. Math. 192
(2012), 505-533.

[GK] M. Guysinsky, A. Katok, Normal forms and invariant geometric structures for dy-
namical systems with invariant contracting foliations, Math. Res. Lett., 5 (1998),
no. 1-2, 149-163.

[JV] M. Jonsson, D. Varolin, Stable manifolds of holomorphic diffeomorphisms, Invent.
Math. 149 (2002), no. 2, 409-430.

22



[KH] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems,
Cambridge Univ. Press, 1995.

[KS] A. Katok, R. Spatzier, Nonstationary normal forms and rigidity of group actions,
Electron. Res. Announc. Amer. Math. Soc., 2 (1996), no. 3, 124-133.

[L] M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere,
Ergodic Theory Dynamical Systems, 3 (1983), no. 3, 351-385.

[M] R. Mañé, The Hausdorff dimension of invariant probabilities of rational maps, Lec-
ture Notes in Math., 1331, Springer, 1988.

[Y] L.S. Young, Dimension, entropy and Lyapounov exponents, Ergodic Theory & Dy-
namical Systems, 2 (1982), no. 1, 109-124.

F. Berteloot
Université Toulouse 3
Institut Mathématique de Toulouse
Equipe Emile Picard, Bât. 1R2
118, route de Narbonne
F-31062 Toulouse Cedex 9, France
berteloo@picard.ups-tlse.fr

C. Dupont
Université de Rennes 1
IRMAR, CNRS UMR 6625
Campus de Beaulieu, Bât. 22-23
F-35042 Rennes Cedex, France
christophe.dupont@univ-rennes1.fr

23


