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ABSTRACT: The rupture in mixed mode coupling of mechanical and thermal loads for isotropic and orthotropic 
materials such as wood is studied. The analytical formulation of the energy-release rate is introduced by the integral T 
and A, which couple the rupture in mixed mode, the thermal effects and the pressure applied on the crack lips. This new 
formulation is based on the laws of energy conservation and real and virtual mechanical and thermal fields based on the 
arbitrary, Lagrangian and Eulerian configurations. The Mixed-Mode Crack Growth specimen providing a decrease of 
the energy-release rate during crack propagation is considered in order to compute the various mixed-mode ratios. The 
analytical formulation is implemented using the finite-element software Cast3m. The efficiency of the proposed model 
is justified by showing the evolution of the energy-release rate and the stress-intensity factors versus the crack length 
and versus the temperature variation in a time-dependent material. 

KEYWORDS: mixed mode crack growth, thermal fields, hydric loads, path-independent integral, finite element 
method, wood material, time-dependent material 
 
 
1 INTRODUCTION 123 
The micro-cracks commonly occur in many mechanical 
and civil engineering structures submitted to different 
loadings [1]. But the main important fact for structural 
integrity remains the conditions of propagation of these 
small crack during the lifetime. Combining with 
mechanical solicitations as fatigue, overload or creep 
loading, the environmental actions like hydric [2] or 
temperature [3] play an important role in the propagation 
of these micro-cracks in the material [4]. In the case of 
wood, due to its natural origin, its orthotropic and 
heterogeneous character with different defects such as 
knots, study these different approaches appear to be 
essential. 
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To predict the crack growth process many numerical 
methods were developed to characterize the mechanical 
fields around the crack tip. Among them, the background 
of energy methods come from invariant integrals which 
enables to evaluate the crack driving forces such as the 
crack growth rate and the stress intensity factors. The 
most popular is the J-integral proposed by Rice [5] based 
on the assessment of the strain energy density and 
Noether’s theorem [6]. This method is inefficient when 
dealing with mixed mode crack growth problems 
because it is necessary to separate the displacement field 
into a symmetric and antisymetric parts. To circumvent 
this difficulty, Chen and Shield [7] have developed the 
M-integral in order to separate fracture modes based on a 
bilinear form of the strain energy density with virtual 
mechanical fields [8]. 
 
In recent work, a new analytical formulation of A-
integral developed by Moutou Pitti et al. [9] and 
implemented in finite element software by Riahi et al 
[10] is proposed. This formulation takes into account the 
effects of thermal load, induced by temperature 
variation, and complexes boundaries conditions, such as 
contact between crack lips during crack growth process. 
However, this approach is limited to stationary crack 
coupled with a pressure on crack lips and is note suitable 
to viscoelastic materials and not takes into account the 
impact of moisture content very essential in wood 
material. 
 



The first part of this paper presents the material and 
methods used in this work. The mathematical 
formulations of the invariant integrals T and A in the 
case of crack growth process including pressure on crack 
lips are recalled. Simultaneously, the energy release rate 
in mixed mode is proposed according to the real and 
virtual stress intensity factors. Also, the proposed 
integrals are generalized to viscoelastic materials using a 
Kelving Voigth model [11] [12] [13]. In the second 
section, the background of Mixed Mode Crack Growth 
(MMGC) specimen is proposed [14] [15] [16] [17]. In 
addition, the numerical routine including the time-
dependent increment is described. This specimen is a 
combination between the Double Cantilever Beam 
(DCB) [11] and the Compact tension Shear (CTS) 
specimens [18] and proposes the crack growth stability 
during the crack tip advanced. The last section is 
dedicated to study the efficiency of the proposed 
approach in the case of orthotropic material, where crack 
growth analysis on wood MMGC specimen is performed 
with various temperature and internal moisture content 
for different mixed mode configurations.   
 
2 MATERIAL AND METHODS 
2.1 INTEGRAL PARAMETERS IN ELASTIC 

CASE 
In this section we recall the mathematical expression of 
T and A integrals parameters. According to the 
conservative and the Noether theorem [6] defined with 
Arbitrary, Euleurian and langrangian conditions. If we 
consider a cracked body Ω and Γ a path which surrounds 
the crack tip oriented by the normal 𝑛 of component 𝑛!, 
as shown in figure 1, the T-integral is given by (Figure 1) 
[9]: 
 
𝑇 = !

!
𝜎!",!!  𝑢! − 𝜎!"! 𝑣!,! 𝑛!𝑑Γ! + !

!
𝛾∆𝑇,! 𝑣! −!

𝜓! − 𝛾∆𝑇 𝑣!,! − 𝜓!,! 𝑛!𝑑Γ − 𝜎!",!!  𝑢!,! −!

𝜎!",!!  𝑣!,! +  𝛽 𝛿!"  𝑢!,!"∆𝑇 𝑛!𝑑Γ +
!
!
𝑝 𝑣!,! −!

𝑞 𝑣!,! 𝑑𝑥!                                                                   (1)     
 

 

Figure 1: Surface domain integral 

In the precedent expression, the first integral is the 
classical term of the T-integral which represent the effect 
of mechanical loads applied far from the crack, where 
𝜎!"! and 𝜎!"!  are stress tensor components deduced from 

the real displacement field 𝑢 and the virtual 
displacement field 𝑣, respectively [19]. The second 
integral represents the effect of thermal load induced by 
temperature variation ∆𝑇, with 𝜓 is a virtual 
displacement field as defined by Bui et al [20] and 𝛾 is a 
real coefficient function of material parameters. The 
third integral represents the pressure crack tip extension 
during the crack growth process. The last integral 
represents the effect of pressures 𝑝 and 𝑞 applied 
perpendicularly to the crack lips, where 𝐿 = 𝑂𝐴! + 𝑂𝐵! 
is the integration path, see Figure 2. 
 

 

Figure 2: Surface domain integral 

Although, experience have shown that integration 
through curvilinear path induce some inaccuracy on 
numerical results. To overcome this problem, the 
curvilinear path is transformed into surface domain by 
introducing a vector field 𝜃 [21] as shown in Figure 3. 
This mapping function is continuously differentiable and 
takes these values: 𝜃 = 1,0  inside the ring 𝑉, and: 
𝜃 = 0,0  outside it. Hence, the use of the Gauss-
Ostrogradsky’s theorem enables us to obtain the A-
integral given by: 
 
𝐴 = !

!
𝜎!",!!  𝑢! − 𝜎!"! 𝑣!,! 𝜃!,!𝑑S! + !

!
𝛾∆𝑇,! 𝑣! −!

𝜓! − 𝛾∆𝑇 𝑣!,! − 𝜓!,! 𝜃!,!𝑑S   − 𝜎!",!!  𝑢!,! −!
𝜎!",!!  𝑣!,! +  𝛽 𝛿!"  𝑢!,!"∆𝑇 𝜃! 𝑑S +

!
!
𝐹!  𝑣!,! 𝜃!𝑑𝑥!!                                                              (2)        

 
 

 

Figure 3: Surface domain integral 



2.2 INTEGRAL PARAMETERS IN 
VISCOELASTIC CASE 

2.2.1 Generalized Kelvin Voigt model 
The analytical formulation of the A-integral, presented 
above, is achieved assuming an elastic behavior. 
Unfortunately, timber has a viscoelastic behavior. In this 
case, the mechanical fields are time dependent and their 
computation is not a trivial task. Based on Boltzmann’s 
superposition principle and considering a non-aging 
linear viscoelastic material, the strain and stress tensors, 
𝜺 and 𝝈 respectively [22] [23]. The generalization to 
viscoelastic material is introduced by using a generalized 
Kelvin Voigth model presented in figure 4 [9]. 
 

 

Figure 4: Generalized Kelvin Voigt Model 

2.2.2 Viscoelastic integrals parameters 
 
According to the generalized Kelvin Voigt model 
presented in Figure 4, the expression of integral A 
(Equation 2) is generalized to viscoelastic behavior as 
follow:  
 

𝐴!
! =

1
2

𝜎!",!!
!  𝑢!

! − 𝜎!"!
!  𝜐!,!
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1
2
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!  𝑢!,!
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+  𝛽 𝛿!"  𝑢!,!"
!  ∆𝑇 𝜃! 𝑑𝑉) 

                                +
1
2
𝐹!  𝜐!,!"

(!)  𝜃!𝑑𝑥!
!

                  (3) 

 
If 𝑝 =  0;  1;  . . . ;  N  is the number of Kelvin Voigt 
cells, the expression (3) becomes: 
 

𝐴! = 𝐾!
!

!

!!!
                                                            (4)  

 
According to the expressions, given in Equations (3) and 
(4), the quantities 𝐴!

! can be computed. The real 
mechanical fields are then obtained from the response of 
the 𝑝!! Kelvin cell to the applied mechanical and 
thermal (or hydric) loading. 
 
 
 

2.3 PHYSICAL INTERPRETATION 
Moreover, the A-integral, like M-intetgral, can be 
physically interpreted as a particular definition of real 
stress intensity factors 𝐾!!!  and 𝐾!!!! . The mixed mode 
separation can be obtained by performing two distinct 
computations of 𝐾!!  and 𝐾!!!!  for particular values of 
𝐾!!!  and 𝐾!!!!  , such as [9]: 

 

𝐾!!!  = 8
𝐴! 𝐾!!!  = 1, 𝐾!!!!  = 0

𝐶!
!                           (5)     

𝐾!!!!  = 8
𝐴! 𝐾!!!  = 0, 𝐾!!!!  = 1

𝐶!
!                            (6)     

 
In equations (5) and (6), 𝐶!

! and 𝐶!
! denote the elastic 

compliances in opening and shear modes, respectively. 
The thermal viscoelastic energy release rates in each 
specific fracture mode 𝐺!!  and 𝐺!!!  are finally given by 
the following expression: 
 

𝐺!! = 𝐶!
! 𝐾!!! !

8
                                                      (3)  

𝐺!!!  = 𝐶!
! 𝐴 𝐾!!!!

8
                                                  (4) 

 
2.4 WOOD PROPERTIES 
2.4.1 Generalized Kelvin Voigt model 
The real wood specimen in Douglas Fir specie is posted 
in Figure 5 [15]. 
 

 
Figure 5: Wood specimen 

The elastic parameters applied in finite element software 
are summarized bellow 

Table 1: Elastic Moduli 

Parameters Values 
Longitudinal modulus 𝐸! 15000 MPa 
Transverse modulus 𝐸! 600 MPa 
Normal modulus 𝐸! 600 MPa 
Shear modulus 𝐺!" 700 MPa 
Poisson’s coefficient 0.4 
Poisson’s coefficient 
Poisson’s coefficient 

0.4 

(a) (b) (c) 



 

3 MIXED MODE SPECIMEN AND 
VISCOELASTIC CRACK GROWTH 
ALGORTHM   

3.1 MIXED MODE CRACK GROWT SPECIMEN 
Figure 6 shows the dimensions of wood specimen, with 
an overall size 210 x 140 x 25 mm3 [15]. The side of the 
specimen has inclinations with angles of 5° and 10° from 
the edge and the inferior hill, respectively, as shown in 
Figure 7. On both hills, four holes were perforated in 
order to fix the steel Arcans. The distance between the 
holes centers is 110 mm. The steel Arcans, were 
performed to allow for mixed-mode configurations. The 
type of wood used in this test is Douglas and the width 
of the annual ring varies between 3 and 5 mm and the 
crack is oriented following the (R/L) direction. An initial 
crack of 20 mm is machined in the wood specimen in the 
direction of the fibers. 
 

 
Figure 6: Dimension of wood specimen 

 
Figure 7: MMGC specimen 

The MMCG specimen, shown in Figure 3, is defined by 
the combination of a modified DCB specimen [11], and 
CTS specimen [24], on the one hand, and the 
observation of stability range of energy release rate 
versus crack length computed numerically with A-
method, on the other hand. The main objective of this 

specimen is to allow for the decrease in the energy 
release rate during the tests. The wood specimen, 
presented in Figure 5, is fixed in a framed structure with 
Arc-formed handles containing symmetrical holes for 
load application according to various crack mode ratios 
β. The application of symmetric loads FI with angle β = 
0° is equivalent to the opening mode, and the application 
of FII, with angle β = 90° corresponds to the shear mode 
as shown in Figure 7. The force F is separated into two 
forces Fx and Fy corresponding to the axis orientations 
(x, y) and the mixed-mode ratio in plane configuration. 
In this work, the mixed-mode fracture tests are obtained 
by applying the loads FI and FII with angles β = 45°.   
 
3.2 NUMERICAL ROUTINE 
The analytical formulation of A-integral without taking 
into account the effect of pressure on the crack lips, was 
implemented in the finite elements software Cast3m. The 
MMCG specimen geometry variation versus time (crack 
evolution) and crack length is considered in the crack 
growth model. For symmetric geometries and loadings, 
this crack growth is modelled by moving boundary 
elements in a semi-mesh. In a mixed mode 
configuration, this symmetric loading is lost. Then, it is 
necessary to operate a re-mesh driven by the crack tip 
advance. In our cases, a fixed crack orientation is 
supposed. To overcome this difficulty, the hereditary 
mechanical fields have been projected in the transformed 
mesh. For a selected temperature, numerical modelling 
must separate the time and geometry variations. In a first 
step, all mechanical fields and the crack length a are 
supposed known at time tn.  
 

 
Figure 8: Crack growth routine with thermo-hydro-mechanical 
fields 



Then, stress and external loading, named σi(tn) and Fi(tn), 
respectively, are defined in the initial mesh noted Wi 
characterized by a crack length a. 
 
Firstly, the stress perturbation induced by a non-time 
dependent crack growth is evaluated. The first step 
consists of considering an instantaneous crack tip 
advance Δa. New mesh noted Wi+1 is defined by re-
meshing. With the same external loading, an elastic 
calculation provides the new stress state σi+1(tn). We note 
σ(p)i+1(tn) the geometric projection of σi(tn) on mesh 
Wi+1. The second step involves calculating, with a 
differentiation, the stress perturbation Δσi+1 between the 
two mesh configurations. The final step involves the 
application of -Δσi+1 as a cohesion stress (equivalent 
external loading) by using the superposition principle. 
This supplementary loading allows to close the new 
crack on Δa. In this case, we obtain an equivalent 
configuration between the first and last steps (same 
mechanical state and same geometry), but with two 
different meshes. Δσi+1 can be interpreted as the stress 
cohesion in the process zone. 
 
Secondly, the crack length advance is fixed (in our work 
we fixed Δa = 8 mm), and time is continuous. 
Employing the incremental viscoelastic procedure, the 
stress cohesion Δσi+1 is employed as an external load 
vector during the time increment Δtn. In the time domain, 
the progressive un-cohesion of crack lips un-cohesion Δa 
is obtained. The true mechanical state can then be 
released. Finally, fracture parameters can be computed 
and the finite elements algorithm is incremented. 
 
4 NUMERICAL RESULTS  
4.1 EFFECTS OF THERMAL LOADS 
In this last section, we present numerical simulations, 
which prove the non-path dependence of the A-integral 
on hereditary behavior and discuss the crack growth 
process over time. In recent works, Moutou Pitti et al. 
[13], have shown that this approach is valid for a 
stationary crack. Now, we propose to generalize the 
validation by imposing a time dependent crack tip 
advance according to the numerical procedure presented 
in section 3. In order to validate A-integral expressions 
(2), it has been decided to simulate an orthotropic 
material.  
 
The geometry design is operated by the finite element 
method. We note that, the numerical analysis is 
performed under plan stress conditions and based on the 
finite element mesh depicted in Figure 6 and 7. 
Moreover, in order to have good accuracy on the 
computation of the mechanical fields, a refined mesh is 
adopted in the neighborhood of the crack. In this work, 
we propose to deal with MMCG specimen with initial 
crack length (𝑎 = 80 𝑚𝑚) subjected to tow temperature 
fields, 𝑇! = 20 °𝐶 and 𝑇! = 30 °𝐶, respectively. The 
numerical meshes of the wood MMCG specimen under 
the applied temperature fields is shown in Figures 9 and 
10.  
 

4.1.1 Numerical meshes 
The finite element mesh shown in Figures 9 and 10 in 
which a circular discretization around the crack tip 
allows us to define easily the temperature field and the 
integration crown using parametric elements (θ vector). 
The MMCG specimen is designed in order to obtain 
different mixed mode ratios and crack growth stability. 
The A-integral is performed using virtual finite element 
displacement fields for opening mode, as an example. 
The simulations integrate orthotropic viscoelastic 
behavior for long-term loadings, with elastic moduli 
given in Table 1. 
 

 
Figure 9: Numerical mesh of the MMCG specimen under 
temperature field: T1=20°C. 

 
Figure 10: Numerical mesh of the MMCG specimen under 
temperature field: T2=30°C 

4.1.2 Energy release rate 
For MMCG specimen, Figures 11 and 12 show us the 
viscoelastic energy release rate evolution versus time 
and crack growth process for mixed mode using the A-
integral concept. The crack growth process can be 
interpreted as brittle or ductile. If for all cases, the crack 
growth or damage evolutions in the process zone induce 
a rigidity decrease, we can note an energy release rate 
increase during the crack growth advance. With these 



considerations, for both mode 1 and mode 2 
configurations, we can observe a progressive growing of 
the process zone (phase of energy release rate 
increasing) and, in the other hand, a stationary phase 
with a stabilization of its evolution. More precisely, we 
can observe, for the first mode G1, a greater energy 
release rate then the second mode G2, which correspond 
on brittle crack tip advance with an approximately peaks 
values around 8.5 10-6 J/m-2 for G1 and 7.8 10-5 J/m-2 for 
G2. Energy steady state evolution after these peaks 
illustrate crack growth stabilities for mixed mode 
calculated with A-integral without taking into account 
the effect of thermal load induced by a temperature field 
variation.  
 

 
Figure 11: Viscoelastic energy release rate G1 in mixed mode 
(β=45°) versus time under temperature variation (T1=20°C 
and T2=30°C).  
 

 
Figure 12: Viscoelastic energy release rate G1 in mixed mode 
configuration (β=45°) during crack growth process (T1=20°C 
and T2=30°C) 
 

 

Figure 13: Viscoelastic energy release rate G2 in mixed mode 
(β=45°) versus time under temperature variation (T1=20°C 
and T2=30°C).  

 

Figure 14: Viscoelastic energy release rate G2 in mixed mode 
(β=45°) during crack growth process under temperature 
variation (T1=20°C and T2=30°C) 
 
 
4.2 IMPACT OF THERMO-HYDRO-

MECHANICAL LOADING 
4.2.1 Numerical meshes 
The finite element mesh is shown in Figures 15 and 16 
in which a circular discretization around the crack tip 
allows us to define easily the hydric fields and the 
integration crown using parametric elements (θ vector).  
 

 
Figure 15: Numerical mesh of the MMCG specimen under 
temperature field at T1=20°C.  

(a) (b) (c) 



The MMCG specimen is designed in order to obtain 
different mixed mode ratios and crack growth stability. 
The A-integral is performed using virtual finite element 
displacement fields.  In this case, Figures 15 and 16 
show the distribution of humidity in a wood specimen 
according to Exx and Eyy direction respectively. 
 

 
Figure 16: Numerical mesh of the MMCG specimen under 
temperature field: (a) T1=20°C. (b) T2=30°C 

4.2.2 Energy release rate 
Figure 17 and 18 shows the evolutions of viscoelastic 
energy release rate in opening mode G1 and shear mode 
G2 respectively, versus time using 𝐴! integral, under a 
moisture level variation. We note an increase of G with 
the moisture level. Hence, for both modes, we can 
observe at first, a progressive increase of G, and then, a 
stationary phase with a stabilization of its evolution. 
Specifically, we can observe, for G2, a highest energy 
release rate than G1.  
 

 
Figure 17: Viscoelastic energy release rate in opening mode  

A regular trend in viscoelastic energy levels illustrate the 
moisture effect stability in mixed mode calculated with 
the integral 𝐴! without taking into account the effect of 
thermal expansion induced by a change of the 
temperature field. 
 

 
Figure 18: Viscoelastic energy release rate in shear mode. 

5 CONCLUSION 
The knowledge of crack driving forces such as energy 
release rate and stress intensity factors is very important 
in the assessment of the reliability of flawed structures. 
A new formulation of the A-integral is proposed, which 
allow to take into account the effect of thermal load 
induced by temperature variation, without taking into 
account the mechanical load applied on crack lips. The 
efficiency of the numerical implementation of crack 
propagation, in finite element software, is assessed by 
dealing with orthotropic materials. A good accuracy is 
observed on the estimates of the viscoelastic energy 
release rate in mixed mode for both time and crack 
length evolution. Moreover, the convergence is well 
achieved since the values of the viscoelastic energy 
release rate seem to be stabilized throughout the crack 
path. 
 
In this paper, the analysis is achieved under the 
assumption of viscoelastic material under static crack 
propagation and thermo-hydric variation. In addition, the 
viscoelastic behavior of timber material was 
implemented in finite element software using spectral 
decomposition method of the creep tensor. However, 
automatic crack propagation needs to be achieved 
accordingly to a critic viscoelastic energy release rate 
values, which depends on the viscoelastic mechanical 
properties of timber material. This will be the subject of 
undergoing researches, in addition to the development of 
the A-integral in order to take into account the effect of 
moisture variation. Also, we hope to investigate the 
effect of uncertainties in the material and load 
parameters on the reliability of wood structure subjected 
to crack growth, by using stochastic computation 
methods. At the end, all numerical results obtained in the 
present works will be confronted to the experimental 
data in order to prove the efficiency oh the actual to 
compute the crack effects in timber structures. 
 
 
 
 
 
 
 
 

(a) (b) (c) 
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