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AN INCREMENTAL CONSTITUVE LAW FOR DAMAGING VISCOELASTIC MATERIALS

An incremental formulation suitable for modelling of materials with damaging viscoelastic behaviours is proposed in this work. A constitutive law based on linear viscoelasticity coupled with strain dependent damage is developed. The viscoelastic model is represented by a generalized Maxwell's chain. It is governed by a set of internal stress variables attached to the branches of the Maxwell's chain. The damage evolution is governed by values gained by a pseudo strain. The coupled law is turned into an incremental form suitable for the numerical analysis of damaging time dependent structures. Taking advantage of the incremental form, the coupled damaging viscoelastic law is implemented as a step-by-step procedure. The calculation procedure consists of a damaging elastic step followed by a number of damaging viscoelastic steps. The damage variable is adjusted at each step, according to the value gained by the pseudo strain. Exemplary calculations are worked out for two cases of uniaxial and biaxial variable or cyclic loadings. The results show the efficiency of the incremental model. It is worth noticing that the time increment used for the calculations is not necessarily small. As a consequence, precise analysis of damaging time dependent structures can be performed for low calculation cost.

Introduction

A number of materials widely used in engineering applications exhibit viscoelastic behaviours, such as concrete, polymers, composites, wood, etc. [START_REF] Chang | Quasi-static analysis for viscoelastic Timoshenko beams with damage[END_REF]. From a general point of view, the viscoelastic behaviour can take different forms, including creep under constant load, stress relaxation under constant deformation, time-dependent recovery of deformation following load removal, time-dependent creep rupture [START_REF] Murakami | Computational methods for creep fracture analysis by damage mechanics[END_REF]. Under complex loading and unfavourable physical environment, the mechanical properties of a viscoelastic material can gradually degrade in the course of time. Due to increasing deformations in the material, micro-defects existing originally or produced subsequently eventually grow, coalesce, and finally cause the fracture of the material. This phenomenon will affect the macroscopic behaviour and the durability of structures. It is therefore necessary to precisely account for the effect of damage on the time dependent behaviour of viscoelastic materials.

A review of literature shows that different approaches have been proposed to address this problem. An analytical model was initially proposed by Simo [START_REF] Simo | On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects[END_REF] for damaging viscoelastic materials. Viscoelastic continuum damage models were used in order to solve linear and nonlinear viscoelastic problem [START_REF] Zhao | Novel measuring approach for damage of viscoelastic material (Part I): Constitutive model[END_REF][START_REF] Bhandari | Creep-damage analysis: comparison between coupled and uncoupled models[END_REF]. Spectrum models for linear viscoelastic behaviours were used to describe the rate-dependent damage growth in a time dependent material under cyclic loading [START_REF] Sullivan | Development of a viscoelastic continuum damage model for cyclic loading[END_REF], environmental or corrosion effects [START_REF] Xicheng | Damage theory for polymeric material[END_REF], and with isotropic or anisotropic behaviour [START_REF] Altenbach | Creep damage predictions in thin-walled structures by use of isotropic and anisotropic damage models[END_REF]. Also, finite element creep damage analysis have been used for the study of pressurised pipe bends [START_REF] Hyde | Finite element creep continuum damage mechanics analysis of pressurised pipe bends with ovality[END_REF], laminated composite bolted joints [START_REF] Kallmeyer | A finite element model for predicting time-dependent deformations and damage accumulation in laminated composite bolted joints[END_REF], or structures under multiaxial stress states [START_REF] Yue | Finite element creep damage study of nickel base single crystal structures under multiaxial stress states[END_REF].

A coupled damage viscoelastic model in the form of an incremental formulation is proposed in this work. The formulation is based on a description of the viscoelastic behaviour by means of a Maxwell's chain, coupled with the damage model proposed by Simo [START_REF] Simo | On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects[END_REF]. The incremental formulation is based on an approach developed for viscoelastic composite structures [START_REF] Jurkiewiez | Incremental analysis of time-dependent effects in composite structures[END_REF]. One main advantage of this incremental formulation is that the finite time increment doesn't need be necessarily small. This method was successfully applied to the analysis of time dependent effects in huge structures such as prestressed concrete bridges [START_REF] Destrebecq | A numerical method for the analysis of rheologic effects in concrete bridges[END_REF]. The main features of the damage law and its coupling with the viscoelastic law are described in the first part of the paper. Then, the coupled law is turned into an incremental form, according to the approach described in [START_REF] Jurkiewiez | Incremental analysis of time-dependent effects in composite structures[END_REF]. Taking advantage of the incremental formulation, the model is implemented as a step-by-step procedure. It is finally applied to the analysis of a damaging viscoelastic material subjected to a uniaxial cyclic stress or to a biaxial variable strain.

Description of the damage law

Thermodynamical approach

The thermodynamic approach of a damaging process is based on the writing of the free strain energy function  as a combination of the damage variable with the non-damaged potential [START_REF] Lemaitre | Handbook of Materials Behavior Models[END_REF]:
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where  is the strain.

  0 0   
is the thermodynamical potential for the non-damaged elastic material.

  1 , 0  D is the isotropic damage variable.  and  are the Lame's coefficients. According to the first state law, the stress is given by:

       d d D 0 1     with    : 0 0 A d d  (2)
where 0 A is the non-damaged stiffness tensor. The third state law allow us to write

  0 0          D Y (3)
Accordingly, the dissipation due to the sole damage process, writes as follows:

0 0     D D Y   (4)
Consequently, any given function describing the evolution of the damage variable must satisfy equation (4).

In the unidimensional case, equation [START_REF] Murakami | Computational methods for creep fracture analysis by damage mechanics[END_REF] writes

    0 1 E D   (5)
where 0 E is the elastic modulus of the non-damaged material.

Damage evolution

The following function is introduced in order to control the irreversible evolution of the damaging process [START_REF] Simo | On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects[END_REF] 

    D D         , ( 6 
)
where     is an equivalent strain defined at any time t as a function of the actual strain   t  , and D  is a damaging threshold defined as the maximum value reached by     since the beginning of the loading period
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Starting from a loading point located on the actual damaging threshold surface in the strain space, i.e.   0 ,

 D   
, the evolution of the damage variable D caused by a strain increment   dt  is controlled by the following conditions:
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Coupled damaging viscoelastic law in an incremental form

Expression of the coupled law

The behaviour of a viscoelastic solid material can be written in the course of time in the form of a Volterra's integral as follows:
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Based on thermodynamical considerations, the kernel    , t k can be expanded as a Dirichlet's series [START_REF] Mandel | Théorie générale de la viscoélasticité linéaire[END_REF]: [START_REF] Kallmeyer | A finite element model for predicting time-dependent deformations and damage accumulation in laminated composite bolted joints[END_REF] This is equivalent to base the viscoelastic behaviour description on a generalized Maxwell's chain, where i  and i  are material parameters. By derivation of expression [START_REF] Bhandari | Creep-damage analysis: comparison between coupled and uncoupled models[END_REF], and by substituting the obtained expression of     in equation ( 9), it comes:
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Incremental formulation of the coupled law

In account of equations ( 10) and ( 11), the stress   t  can be divided in a set of internal variables   t i  related to the (r+1) branches of the generalized Maxwell's chain [START_REF] Destrebecq | A numerical method for the analysis of rheologic effects in concrete bridges[END_REF] 

      r i i t t 0   (12)
where   t i  , attached to the i th branch, is expressed as follows
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Given a finite time interval t, equation (13) takes the following form at time t+t
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Taking equation ( 13) into account, equation [START_REF] Lemaitre | Handbook of Materials Behavior Models[END_REF] becomes
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be approximated by linear functions over the finite time interval [t,t +Δt], i.e. 15), it yields : 
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From this equation, it is easy to derive the variation of the internal stress i  over the time internal [t,t+Δt]:
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Finally, taking equation ( 12) into account, the stress increment can be written as
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Equation ( 21) is the coupled damaging viscoelastic law expressed in an incremental form, where E ~ is a fictitious modulus, hist  is a term of history due to the viscoelastic behaviour, dom  is a stress decay due to the damage increase. It is worth noticing that the length of the finite time increment Δt must ensure the acceptability of the approximation done in equation (16). Therefore, Δt is finite but not necessary small.

Generalization to 3D approach

Keeping in mind that the damage is isotropic, equation ( 21) can be easily generalized to 3D approach as follows
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is a stress history vector due to the viscoelastic behaviour, and   dom  is a stress decay vector due to the damage increase during the finite time increment Δt.

Numerical implementation of the incremental formulation

Description of the numerical procedure

The incremental formulation presented above has been implemented as a numerical procedure using MATLAB ® software. According to equations ( 21) or ( 23), the analysis is carried out in the form of a step-by-step procedure, which is divided in two successive parts:

-in a first part, the mechanical state of the structure is determined at the initial loading time. For an instant loading, the material behaves as damaging elastic. The calculation is iterated until convergence of the damage state in the material; -in a second part, the analysis is divided in finite time steps Δt. Each step corresponds to a damaging viscoelastic analysis based on equation ( 21) or (23). In each viscoelastic step, the calculation is iterated until convergence of the damage state. Each step ends with the updating of the variables. A detailed flow-chart of the incremental procedure is shown on Figure 1. 
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Damage function

The only requirement concerning the choice of a damage function is given by equation ( 4). In the following, a damage function proposed by Simo [START_REF] Simo | On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects[END_REF] is considered: 
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Exemplary computations

Two exemplary calculations are presented in order to illustrate the capabilities of the incremental formulation. In these two examples, a Zener model (Figure 2a) is used to represent the viscoelastic behaviour of the material with the following values for the material parameters: Figure 3a shows the evolution of the cyclic stress versus the computed cyclic strain in the case of a non-damaging viscoelastic material. The hysteresis is due to the delayed strain flow caused by the viscoelastic behaviour of the material, the dimensions of the hysteretic loops are proportional to the stress amplitude, but the tilt angle is constant, irrespective of the cyclic stress amplitude. Figure 3b presents the same evolution in the case of a damaging law. Compared with the previous case, the shapes of the hysteretic loops are modified by the damage in progress: the loops are broadened, and their inclination is increased with increasing value of the damage variable, leading therefore to larger cyclic strains than in the undamaging case. This feature is explained by the increase of damage which is based on the equivalent strain. 

Plane strain loading in 3D configuration

The second exemplary calculation concerns the 3D stress response to a plane strain loading defined as follows (Figure 4a): A relaxation in the stress state is observed as soon as the strain loading has reached its constant value. In all cases, higher values of  parameter yield higher values for the damage variable and the triaxial stress. This is due to the influence of the 
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 strain component ( 1 2     ) whose influence on    
is increased when the  parameter is given a higher value, loading therefore to higher damage and weakened behaviour.

Conclusion

An incremental formulation for the constitutive law of a damaging viscoelastic material has been developed in this paper. The formulation is based on a coupled damage viscoelastic model initially proposed by Simo [START_REF] Simo | On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects[END_REF]. The viscoelastic behaviour is represented by a generalized Maxwell's chain. Based on [START_REF] Murakami | Computational methods for creep fracture analysis by damage mechanics[END_REF], it was possible to turn the analytical coupled law into an incremental formulation. Taking advantage of this formulation, a step-by-step procedure has been implemented in MATLAB® software. The numerical procedure has been applied to two exemplary calculations: the one concerns the time analysis of a damaging viscoelastic material subjected to a uniaxial cyclic stress, the other concerns the same material subjected to a variable plane strain. In the first case, the strain amplitude is increased by the damaging process compared with the no-damage simulation. In the second case, the damage rate and the stress evolution are clearly influenced by the biaxiality of the applied strain. These two examples show the efficiency of the incremental approach. One main advantage of this approach is the fact that the time increment required for the step-by-step analysis needs be finite but not necessarily small. Therefore, the incremental formulation presented in this paper enables precise analysis of time dependent effects in complex structures for limited calculation efforts.
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