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ABSTRACT. The reliability analysis applied to viscoelastic and orthotropic materials, in the case of mixed 

mode configuration, is studied in this work. The M integral, separating mixed mode during creep crack initiation 

in viscoelastic field, is used in the analytical approach. The main development, based on conservative law, and a 

combination of real and virtual displacement fields, is proposed. In order to provide mixed mode configuration, a 

Compact Tension Shear (CTS) specimen is used in the numerical process. Simultaneously the fracture and the 

viscoelastic procedures are coupled with reliability analysis in order to take account for model and parameter 

uncertainties. In this case, the random parameters related to model factors, elastic constants are defined in the 

reliability analysis of time dependent fracture materials subjected to complex loading. As results, the reliability 

levels are computed and discussed according to various mixed-mode loading scenarios 

 

 

1. Introduction 

 

The mixed mode conditions often result from bending loads that are imposed on the structural component, and 

they are generally aggravated by the heterogeneous and orthotropic character, and the viscoelastic behavior of 

the material [1]. In the several cases, the negligence of mixed mode interaction in the design of composite 

structures may lead to significant errors in strength predictions, and mixed mode fracture criteria are thus of 

great importance for predicting failure of notched wood components. However, the mixed modes cracks, 

combining with the time depend behavior, are phenomena affected by high uncertainties, where deterministic 

methods fail to predict accurately the structural life.  

 

The objective of the current investigation is to apply the reliability model to the behavior of viscoelastic 

orthotropic material in order to estimate the uncertainties of the used fracture parameters. 

In viscoelastic approach, path independent integrals have been used in order to study the impact of the mixed 

mode ratio in crack initiation [2] and crack growth process in wooden material [3]. In the literature, several 

authors have applied the reliability theory to fracture mechanics problems [4]. In the past, the reliability 

approach has been coupled with the boundary element model for probabilistic fatigue life assessment in crack 

propagation mode mixty [5] and recently, random fatigue crack growth in mixed mode has been studied by 

stochastic collocation method [6]. However, these works don’t take into account the viscoelastic effects. 

 

In the first part of the paper, the reliability approach is recalled. In this case, the failure probability function and 

the First Order Reliability Method (FORM) are defined. In the second part, the conservative laws [7], combining 

the real and virtual mechanical fields [8] and the non-dependant integral parameter M in crack initiation 

process, is recalled. The time dependent effects are introduced by the generalized Kelvin Voigt model resolving 

by an incremental viscoelastic formulation [2]. After, the CTS (Compact Tension Shear) specimen [9, 10] allows 

the mixed mode configuration is described. The subroutine of the crack initiation and reliability process is based 

on an energetic criterion. The random parameters used in the numerical model are fixed according to the critical 

values of energy release rate in opening and shear mode. Finally, the reliability analysis provides us to obtained 

the failure probability and the sensitivity of the fracture parameters regarding these complex solicitation are 

posted.  

 

 



2. Reliability analysis 

 

The reliability is defined as the capability of a structure to guarantee the purpose for which it has been designed, 

along the entire period of its lifetime [11,12]. The reliability is complementary to the failure probability
f

P . The 

leading step in the reliability analysis consists in identifying the main set of random variables
i

X , ni ,,2,1  , 

for which uncertainties have to be considered. For all of these variables
i

X , statistical distributions are defined in 

order to describe the uncertainties; a realization of this set of variables is noted
i

x . The probabilistic distributions 

can be selected by physical observations, statistical studies, laboratory analysis and expert opinion. However, it 

is important to emphasize that the quality of the reliability assessment strongly depends on the quality of the 

available information (i.e. input data) as well as the quality of the reliability model.  

 

The second step consists in defining the potentially critical failure modes. For each one of them, a limit state 

function )(
i

xg  is defined to separate the behavior space into two regions: the safe domain, where 0)( 
i

xg , 

and the failure domain where 0)( 
i

xg . The boundary between these two domains, defined by 0)( 
i

xg , is 

known as the limit state itself. In our case, the analysis is carried out with respect to fatigue failure. Considering 

the fracture mechanics in mixed mode, the limit state can be written in the form: 
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where 
vcv

GGG 211 ,,  and 
c

G2
 are respectively the applied and critical energy release rates for modes 1 and 2, 

and   is the orthotropic factor for the specimen, equal to one in our case. For this limit state, the probability of 

failure is evaluated by integrating the joint density function over the failure domain Erreur ! Source du renvoi 

introuvable.: 
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where  
nXXX xxxf

n
,,,

21,,, 21
  is the joint density function of the variables 

i
X . The evaluation of the above 

integral is not possible in practical cases, because of the required high precision and the unavailability of the 

joint density function. For these reasons, two approaches are commonly proposed for mechanical reliability [13]: 

random simulations and approximation methods. The random simulations, known as Monte-Carlo methods [12], 

with or without variance reduction, require a large number of evaluations of the performance function, and 

consequently of the mechanical model. They are therefore convenient when the mechanical model is analytical, 

involving very low computation time. The precision of Monte-Carlo simulations can be controlled by evaluating 

the standard deviation of the probability estimate. When the finite element models are involved, the 

approximation methods, such as First Order Reliability Method FORM [12], become attractive as they require 

relatively low number of mechanical runs. However, the precision of FORM depends on the curvature of the 

performance function in the normalized Gaussian space, as this method is based on local approximation by 

hyper-plane in the neighborhood of the most probable failure point. Previous experience in mechanical 

engineering shows that the mechanical response is usually smooth and curvatures are low, especially in static 

analysis, which allows us to use FORM approximations. 

   

In our case, the finite element model is used for mechanical analysis, and therefore the computation time for 

each evaluation of the performance function becomes significant. In this case, the use of Monte-Carlo 

simulations, requiring a very large number of mechanical analyses, leads to astronomic computation time, which 

is impossible in practical cases. To overcome this difficulty, we have applied the FORM algorithms as described 

in [12]. This procedure has been performed for the limit state function in Equation (1), where the energy release 

rates are computed by finite element analyses as described below. 

 

 

3. Integral parameter in viscoelastic material 

 



For uncoupling crack modes, some authors have developed an uncoupling fracture mode algorithm with a 

similar integral called M. This integral is also characterized by a non path dependence of the integration domain 

[8]. The main difference consists in combination of virtual v and real u singular fields according to the virtual 

work principle. Thus, they propose a bilinear form of the elastic strain energy as follow: 
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ij   , ,,  are components of stress and strain tensors deduced from the real (induced u) and virtual 

(induced v given by Shi’s singular forms) displacement fields, respectively. Without crack propagation and 

pressure on the crack lips, the M-integral form is given by : 

 

  


 d
2

1
   

1,1, ji

u

iji

v

ij
nvuM         (4) 

 

The integral (4) is defined with a curvilinear integration domain. It’s preferable, for a finite element 

implementation, to transform this form in terms of a surface integral by introducing a  field [14], continuous 

and differentiable, ( 0 and 1
21
   inside the ring and 0


  outside it), Figure 1 (b).  
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Figure 1 – (a): Generalized Kelvin Voigt model. (b): Integration domain 

 

In these conditions, the relation (4) can be transformed by using the Gauss-Ostrogradski’s transformation and 

balance equations. Hence, we obtain the M- integral defined as follow [14] 
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The generalized Kelvin Voigt model is used in order to introduce viscoelastic properties, Figure 1 (a).  

This rheological model is well adapted for time dependent representation because it allows uncoupling elastic 

properties (which induce free energy) and viscous properties (which induce energy dissipation). In this case, the 

expression (5) can be generalized for each elastic spring [2]: 
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In order to express the real stress intensity factors 
   p

II

up

I

u KK and  , the complete uncoupling is obtained by 

performing two distinct calculations from the 
  vuM p

v
, -integral. With these considerations, judicious values 

for the virtual stress intensity factors 
   p

II

vp

I

v KK and   have chosen as follow : 
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According to the equation (7), the partition of viscoelastic energy release rate in each elastic spring of Kelvin 

Voigt chain becomes 
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)(1 p

v
G  and 

)(2 p

v
G  are the energy release rate of the p

th
  spring in mode I and II respectively. 

)(

1

pC  and 
)(

2

pC  

translate the associate viscoelastic compliances. That way, the viscoelastic energy release rate summations are 

given by: 
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In order to resolve the equation (7), the linear viscoelastic equations are computed according to finite difference 

process using the incremental constitutive equations given by [2] 

 

)(~)()(
11 nijnklijklnij ttt  
        (10) 

 

The terms )( and )(
11 

 nklnij tt  designate the strain and stress increments, during the time 

increment n
t . )(~ tij  represents the global influence of the mechanical past history. ijkl

  traduces the 

equivalent viscoelastic compliance function.  

 

 

3. Compact Tension Shear specimen  

 

The Compact Tension Shear specimen, Figure 2, is used in order to operate mixed mode solicitation. 
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Figure 2 – Compact Tension Shear specimen [2] 

 

This specimen is initially proposed by Richard [9] for isotropic materials and adapted to wood material by 

Valentin and Caumes [10]. The initial crack length chosen is mm25 . The external load is an unitary loading 

applied to a perfect rigid steel arm. Points )7...1( with   and  BA  are holes where forces can be applied 

with the angle  oriented according to the trigonometrically direction for different mixed mode ratios. The 

simple opening mode is obtained by applying opposite forces in 
1

A  and 
1

B  with  0 . The loading 

 90 , in 
7

A  and 
7

B , corresponds to the case of a simple shear mode. Intermediary positions induce 

different mixed mode configurations 



 

 

4. Numerical algorithm  

 

In this section, we present the numerical procedure implemented in the finite software Castem, developed by the 

French Energy Atomic Commission CEA. This numerical algorithm presents relation between the uncoupling of 

fracture mode, viscoelastic behavior and the reliability analysis. We add in this algorithm the virtual part which 

computes vM , Figure 3. We suppose that mechanical fields are known at time tn and we have fixed the time 

increment
n

t . All properties of viscoelastic material are experimentally defined. 
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Figure 3 – Reliability and viscoelastic incremental crack algorithm  

 

 Firstly, Mθ, expression (5), is computed. 

 According to the viscoelastic procedure [2], the supplementary viscous load, the external load 

vectors are computed. Hence, obtain the nodal displacement vector incremental, and mechanical 

fields   )( 
1n

t , equation (10). The elastic compliance tensor
)(

1

pC , equation (6), is introduced by 

using material properties. Hence, the elastic stress tensor    )(
n

p t , and nodal load are deduced. The 

displacement  pu , for each Kelvin Voigt element, is computed by solving the balance equation. 

 To evaluate virtual stress intensity factor 
pv K , equation (5), we use the virtual fracture procedure 

equation (8), is computed.  Finally, the energy release rate 
p

v
G

, and the real stress intensity factor 

pu K  and  are given by M  procedure. A summation on  
p

v
G

 gives us the energy release rate for 

each mode v
G

. 



 At the end, the reliability procedure is applied in order to obtain the uncertainty parameters for the 

mechanical proposed model. The program is stopped if the Griffith’s criteria [15] introduced by the 

functional  xf is verified. 
c

G
represent the critical values of the energy release rate in each mode, 

and α and unitary coefficient in our case. 

 

 

5. Numerical reliability results  

 

The reliability analysis is now applied to the specimen in Figure 2, where the limit state function is defined by 

equation (1). The random variables are described in Table 1, where the two critical energy rates are fully 

correlated. The applied force is defined in terms of the parameter p which is equal to 1 for loading angle of 15° 

and to 2 for loading angle of 45°.  

    

Variable Symbol Distribution Mean Standard deviation 

Longitudinal elastic modulus  
x

E  (MPa) lognormal 15000 1500 

Transversal elastic modulus  
yE (MPa) lognormal 600 90 

Critical energy release rate in mode 1 
c

G1
(N/m) lognormal 170 17 

Critical energy release rate in mode 2 
c

G2
(N/m) lognormal 420 42 

Applied force F (kN) Normal P 0.15p 

Initial crack length a (mm) Deterministic 20 1 

Loading angle   (°) Deterministic 45  

Square specimen dimension d Deterministic 50  

Table 1 – Variables parameters  

 
For the mixed mode angle of 15°, Figure 4 shows the importance of the random variables on the reliability of the 

structure regarding crack propagation. The material reliability is mainly controlled by the applied load, and then 

by the critical release energy. The failure probability is found to be 2.19x10
-2

. The FORM procedure allows us to 

determine the most probable failure configuration which is defined by: 
x

E = 14688.9 MPa, yE = 502.5 MPa, 

c
G1

= 150.9 N/m, 
c

G2
= 372.8 N/m, and F=1.19 kN. For this safety level, the partial safety factors are given 

by1.02, 1.19, 1.13 and 1.19 for 
x

E , yE , 
c

G1
, 

c
G2

 and F, respectively. 
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Figure 4 – Variable importance for mixed mode for 15° 

 

 



In the mixed mode angle of 45°, Figure 5 shows the importance of the random variables on the reliability of the 

structure regarding crack propagation. Contrary to the case of 15°, the transversal elastic modulus plays the most 

important role in the safety of the material, with an importance of 37% instead of 29%. The failure probability is 

found to be 1.66x10
-2

.  
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Figure 5 – Variable importance for mixed mode of 45°. 

 

 

 

6. Conclusion 

 

The reliability analysis coupling with mixed mode fracture and applied to viscoelastic and orthotropic materials 

have been studied. The different leading step in the reliability analysis consists in identifying the main set of 

random variables, defining the potentially critical failure modes according to a failure function and the 

probability of failure resolving by the First Order Reliability Method (FORM). The viscoelastic behavior has 

been introduced by the generalized Kelvin Voigt model solving by an incremental constitutive law. The 

analytical fracture separation has been introduced according to the non-dependence integral M . In order to take 

into account mixed mode ratio, the CTS specimen providing the fracture during the crack tip initiation has been 

used. Finally, a complex subroutine combining the crack initiation, the viscoelastic and the reliability approaches 

has been written. The importance of the random variables on the reliability of the structure regarding crack 

propagation has been justified. In the numerical examples of mixed mode, it shown that the transversal elastic 

modulus plays the most important role in the safety of the material. In the coming work, this model will be 

performed in order to take into account the crack growth process. 
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