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abstract 

This paper is concerned with the development of a new incremental formulation in the time domain for 
linear, non-aging viscoelastic materials undergoing mechanical deformation. The formulation is derived 
from linear differential equations based on a discrete spectrum representation for the relaxation function. 
The incremental constitutive equations are then obtained by finite difference integration. Thus the 
difficulty of retaining the stress history in computer solutions is avoided. The influence of the whole past 
history on the behaviour at any time is given by a pseudo second order tensor. A complete general 
formulation of linear viscoelastic stress analysis is developed in terms of increments of midsurface 
strains and curvatures and corresponding stress resultants. The generality allowed by this approach has 
been established by finding incremental formulation through simple choices of the tensor relaxation 
components. This approach appears to open a wide horizon (to explore) of new incremental formulations 
according to particular relaxation components. Remarkable incremental constitutive laws, for which the 
above technique is applied, are given. This formulation is introduced in a finite element discretization in 
order to resolve complex boundary viscoelastic problems.  

Keywords: Incremental formulation; Viscoelasticity; Discrete relaxation function; Generalized variables. 

 

1 Introduction 

Viscoelastic materials are characterized by possessing infinite memory. Their actual mechanical 
response is a function of the whole past history of stress and strain. In most cases, the behaviour of any 
linear viscoelastic material may be represented by a hereditary approach based on the superposition 
principle of Boltzmann. This implies that stress and strain analysis of viscoelastic phenomena which can 
be observed in the behaviour of many real materials, presents many difficulties for real problems of 
complex geometry. The important use of viscoelastic materials in civil engineering structures requires 
understanding the behaviour of time dependent mechanics fields which can be lead to collapse of such 
structures. The main problem in computation mechanics is to know the response of viscoelastic 
materials taking into account its complete past history of stress and strain. An intensive research work is 
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investigated by a number of authors. Bozza and Gentili [1] use the theory of linear viscoelasticity to 
establish constitutive equations using relaxation functions. They seek solutions to the inversion problem 
of the constitutive equations. Aleksey Drozdov and AlDorfmann [2] derive constitutive equations for the 
nonlinear viscoelastic behaviour after performing tensile relaxation tests. Most of analytical solutions 
proposed in the literature can not deal with real and complex problems because these methods require 
the retaining of the complete past history of stress and strain in the memory of a digital computer.  

In this context, a number of theories have been proposed in the past in order to formulate 
incremental constitutive equations for linear viscoelastic behaviour. Among them, Kim and Lee [3] and 
Theocaris [4] have proposed incremental formulation and constitutive equations in the finite element 
context (see also Chazal and Pitti [5]). In fracture viscoelastic mechanics, Moutou Pitti et al. [6-7] have 
applied the incremental formulation in order to evaluate creep crack growth process in viscoelastic 
media. Krempl [8] and Kujawski et al. [9] have performed experimental study of creep and relaxation in 
steel at room temperature. Also, Godunov et al. [10] and Duffrène et al. [11] have proposed relaxation 
viscoelastic models in order to traduce the behaviour of the material. However, the formulation used is 
based on the spectral decomposition using a generalized Maxwell model. To avoid the use of 
generalized Maxwell model, we will develop in this paper an alternative incremental formulation. This 
new formulation is based on discrete relaxation spectrum and the finite difference method using 
generalized differential equations in the time domain. The incremental stress and strain constitutive 
equations are not restricted to isotropic materials and can be used to resolve complex boundary 
viscoelastic problems without retaining the past history of the material in the memory of a digital 
computer. 

First, we recall the discrete relaxation spectrum representation and its use in Boltzmann’s 
superposition principle [12]. The one dimensional linear viscoelastic behaviour is used to account for 
three dimensional responses. After that, we present the development of the generalized differential 
equations in terms of one dimensional stress and strain components. Finally, the incremental viscoelastic 
constitutive equations of the model are established. 

 

2 Relaxation spectrum representation 

In this work, we will consider only small strains. According to the results obtained by Christensen 
[13], Mandel [14], Salençon [15] and Chazal and Dubois [16], the components of the relaxation tensor 

)(tG  can be represented in terms of exponential series: 
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where ρη , R,...,1=ρ , are strictly positive scalars and repeated indices do not imply summation 

convention. ∞G  and ρG  represent the equilibrium and the differed part of the relaxation function 

respectively and )(tH  is the Heaviside unit step function. 

According to Boltzmann’s principle superposition in linear non-ageing viscoelasticity [12], the 
constitutive equations between the component )(tσ  of the stress and the component of the strain )(te  
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for non-ageing linear viscoelastic materials can be expressed in the time domain by the hereditary 
Volterra’s integral equation: 
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We introduce stresses and strains in generalized variables according to Love’s first-order shell theory. 
The strain at any point of the beam may be given as 

)( )()( ttte χζε +=                                                                 (3) 
where )(tε and )(tχ are the middle surface extensional strain and curvature, respectively. If we consider 
a plane stress state, the non-vanishing resultant of stresses is then defined by 
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)(tN  and )(tM  are the generalized stresses and h  is the thickness of the beam assumed to be constant. 
In order to determine the constitutive equation in terms of generalized stresses and strains, we introduce 
generalized strains, given by equation (3), into equation (2). One find 

 [ ] ττχζτε
τ

τσσ dtGtt
t

MN

∞−

+
∂
∂−=+  )( )(  )()()(                                                             (5) 

Note that the total stress )(tσ  is separated into two parts: normal stress )(tNσ  due to extensional 

strain and bending stress )(tMσ  due to curvature. The constitutive equations in generalized variables 
can now be obtained from behaviour equation (5).  

 
Using equation (4) and integrating equation (5) over the thickness, we find 
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3 Formulation of differential equations 

When we apply the mechanical strain defined by the strain history{ }ℜ∈ττ  ),(e , the response of the 

material is then given by the history of stresses { }ℜ∈tttN   ),(M ),(  defined by the behaviour equations 
(6,7) in which the relaxation function is given by equation (1).  

If the generalized strain{ })( ),( tt χε  is applied to the material at time t, then the response in stresses 
can be obtained using the finite relaxation spectrum representation given by equation (1). This leads to 
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Thus the stresses given by the last equation, and written as a function of equilibrium and differed part 
of the relaxation spectrum, can be rewritten in the following form 
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It should be noted that )(tN ∞  and )(tM ∞  represent the equilibrium part of the mono-dimensional 

stress of the material while )(tN ρ  and )(tM ρ  represent the differed part of the same mono-dimensional 
stress. 

As we mentioned in the above section, a differential approach is used in order to establish the 
differential equations of the mechanical model. Thus, we need to express the viscoelastic response of the 
material as a function of stress and strain derivatives. For this reason, let us use equation (9), the rate of 
the total stress is determined by  
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The rate of the equilibrium part of the one-dimensional stress )(tN ∞  and )(tM ∞  is easy to be 
evaluated. According to equations (10a) and (10c), and after applying a time derivative operator, one 
find 
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In other words, the equilibrium part of the one-dimensional stress is directly proportional to the total 
strain at time t . It is completely defined by the history of the applied strain. However, the rate of the 
differed part of the one-dimensional stresses )(tN ρ  and )(tM ρ  is more complicated to be determined. 
Using equations (10b) and (10d), and applying a time derivative operator, we can write 
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These integral equations give the total rate of the differed part of the mono-dimensional stresses.  

The main purpose of our development in this section is to establish differential equations between the 
total rate of the mono-dimensional stresses and the total strain. For this reason, we will transform last 
equations in differential type.  

Let us introduce the behaviour equations (10b) and (10d) in the integral equations (13). This leads to 
linear differential equations with constant coefficients and can be integrated analytically 
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The solution of these linear differential equations gives the rate of the one-dimensional stresses 
)(tN ρ  and )(tM ρ . 

It should be mentioned that the non-ageing linear viscoelastic behaviour is completely defined by the 

differential equations (12) and (14). We note that this formulation, written in terms of generalized 

stresses and strains rates, is easily adapted to temporal discretization methods such as finite difference 

method. 

4 Incrementalization of the differential equations 

Here we will describe the solution process of a step-by-step nature in which loads are applied stepwise at 

various time intervals. Let us consider the time step nnn ttt −=Δ +1 . The subscript n  and 1+n  refer to the 

values at the beginning and end of time step, respectively. This technique is successfully used by Chazal 

and Dubois in [16] in the case of viscoelastic structures. We assume that the time derivative during each 

time increment is. A linear approximation is used for strains and is expressed by 
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This linear approximation leads to very accuracy results in finite element discretization as it is shown 
by Chazal and Dubois [16]. Thus we don’t need higher approximations for the strain during a finite 
increment of time load. This leads to a constant rate during each time increment: 
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By integrating equation (11) between nt  and 1+nt , it can be written in the following form 
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In order to determine the generalized stress increments from this equation, we have to determine the 
generalized pseudo stress increments )( ntN ρΔ  and )( ntM ρΔ  during the time step ntΔ . First, let us 

consider the differential equation (14). The analytical solution of this differential equation can be 
expressed as 
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The incremental constitutive equations can now be obtained from the constitutive equation (17). 
Substituting equations (18a) and (18b) into (17), we find 
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where )( ntΠ and )( ntΞ  are scalar tensors which can be interpreted as rigidity tensors in extensional and 

bending state respectively, they are given by 
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ntN  and )(
~

ntM  are pseudo generalized stresses which represent the influence of the complete past 

history of extensional and bending generalized stresses. They are given by 
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The incremental constitutive law represented by equation (19) can be introduced in a finite element 
discretization in order to obtain solutions to complex viscoelastic problems. 

 

Finally, in order to use the incremental viscoelastic formulation presented in this paper, we need to 
identify the relaxation components of the relaxation tensor. The experimental identification of 
viscoelastic properties is treated in details by Andreas and Lackner [17] and Herbert and Andreas [18]. 
The viscoelastic solution is obtained by the application of the method of functional equations to the 
elastic solution of the indentation problem and by means of torsional rheometry. 

5 Conclusions 

The transformation in differential terms of the integral formulation of the viscoelastic continuum 
problem has been successfully achieved through the introduction of a discrete spectrum representation of 
the relaxation function. This leads to a new linear incremental formulation in the time domain for non-
ageing viscoelastic materials undergoing mechanical deformation. The formulation is based on a 
differential approach using discrete spectrum representation for the relaxation components. The 
governing equations are then obtained using a discretized form of the Boltzmann’s principle [12]. The 
analytical solution of the differential equations is obtained using finite difference discretization in the 
time domain. In this way, the incremental constitutive equations of linear viscoelastic material use a 
pseudo rigidity scalar tensor and the influence of the whole past history on the behaviour of the material 
at time t is given by a pseudo first order tensor. The generality allowed by this approach has been 
established by finding incremental formulation through simple choices of the function relaxation 
components. This approach appears to open a wide horizon (to explore) of new incremental formulations 
according to particular relaxation components. Remarkable incremental constitutive laws, for which the 
above technique is applied, are given. 

Among the numerous applications of the incremental formulations presented in this paper, is the 
numerical implementation in finite element software, thus the behaviour of complex boundary 
viscoelastic problems can be obtained. 
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