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ABSTRACT. Many materials used in engineering applications obey to time-dependent behaviours and the mechanical fields 
are affected by the time effects. As a result, the evolution of the stresses and strains in these materials appear still very 
complex and difficult to study. Among such cases is the situation when the material has an axisymmetric shape and when it is 
submitted to a complex fracture loading. In this paper, the creep loading is applied on an axisymmetric viscoelastic 
orthotropic material and the stress intensity factors are computed in the opening mode, in the shear mode and in the mixed 
mode using to a finite element approach. The uncoupling method is based on M integral, combining the virtual and real 
mechanical fields. In the same time, the viscoelastic effects are introduced according to the generalized Kelvin-Voigt model 
composed by four branches. The numerical solution is obtained with an incremental viscoelastic formulation in the time 
domain. Using a Compact Tension Shear (CTS) specimen, the evolutions of stress intensity factor versus time are posted in 
each fracture mode configuration. The obtained results demonstrate the efficiency of the proposed model. 
 
1. Introduction 
 
Modern advanced materials like composites, bi-materials, polymers and also soft materials are strongly present in the 
mechanical and civil engineering industries and play an important role in the integrity and resistance of structures. An 
important factor in their serviceability is the crack initiation and growth (see e.g. [1-3]. In industrial applications, one of the 
important cases is the symmetry of revolution. It is often present in nuclear power plants [4], engines or flying equipments 
[5,6]. Also, the symmetry of revolution is typical in the wood used in individual or industrial houses [7]. In this case, the 
material is submitted to fracture under mixed-mode loading combined with viscoelastic behaviour [8,9], which remains a 
complex problem.  

 
Figure 1 – (a) Crack in cylindrical peace of wood. (b) Cross section of wood 

In the literature, some developments have been suggested to approach such problems. Among them, numerical solutions have 
been proposed to resolve the time-dependent material behaviour with Maxwell equations [10]. Also, according to non-



dependent integrals, a generalization of the M integral [11] and T and A integrals to viscoelastic materials have been 
proposed in order to resolve the axisymmetric problem submitted to environmental loading [12]. The main advantage of this 
last approach is to compute the real mechanical fields in a virtual configuration and uncoupling fracture and viscoelastic 
parameters. In this paper an adaptation of these integrals to the case of viscoelastic problems in axisymmetric configurations 
like wood materials is developed.   
 
According to figure 1 (a), the fracture process is an important fact of the collapse of peace of wood using in the timber 
building. It observed that after the cut, the wood is often exposed in open air and submitted to environmental and climate 
loading during a long time [13]. With the drying cycle actions, the micro cracks are initiated and can propagate under the 
creep loading when the wood is used as timber structures. Also, the cracks are often oriented from the center to the boundary 
of the sample, see figure 1 (a). The observed cracks can be explained by the orthotropic character, the cellular composition of 
the specie, but also by its viscoelastic behaviour combined with the axisymmetric property. This paper is strongly motivated 
by the necessity to study such an interesting behaviour. 
 
Firstly, the conservative laws and the Langrangian variation is recalled in order to introduce the bilinear form of free energy 
density [14,15] and the virtual extension crack in cylindrical coordinates [16]. Also, the independent path integrals M [11] is 
defined and generalized to axisymmetric configuration. Secondly, the integral is defined to viscoelastic behaviour according 
to the generalized Kelvin Voigt chain. In order to introduce the numerical fracture process in mixed-mode configuration, the 
Compact Tension Shear specimen is applied. The last part proposes the viscoelastic incremental law routine and the 
evolutions of stress intensity factors and viscoelastic energy release rate versus the each mixed mode ratio. 
 
2. Background of axisymmetric integral parameters  
 
2.1 Lagrangian conservation  
 
According to Moutou Pitti et al. [16], for cracked domain V, the Noether’s theorem [15] translates that the Langrangian 
variation is equal to zero for all time t chosen arbitrary and for all real δu and virtual δv displacement fields: 
 

€ 

δL = δF •

V
∫

t
∫ dt dV = 0        with     F u,v( ) = F •        (1) 

 
In the case of Arbitrary Euleurian Langrangian configuration, we have the following notations [11] 
 
 

€ 

δ˜ v i = δvi  ;   δ˜ v i = 0 ;   δ˜ v i = δvi +δvi
∗  ;   δ ˜ u i = δui  ;   δ ˜ u i = 0 ;   δ ˜ u i = δui +δui

∗     (2) 
 
where 

€ 

˜ v  and 

€ 

v ∗  are virtual Euleurian and Lagrangian (ALE) displacement fields, respectively. Using relation (2), and 
considering the virtual extension vector   

€ 

 
κ δa , where a is a crack length, the Langrangian (1) becomes: 
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According to equations (2), the virtual displacement gradient can be written as: 
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Using equations (4), the bilinear free energy density (1) becomes 
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By introducing expressions (5) in the Lagrangian (3), and applying the Gauss - Ostrogradski theorem leads to 
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€ 

∂V designates the boundary curve of V or a closed contour around the crack tip, composed by the specific contours [11,16].  
 
2.2 Axisymmetric integral 
 
According to the equation (6) and the non-dependent domain and without pressure on the crack lips as proposed by [16], we 
can write after mathematical transformation: 
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     (7) 

The integral (7) is defined with a curvilinear integration domain. In order to implement this integral in a finite element 
software, it is easier to take into account a surface domain integral. In this context, the curvilinear domain must be 
transformed by introducing a vector field   

€ 

 
θ  [11,12]. After simplification, we obtain the modelling form of 

€ 

Maxi  integral 
called 

€ 

Mθ axi  adapted to axisymmetric problem. 
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The first term of (8) provides the mixed mode separation for a stationary crack and integrates the axisymmetric aspect. The 
second term traduces the dissipated energy induced by the crack-growth process. 
 
3. Generalization to viscoelastic behaviour 
 
In the case of creep loading, the linear viscoelastic behaviour is based on a generalized Kelvin Voigt model composed by N 
cells of Kelvin Voigt associated with a spring in series, see Figure 2. 

 
Figure 2 – Generalized Kelvin Voigt model  



 
In this case, the Equation (9) can be generalized for each elastic property as follows: 
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€ 

( p )σ ij
u  and 

€ 

( p )σ ij
v  indicate the real and virtual stresses of the 

€ 

pth spring respectively, induced by mechanical and thermal fields. 

€ 

ui
( p )  and

€ 

vi
( p ) are real and virtual displacement fields in the 

€ 

pth spring respectively. For an orthotropic media, virtual field 

€ 

v ( p ) is given by the Sih’s singular form. According to equation (9), the real stress intensity factors are given by: 
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Finally, the viscoelastic energy release rate in each fracture mode are given by 
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Gv
( p )=1Gv

( p )+2Gv
( p ) = C1

( p ) ⋅
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( p )( )
8
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( p ) ⋅

uK II
( p )( )
8

       (11) 

€ 

1Gv
( p )  and 

€ 

2Gv
( p )  are the energy release rate of the pth spring in mode I and II respectively. 

€ 

C1
( p )  and 

€ 

C2
( p )  designate the 

associate viscoelastic compliance. 

 
4. Numerical results  
 
4.1 Axisymmetric plan and Compact Tension Shear specimen  
 
In the axisymmetric configuration, the circular crack evolution and the integration domain are posted in Figure 3 [17]. The 
crack tip is oriented in the radial direction and the continuum map θ surrounds the cracked surface.  

 
Figure 3 – Crack growth position in axysimmetric plan [17]  

 
In order to compute the stress intensity factors in the axisymmetric material, a modified CTS specimen, Figure 4, proposed 
by Moutou Pitti et al. [16] for orthotropic material has been considered. This specimen is used in computational finite 
elements to generate the different mixed-mode ratios. The initial square form specimen is replaced by the cylindrical form 
with the diameter d = 100 mm and the initial crack length a = 50 mm. The loading points Aα and Bα with α ∈ (1 . . . 7) are 
oriented according to the angle solicitation β. The pure mode I (β = 0°) is obtained by using opposite forces in A1 and B1, the 
pure mode II by the loading points A7 and B7 (β = 90°). 



 
Figure 4 – Compact Tension Shear specimen [16]. 

 
4.2 Numerical routine  
 
Figure 5 presents the viscoelastic incremental and the fracture routine implemented in finite element software Castem.  

  
Figure 5 – Viscoelastic incremental and fracture routine  
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• In the beginning, the elastic mechanical fields are computed at time 

€ 

tn−1  with the initial circular crack length a = 
50mm, posted in Figure 4. Also, the representative circular mesh in the axisymmetric configuration is shown in 
Figure 3. 

• At the following crack length a = 51 mm, the viscoelastic incremental formulation proposed by [11] [16] [18] is 
applied in order to compute the viscoelastic mechanical fields at time 

€ 

tn . In the fact, the Boltzmann equation 
introduced with the generalized Kelvin Voigt model (Figure 2) is resolved step by step in finite element process. 

• Simultaneously, the compliance factors, the virtual stress intensity factors in opening 

€ 

vK I
( p )  and in shear mode [15] 

have calculated according to the crack virtual procedure. Then, the real stress intensity factor 

€ 

uK I
( p )  and 

€ 

uK I
( p )  

obtained by considering the equation (10). 
• The real stress intensity factors are introduced in the axisymmetric 

€ 

Mθvaxi  routine according to the relation (9). 
Then, using the equation (11), the viscoelastic stress intensity factors in opening mode kv1 and in shear mode kv2 
for the axisymmetric materials are evaluated. The precedent steps are repeated until the final collapse of the wood 
material with the crack length a = 70. 

 
4.3 Stress intensity factor and energy release rate  
 
In the numerical finite element calculation, the stress plan configuration is considered. The creep function, the elastic 
orthotropic moduli of the pine spruce are considered with a constant Poisson coefficient 

€ 

υ = 0.3, see Moutou Pitti et al. [16] 
and three Kelvin Voigt cells have been used according to the Figure 2.  

 
Figure 6 – Stress intensity factor versus time for mixed-mode β =45°  

 
Figure 6 presents the evolutions of the viscoelastic stress intensity factors versus time in opening mode kv1 and in shear mode 
kv2 for the mixed-mode loading β =45. It observed that the kv1 is around 0.50 N.mm-3/2 and kv2 is around 2.20 N.mm-3/2; this 
values increase slowly after 6 days. The low differences of values prove that the time calculation must be increase in order to 
obtain the important stress intensity factors. Also, the value of kv2 is six time more important that kv1; this fact is justified by 
the important energy required by the material to propagate in shear mode comparatively to the opening mode.  
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Figure 7 – Stress intensity factor versus crack growth position in mixed-mode β =45  

 
Figure 7 presents the evolutions of the stress intensity factors versus crack length a in opening mode kv1 and in shear mode 
kv2 for the mixed-mode loading β =45.  The final crack length is a = 69 mm and the considered time increment is 

€ 

Δt = 1h . 
First, the increasing of stress intensity factors versus crack length is observed. The same evolutions as proposed by Moutou 
Pitti et al. [16] about viscoelastic energy release rate are obtained. The maximum values of kv2 vary between 1.77 N.mm-3/2 
to 5.27 N.mm-3/2, and 0.36 N.mm-3/2 to 1.19 N.mm-3/2 in opening mode, respectively. Note that the initial values at the crack 
length a = 50 mm define the critical energy realise rate on the considered material. 
 
 
7. Conclusion 
 
The evolution of stress intensity factors in viscoelastic orthotropic materials like wood have been investigated in this work. 
The analytical form of the axisymmetric integral has been developed according to the conservative law and the bilinear free 
energy density. In order to resolve this integral with finite element software, a modelling form of 

€ 

Maxi  integral, called 

€ 

Mθ axi  
has also been proposed and generalized to time dependent materials by

€ 

Mθvaxi . The numerical mixed-mode crack growth has 
been introduced according the Compact Tension Shear specimen and a specific axisymmetric crack growth plan. The stress 
intensity factors in mixed-mode β = 45° have posted versus time and crack growth for the opening and the shear mode. It 
observed that the model is efficiency to compute the stress intensity factors in these types of material, but the computational 
time must be increase. In the coming works, the all mixed-mode ratios must be calculation by taking into account the 
pressure on the crack lips. 
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