Rostand Moutou Pitti 
email: rostand.moutou.pitti@polytech.univ-bpclermont.fr
  
Claude Chazal 
  
Florence Labesse-Jied 
  
Yuri Lapusta 
  
STRESS INTENSITY FACTORS FOR VISCOELASTIC AXISYMMETRIC PROBLEMS APPLIED TO WOOD

Many materials used in engineering applications obey to time-dependent behaviours and the mechanical fields are affected by the time effects. As a result, the evolution of the stresses and strains in these materials appear still very complex and difficult to study. Among such cases is the situation when the material has an axisymmetric shape and when it is submitted to a complex fracture loading. In this paper, the creep loading is applied on an axisymmetric viscoelastic orthotropic material and the stress intensity factors are computed in the opening mode, in the shear mode and in the mixed mode using to a finite element approach. The uncoupling method is based on M integral, combining the virtual and real mechanical fields. In the same time, the viscoelastic effects are introduced according to the generalized Kelvin-Voigt model composed by four branches. The numerical solution is obtained with an incremental viscoelastic formulation in the time domain. Using a Compact Tension Shear (CTS) specimen, the evolutions of stress intensity factor versus time are posted in each fracture mode configuration. The obtained results demonstrate the efficiency of the proposed model.

Introduction

Modern advanced materials like composites, bi-materials, polymers and also soft materials are strongly present in the mechanical and civil engineering industries and play an important role in the integrity and resistance of structures. An important factor in their serviceability is the crack initiation and growth (see e.g. [1][START_REF] Yasniy | Experimental Study of Crack Growth in a Bimetal Under Fatigue and Fatigue-Creep Conditions[END_REF][START_REF] Lapusta | An Analytical Model for Periodic α°-Layer Cracking in Composite Laminates[END_REF]. In industrial applications, one of the important cases is the symmetry of revolution. It is often present in nuclear power plants [START_REF] Sarler | Axisymmetric augmented thin plate splines[END_REF], engines or flying equipments [START_REF] Jiang | Axisymmetric stress in an electrostrictive hollow cylinder under electric loading[END_REF][START_REF] Yosibash | Axisymmetric pressure boundary loading for finite deformation analysis using p-FEM[END_REF]. Also, the symmetry of revolution is typical in the wood used in individual or industrial houses [START_REF] Thibauta | Mechanics of wood and trees: some new highlights for an old story, Mécanique du bois et biomécanique des arbres : nouveaux regards sur une vieille question[END_REF]. In this case, the material is submitted to fracture under mixed-mode loading combined with viscoelastic behaviour [START_REF] Atkinson | Crack tip stress intensities in viscoelastic anisotropic bimaterials and the use of the Mintegral[END_REF][START_REF] Chalivendra | Mixed-mode crack-tip stress fields for orthotropic functionally graded materials[END_REF], which remains a complex problem. In the literature, some developments have been suggested to approach such problems. Among them, numerical solutions have been proposed to resolve the time-dependent material behaviour with Maxwell equations [START_REF] Assous | Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method[END_REF]. Also, according to non-dependent integrals, a generalization of the M integral [START_REF] Moutou Pitti | A new M-integral parameter for mixed-mode crack growth in orthotropic viscoelastic material[END_REF] and T and A integrals to viscoelastic materials have been proposed in order to resolve the axisymmetric problem submitted to environmental loading [START_REF] Moutou Pitti | Generalisation of T and A integrals to time dependent materials: analytical formulations[END_REF]. The main advantage of this last approach is to compute the real mechanical fields in a virtual configuration and uncoupling fracture and viscoelastic parameters. In this paper an adaptation of these integrals to the case of viscoelastic problems in axisymmetric configurations like wood materials is developed.

According to figure 1 (a), the fracture process is an important fact of the collapse of peace of wood using in the timber building. It observed that after the cut, the wood is often exposed in open air and submitted to environmental and climate loading during a long time [START_REF] Ormarsson | Numerical study of the shape of Sawn timber subjected to moisture variation, Part 1 : Theory[END_REF]. With the drying cycle actions, the micro cracks are initiated and can propagate under the creep loading when the wood is used as timber structures. Also, the cracks are often oriented from the center to the boundary of the sample, see figure 1 (a). The observed cracks can be explained by the orthotropic character, the cellular composition of the specie, but also by its viscoelastic behaviour combined with the axisymmetric property. This paper is strongly motivated by the necessity to study such an interesting behaviour.

Firstly, the conservative laws and the Langrangian variation is recalled in order to introduce the bilinear form of free energy density [START_REF] Chen | Conservation laws in elasticity of J-integral type[END_REF][START_REF] Noether | Invariant variations problems[END_REF] and the virtual extension crack in cylindrical coordinates [START_REF] Pitti | A generalization of Mv integral to axisymmetric problems for viscoelastic materials[END_REF]. Also, the independent path integrals M [START_REF] Moutou Pitti | A new M-integral parameter for mixed-mode crack growth in orthotropic viscoelastic material[END_REF] is defined and generalized to axisymmetric configuration. Secondly, the integral is defined to viscoelastic behaviour according to the generalized Kelvin Voigt chain. In order to introduce the numerical fracture process in mixed-mode configuration, the Compact Tension Shear specimen is applied. The last part proposes the viscoelastic incremental law routine and the evolutions of stress intensity factors and viscoelastic energy release rate versus the each mixed mode ratio.

Background of axisymmetric integral parameters

Lagrangian conservation

According to Moutou Pitti et al. [START_REF] Pitti | A generalization of Mv integral to axisymmetric problems for viscoelastic materials[END_REF], for cracked domain V, the Noether's theorem [START_REF] Noether | Invariant variations problems[END_REF] translates that the Langrangian variation is equal to zero for all time t chosen arbitrary and for all real δu and virtual δv displacement fields:

€ δL = δF • V ∫ t ∫ dt dV = 0 with F u,v ( ) = F • (1) 
In the case of Arbitrary Euleurian Langrangian configuration, we have the following notations [START_REF] Moutou Pitti | A new M-integral parameter for mixed-mode crack growth in orthotropic viscoelastic material[END_REF] € 

δ ˜ v i = δv i ; δ ˜ v i = 0 ; δ ˜ v i = δv i +δv i * ; δ ˜ u i = δu i ; δ ˜ u i = 0 ; δ ˜ u i = δu i +δu i * (2) 
€ δL = ∂F • ∂u i, j δu i, j + ∂F • ∂u i, j δu i, j * + ∂F • ∂v i,t δv i,t + ∂F • ∂v i,t δv i,t * ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ V ∫ t ∫ κ k δa dt dV (3) 
According to equations (2), the virtual displacement gradient can be written as:

€ δu i, j = ∂u i, j ∂x k κ k δa ; δv i, j = ∂v i, j ∂x k κ k δa ; δu i,t = ∂u i,t ∂x k κ k δa ; δv i,t = ∂v i,t ∂x k κ k δa (4) 
Using equations ( 4), the bilinear free energy density (1) becomes 

€ ∂F • ∂u i, j ⋅δu i, j * = ∂F • ∂u i,
By introducing expressions [START_REF] Jiang | Axisymmetric stress in an electrostrictive hollow cylinder under electric loading[END_REF] in the Lagrangian (3), and applying the Gauss -Ostrogradski theorem leads to

€ δL = ∂F • ∂x k V ∫ t ∫ κ k δa dt dV + ∂F • ∂u i, j u i,k + ∂F • ∂v i, j v i,k ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ∂V ∫ t ∫ κ k n j δa dt dS - ∂F • ∂u i,t u i,k + ∂F • ∂v i,t v i,k ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ V ∫ κ k δa dV + ∂F • ∂u i, j ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ , j u i,k + ∂F • ∂v i, j ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ , j v i,k ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ κ k V ∫ t ∫ δa dt dV + ∂F • ∂u i, j ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ , j u i,k + ∂F • ∂v i, j ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ , j v i,k ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ κ k, j V ∫ t ∫ δa dt dV + ∂F • ∂u i,t ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ,t u i,k + ∂F • ∂v i,t ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ,t v i,k ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ κ k V ∫ t ∫ δa dt dV (6) 
€ ∂V designates the boundary curve of V or a closed contour around the crack tip, composed by the specific contours [START_REF] Moutou Pitti | A new M-integral parameter for mixed-mode crack growth in orthotropic viscoelastic material[END_REF][START_REF] Pitti | A generalization of Mv integral to axisymmetric problems for viscoelastic materials[END_REF].

Axisymmetric integral

According to the equation ( 6) and the non-dependent domain and without pressure on the crack lips as proposed by [START_REF] Pitti | A generalization of Mv integral to axisymmetric problems for viscoelastic materials[END_REF], we can write after mathematical transformation:

€ M axi = 1 2 σ ij,k v ⋅ u i -σ ij u ⋅ v i,k ( ) Γ 1 ∫ κ k n j dΓ 1 + 1 2 σ ij v u i, j ( ) ,k +σ ij u v i, j ( ) ,k ( ) -σ ij v u i, j ( ) ,k + σ ij u v i, j ( ) ,k ( ) ( ) V ∫ κ k, j dV (7) 
The integral ( 7) is defined with a curvilinear integration domain. In order to implement this integral in a finite element software, it is easier to take into account a surface domain integral. In this context, the curvilinear domain must be transformed by introducing a vector field €  θ [START_REF] Moutou Pitti | A new M-integral parameter for mixed-mode crack growth in orthotropic viscoelastic material[END_REF][START_REF] Moutou Pitti | Generalisation of T and A integrals to time dependent materials: analytical formulations[END_REF]. After simplification, we obtain the modelling form of

€ M axi integral called € Mθ axi adapted to axisymmetric problem. € Mθ axi = 1 2 σ ij u ⋅ v i,k -σ ij,k v ⋅ u i ( ) θ k, j Ω ∫ κ k dV + 1 2 σ ij v u i, j ( ) ,k + σ ij u v i, j ( ) ,k ( ) -σ ij v ⋅ u i, j ( ) ,k + σ ij u ⋅ v i, j ( ) ,k ( ) ( ) Ω ∫ θ k κ k, j dV (8) 
The first term of (8) provides the mixed mode separation for a stationary crack and integrates the axisymmetric aspect. The second term traduces the dissipated energy induced by the crack-growth process.

Generalization to viscoelastic behaviour

In the case of creep loading, the linear viscoelastic behaviour is based on a generalized Kelvin Voigt model composed by N cells of Kelvin Voigt associated with a spring in series, see Figure 2. 

Numerical routine

Figure 5 presents the viscoelastic incremental and the fracture routine implemented in finite element software Castem. 

( p ) ! STOP ! IN ! if a = d " 30 ! if a " d # 30 ! if a " d # 30
• In the beginning, the elastic mechanical fields are computed at time € t n-1 with the initial circular crack length a = 50mm, posted in Figure 4. Also, the representative circular mesh in the axisymmetric configuration is shown in Figure 3.

• At the following crack length a = 51 mm, the viscoelastic incremental formulation proposed by [START_REF] Moutou Pitti | A new M-integral parameter for mixed-mode crack growth in orthotropic viscoelastic material[END_REF] [16] [START_REF] Chazal | Incremental constitutive formulation for time dependent materials: creep integral approach[END_REF] is applied in order to compute the viscoelastic mechanical fields at time € t n . In the fact, the Boltzmann equation introduced with the generalized Kelvin Voigt model (Figure 2) is resolved step by step in finite element process.

• Simultaneously, the compliance factors, the virtual stress intensity factors in opening € v K I ( p ) and in shear mode [START_REF] Noether | Invariant variations problems[END_REF] have calculated according to the crack virtual procedure. Then, the real stress intensity factor

€ u K I ( p ) and € u K I ( p )
obtained by considering the equation [START_REF] Assous | Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method[END_REF].

• The real stress intensity factors are introduced in the axisymmetric € Mθv axi routine according to the relation (9). Then, using the equation ( 11), the viscoelastic stress intensity factors in opening mode kv1 and in shear mode kv2 for the axisymmetric materials are evaluated. The precedent steps are repeated until the final collapse of the wood material with the crack length a = 70.

Stress intensity factor and energy release rate

In the numerical finite element calculation, the stress plan configuration is considered. The creep function, the elastic orthotropic moduli of the pine spruce are considered with a constant Poisson coefficient € υ = 0.3, see Moutou Pitti et al. [START_REF] Pitti | A generalization of Mv integral to axisymmetric problems for viscoelastic materials[END_REF] and three Kelvin Voigt cells have been used according to the Figure 2. It observed that the kv1 is around 0.50 N.mm -3/2 and kv2 is around 2.20 N.mm -3/2 ; this values increase slowly after 6 days. The low differences of values prove that the time calculation must be increase in order to obtain the important stress intensity factors. Also, the value of kv2 is six time more important that kv1; this fact is justified by the important energy required by the material to propagate in shear mode comparatively to the opening mode. € Δt = 1h . First, the increasing of stress intensity factors versus crack length is observed. The same evolutions as proposed by Moutou Pitti et al. [START_REF] Pitti | A generalization of Mv integral to axisymmetric problems for viscoelastic materials[END_REF] about viscoelastic energy release rate are obtained. The maximum values of kv2 vary between 1.77 N.mm -3/2 to 5.27 N.mm -3/2 , and 0.36 N.mm -3/2 to 1.19 N.mm -3/2 in opening mode, respectively. Note that the initial values at the crack length a = 50 mm define the critical energy realise rate on the considered material.
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Conclusion

The evolution of stress intensity factors in viscoelastic orthotropic materials like wood have been investigated in this work. The analytical form of the axisymmetric integral has been developed according to the conservative law and the bilinear free energy density. In order to resolve this integral with finite element software, a modelling form of € M axi integral, called € Mθ axi has also been proposed and generalized to time dependent materials by € Mθv axi . The numerical mixed-mode crack growth has been introduced according the Compact Tension Shear specimen and a specific axisymmetric crack growth plan. The stress intensity factors in mixed-mode β = 45° have posted versus time and crack growth for the opening and the shear mode. It observed that the model is efficiency to compute the stress intensity factors in these types of material, but the computational time must be increase. In the coming works, the all mixed-mode ratios must be calculation by taking into account the pressure on the crack lips. 
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 1 Figure 1 -(a) Crack in cylindrical peace of wood. (b) Cross section of wood
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 2 Figure 2 -Generalized Kelvin Voigt model
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 4 Figure 4 -Compact Tension Shear specimen [16].
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 5 Figure 5 -Viscoelastic incremental and fracture routine
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 66 Figure 6 -Stress intensity factor versus time for mixed-mode β =45°Figure6presents the evolutions of the viscoelastic stress intensity factors versus time in opening mode kv1 and in shear mode kv2 for the mixed-mode loading β =45. It observed that the kv1 is around 0.50 N.mm -3/2 and kv2 is around 2.20 N.mm -3/2 ; this values increase slowly after 6 days. The low differences of values prove that the time calculation must be increase in order to obtain the important stress intensity factors. Also, the value of kv2 is six time more important that kv1; this fact is justified by the important energy required by the material to propagate in shear mode comparatively to the opening mode.
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 77 Figure 7 -Stress intensity factor versus crack growth position in mixed-mode β =45 Figure 7 presents the evolutions of the stress intensity factors versus crack length a in opening mode kv1 and in shear mode kv2 for the mixed-mode loading β =45. The final crack length is a = 69 mm and the considered time increment is
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indicate the real and virtual stresses of the € p th spring respectively, induced by mechanical and thermal fields.

€ u i

( p ) and € v i ( p ) are real and virtual displacement fields in the € p th spring respectively. For an orthotropic media, virtual field € v ( p ) is given by the Sih's singular form. According to equation ( 9), the real stress intensity factors are given by:

Finally, the viscoelastic energy release rate in each fracture mode are given by

€ 

Numerical results

Axisymmetric plan and Compact Tension Shear specimen

In the axisymmetric configuration, the circular crack evolution and the integration domain are posted in Figure 3 [START_REF] Dubois | Finite element model for crack growth process in concrete bituminous[END_REF]. The crack tip is oriented in the radial direction and the continuum map θ surrounds the cracked surface.

Figure 3 -Crack growth position in axysimmetric plan [START_REF] Dubois | Finite element model for crack growth process in concrete bituminous[END_REF] In order to compute the stress intensity factors in the axisymmetric material, a modified CTS specimen, Figure 4, proposed by Moutou Pitti et al. [START_REF] Pitti | A generalization of Mv integral to axisymmetric problems for viscoelastic materials[END_REF] for orthotropic material has been considered. This specimen is used in computational finite elements to generate the different mixed-mode ratios. The initial square form specimen is replaced by the cylindrical form with the diameter d = 100 mm and the initial crack length a = 50 mm. The loading points A α and B α with α ∈ (1 . . . 7) are oriented according to the angle solicitation β. The pure mode I (β = 0°) is obtained by using opposite forces in A 1 and B 1 , the pure mode II by the loading points A 7 and B 7 (β = 90°).