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Ferrand, France; e-mail: rostand.moutou.pitti@lermont.fr

The phenomenon of incrementalization in the time domain, for linear
non-ageing viscoelastic materials undergoing mechanical deformation, is
investigated. Analytical methods of solution are developed for linear vi-
scoelastic behavior in two dimensions utilizing generalized variables and
realistic material properties. This is accomplished by the use of time-
dependent material property characterization through a Dirchilet series
representation, thus the transformation of the viscoelastic continuum
problem from the integral to a differential form is achieved. The beha-
vior equations are derived from linear differential equations based on
the discrete relaxation spectrum. This leads to incremental constitutive
formulations using the finite difference integration, thus the difficulty of
retaining the strain history in computer solutions is avoided. A complete
general formulation of linear viscoelastic strain analysis is developed in
terms of increments of generalized stresses and strains.
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1. Introduction

Viscoelastic materials are characterized by possessing infinite memory. Their
actual mechanical response is a function of the whole past history of stress and
strain. In most cases, the behavior of any linear viscoelastic material may be
represented by a hereditary approach based on the Boltzmann superposition
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principle (Boltzmann, 1878). This implies that stress and strain analysis of
viscoelastic phenomena which can be observed in the behavior of many real
materials, presents many difficulties for real problems of complex geometry.
The analysis of linear viscoelastic materials is usually obtained by an applica-
tion of the correspondence principle to the equations of elasticity (Birnecker,
1992; Chazal and Dubois, 2001; Christensen, 1971). This approach is restricted
to problems for which it is possible to find an explicit solution to the associa-
ted equations of elasticity. In order to obtain solutions to more complicated
problems, it is necessary to develop numerical rather than analytical techni-
ques. These numerical methods avoid the retaining of the whole past history
of stress and strain in the memory of a digital computer and permit to deal
with complex viscoelastic structures involving complicated boundary condi-
tions. The key to such methods is to incrementalize the hereditary integral
equations by means of analytical techniques. Thus, the difficulty of computer
storage requirements is avoided and the complete past history of stress and
strain is represented by means of some auxiliary tensors.

The problem of finding incremental formulations of linear non-ageing vi-
scoelastic problems has been investigated thoroughly by a number of authors
(Jurkiewiez et al., 1999); Chazal and Moutou Pitti, 2010a,b, 2011a,b; Moutou
Pitti et al., 2011). The interest for such a formulation lies in its help both in
understanding theoretical aspects, especially in the mathematical treatment
of the integral equations (for instance, they might turn out to be useful as a
tool for deriving approximate governing equations for the behavior of visco-
elastic continua) and in developing efficient numerical integration methods on
a clearly stated theoretical basis.

Several recent studies have addressed the subject of incremental consti-
tutive laws for linear non-ageing viscoelastic materials undergoing mechanical
deformation (Chazal and Moutou Pitti, 2009a,b, 2010a, 2011a,b; Moutou Pitti
et al., 2011). Early works by Chazal and Moutou Pitti (2010b) considered the
theory of linear viscoelasticity to establish incremental constitutive equations
using creep or relaxation functions. By assuming a strong form of the creep or
relaxation function, and by defining the behavior of the material in differen-
tial or integral approach that previously was proposed by Zocher et al. (1997),
incremental equations in the time domain for a linear non-ageing viscoelastic
material can be constructed (Chazal, 2000; Chazal and Moutou Pitti, 2009c,
2010a, 2011a,b; Moutou Pitti et al., 2011). However, these formulations deal
with local integration for the Volterra equations.

Chazal and Moutou Pitti (2009b) established a general method for fin-
ding the incremental formulation for any linear ageing viscoelastic problem on
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the basis of the choice of an integrating operator, while Chazal and Moutou
Pitti (2009d), Moutou Pitti et al. (2010a,b,c,d) established a similar method
for the specific case of the linear non-ageing problem. These methods were
successfully applied to general linear material continua in deriving an exten-
ded formulation of the classical principle of Boltzmann in the static case (see
Chazal 2000; Chazal and Dubois, 2001; Chazal and Moutou Pitti, 2009c; Mo-
utou Pitti et al., 2009). Bozza and Gentili (1995) used the theory of linear
viscoelasticity to establish constitutive equations using relaxation functions.
They sought solutions to the inversion problem of the constitutive equations.
Drozdov and Dorfmann (2004) derived constitutive equations for the nonline-
ar viscoelastic behavior after performing tensile relaxation tests. Kim and Lee
(2007) and Theocaris (1964) have proposed an incremental formulation and
constitutive equations in the finite element context (see also Jurkiewiez et al.,
1999; Zocher et al., 1997; Chazal and Poutou Pitti, 2010b, 2011a). In fracture
viscoelastic mechanics, Kim and Lee (2007), Moutou Pitti et al. (2009, 2011),
Chazal and Dubois (2001) applied the incremental formulation in order to
evaluate creep crack growth process in wood. Krempl (1979) and Kujawski et
al. (1980) performed an experimental study of creep and relaxation in steel
at room temperature. However, the formulation used is based on the spectral
decomposition using the generalized Maxwell model.

All the above procedures adopted in order to transform the original visco-
elastic formulation into a new one with a differential or integral operator were
based on the idea of local integration in the global operator of the problem
with various techniques.

In this paper, a different approach is adopted taking into account that in
the presence of a general viscoelastic constitutive law the behavior equations
are first integrated over the thickness of the structure in terms of generalized
variables. This new formulation is based on a discrete relaxation spectrum
and the finite difference method using generalized integral equations in the
time domain. The incremental stress and strain constitutive equations are not
restricted to isotropic materials and can be used to resolve complex boundary
viscoelastic problems without retaining the past history of the material in the
memory of a digital computer.

In the following, a formal statement of the viscoelastic initial/boundary
value problem is provided. The one dimensional linear viscoelastic behavior is
used to account for three dimensional responses. After that, we present the
development of generalized differential equations in terms of one dimensional
stress and strain components. This is followed by a discussion of the conver-
sion through incrementalization (essentially, a finite difference procedure) of
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the linear viscoelastic constitutive equations into a form suitable for imple-
mentation in a finite element formulation. Finally, the incremental viscoelastic
constitutive equations of the model are established.

2. Problem statement

This section concentrates on the viscoelastic response of time dependent ma-
terials at isothermal deformation with small strains. According to Christensen
(1971), Mandel (1978), Salençon (1983) and Chazal and Moutou Pitti (2010b,
2011a), the components of the relaxation tensor J(t) can be represented in
terms of exponential series

Jαβγδ(t) =
{
J∞αβγδ +

M∑

m=1

Jmαβγδe
−tλm

αβγδ

}
H(t) (2.1)

where λmαβγδ , m = 1, . . . ,M , are strictly positive scalars and repeated indices
do not imply summation convention. J∞αβγδ and J

m
αβγδ represent the equili-

brium and the differed part of the relaxation tensor respectively, and H(t)
is the Heaviside unit step function. According to Boltzmann’s superposition
principle in linear non-ageing viscoelasticity (Boltzmann, 1878), the constitu-
tive equations between the components σαβ(t) of the stress tensor and the
components of the strain tensor eαβ(t) for non-ageing linear viscoelastic ma-
terials can be expressed in the time domain by hereditary Volterra’s integral
equation

σαβ(t) =
∑

γ

∑

δ

t∫

−∞

Jαβγδ(t− τ)
∂eγδ(τ)

∂τ
dτ (2.2)

We introduce stresses and strains in generalized variables according to
Love’s first-order shell theory. The strain at any point of the thin structure
may be given as

eαβ(t) = εαβ(t) + ζχαβ(t) α, β = 1, 2 (2.3)

where εαβ(t) and χαβ(t) are the middle surface extensional strain and cu-
rvature, respectively. If we consider a plane stress state, the non-vanishing
resultant of stresses is then defined by

Nαβ(t) =

+h/2∫

−h/2

σαβ(ζ, t) dζ Mαβ(t) =

+h/2∫

−h/2

ζσαβ(ζ, t) dζ (2.4)
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Nαβ(t) and Mαβ(t) are the generalized stresses and h is the thickness of
the structure assumed to be constant. Note that the radii of the curvature
for the middle surface do not enter into equation (2.4) because of the thin
shell assumption. In order to determine the constitutive equation in terms
of generalized stresses and strains, we introduce generalized strains, given by
equation (2.3), into Volterra integral equation (2.2). One finds

σNαβ(t) + σ
M
αβ(t) =

∑

γ

∑

δ

t∫

−∞

Jαβγδ(t− τ)
∂

∂τ
[εγδ(τ) + ζχγδ(τ)] dτ (2.5)

Note that the total stress σαβ(t) is separated into two parts: normal stress
σNαβ(t) due to extensional strain and bending stress σ

M
αβ(t) due to curvature.

The constitutive equations in generalized variables can now be obtained from
behavior equation (2.5).

Using equation (2.4) and integrating equation (2.5) over the thickness, we
find

Nαβ(t) =

+h/2∫

−h/2

σNαβ(ζ, t) dζ =
∑

γ

∑

δ

h

t∫

−∞

Jαβγδ(t− τ)
∂

∂τ
εγδ(τ) dτ

Mαβ(t) =

+h/2∫

−h/2

ζσMαβ(ζ, t) dζ =
∑

γ

∑

δ

h3

12

t∫

−∞

Jεβγδ(t− τ)
∂

∂τ
χγδ(τ) dτ

(2.6)

Let us consider the two pseudo fourth order tensors N and M of compo-
nents Nαβγδ(t) and Mαβγδ(t) respectively. These tensors are defined by

{
a1Nαβγδ(t)

a2Mαβγδ(t)

}
=

t∫

−∞

Jαβγδ(t− τ)
∂

∂τ

{
εγδ(τ)
χγδ(τ)

}
(2.7)

a1 and a2 are geometric constants and are defined by: a1 = 1/h, and
a2 = 12/h

3. Nαβγδ(t) and Mαβγδ(t) are pseudo mono-dimensional stresses
obtained from Volterra’s integral equation as given by equation (2.7). The-
se components can be interpreted as the contribution of the strain history
{eγδ(τ), τ ¬ t} of the components eγδ(t) of the strain tensor to the stress
components σαβ(t). Introducing equation (2.7) into equations (2.6), it can
be shown that the pseudo mono-dimensional stress components satisfy the
following equations
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{
Nαβ(t)
Mαβ(t)

}
=
3∑

γ=1

3∑

δ=1

{
Nαβγδ(t)

Mαβγδ(t)

}
=
3∑

γ=1

3∑

δ=1

t∫

−∞

Jαβγδ(t− τ)
∂

∂τ





1

a1
εγδ(τ)

1

a2
χγδ(τ)




(2.8)

Each equation of relation (2.8) represents a one-dimensional non-ageing
linear viscoelastic material defined by its relaxation function J(t) given by
equation (2.1).

3. Analysis of the proposed model

When we apply the mechanical strain defined by the strain history
{eαβ(τ), τ ∈ ℜ}, the response of the material is then given by the history
of stresses {Nαβγδ(t),Mαβγδ(t), t ∈ ℜ} defined by the behavior equation (2.7)
in which the relaxation function is given by equation (2.1).
If the generalized strain {εγδ(t), χγδ(t)} is applied to the material at ti-

me t, then the response in stresses can be obtained using the finite relaxation
spectrum representation given by equation (2.1). This leads to

{
a1Nαβγδ(t)

a2Mαβγδ(t)

}
=

t∫

−∞

[
J∞αβγδ +

M∑

m=1

Jmαβγδe
−λm
αβγδ
(t−τ)
] ∂
∂τ

{
εγδ(τ)
χγδ(τ)

}
(3.1)

Thus the pseudo mono-dimensional stresses given by the last equation,
and written as a function of equilibrium and a differed part of the relaxation
spectrum, can be rewritten in the following form

{
Nαβγδ(t)

Mαβγδ(t)

}
=




N
∞

αβγδ(t) +
∑M
m=1N

m
αβγδ(t)

M
∞

αβγδ(t) +
∑M
m=1M

m
αβγδ(t)



 (3.2)

with

N
∞

αβγδ(t) =
1

a1

t∫

−∞

J∞αβγδ
∂εγδ(τ)

∂τ
dτ =

1

a1
J∞αβγδεγδ(t)

N
m
αβγδ(t) =

1

a1

t∫

−∞

Jmαβγδe
−λm
αβγδ
(t−τ) ∂εγδ(τ)

∂τ
dτ

(3.3)

M
∞

αβγδ(t) =
1

a2

t∫

−∞

J∞αβγδ
∂χγδ(τ)

∂τ
dτ =

1

a2
J∞αβγδχγδ(t)



Theoretical and numerical studies of relaxation... 363

M
m
αβγδ(t) =

1

a2

t∫

−∞

Jmαβγδe
−λm
αβγδ
(t−τ) ∂χγδ(τ)

∂τ
dτ

It should be noted that N
∞

αβγδ(t) and M
∞

αβγδ(t) represent the equilibrium

part of the pseudo mono-dimensional stress of the material while N
m
αβγδ(t) and

M
m
αβγδ(t) represent the differed part of the same pseudo mono-dimensional
stress.

As we mentioned in the above section, a differential approach is used in
order to establish the differential equations of the mechanical model. Thus, we
need to express the viscoelastic response of the material as a function of stress
and strain derivatives. For this reason, let us use equation (2.8), the rate of
the total stress is determined by

∂

∂t

{
Nαβ(t)
Mαβ(t)

}
=
3∑

γ=1

3∑

δ=1

∂

∂t

{
Nαβγδ(t)

Mαβγδ(t)

}

=
∂

∂t

3∑

γ=1

3∑

δ=1





N
∞

αβγδ(t) +
M∑

m=1

N
m
αβγδ(t)

M
∞

αβγδ(t) +
M∑

m=1

M
m
αβγδ(t)





(3.4)

The rate of the equilibrium part of the pseudo one-dimensional stress
N
∞

αβγδ(t) and M
∞

αβγδ(t) is easy to be evaluated. According to equations (3.3)1
and (3.3)3, and after applying a time derivative operator, one find

a1
∂N
∞

αβγδ(t)

∂t
= J∞αβγδ

∂εγδ(t)

∂t
a2
∂M

∞

αβγδ(t)

∂t
= J∞αβγδ

∂χγδ(t)

∂t
(3.5)

In other words, the equilibrium part of the pseudo one-dimensional stress is
directly proportional to the total strain at time t. It is completely defined by
the history of the applied strain. However, the rate of the differed part of the
pseudo one-dimensional stresses N

m
αβγδ(t) and M

m
αβγδ(t) is more difficult to be

determined. Using equations (3.3)2 and (3.3)4, and applying a time derivative
operator, we can write

a1
∂

∂t
N
m
αβγδ(t) = J

m
αβγδe

−λm
αβγδ
(t−t) ∂

∂t
εγδ(t)

−

t∫

−∞

Jmαβγδλ
m
αβγδe

−λm
αβγδ
(t−τ) ∂

∂τ
εγδ(τ) (3.6)
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a2
∂

∂t
M
m
αβγδ(t) = J

m
αβγδe

−λm
αβγδ
(t−t) ∂

∂t
χγδ(t)

−

t∫

−∞

Jmαβγδλ
m
αβγδe

−λm
αβγδ
(t−τ) ∂

∂τ
χγδ(τ)

These integral equations give the total rate of the differed part of the
pseudo mono-dimensional stresses.
The main purpose of our development in this section is to establish dif-

ferential equations between the total rate of the pseudo mono-dimensional
stresses and the rate of the total strain. For this reason, we will transform the
last equations in a differential type.
Let us introduce behavior equations (3.3)2 and (3.3)4 in integral equations

(3.6). This leads to linear differential equations with constant coefficients and
can be integrated analytically

∂

∂t
N
m
αβγδ(t) + λ

m
αβγδN

m
αβγδ(t) =

1

a1
Jmαβγδ

∂

∂t
εγδ(t)

∂

∂t
M
m
αβγδ(t) + λ

m
αβγδM

m
αβγδ(t) =

1

a2
Jmαβγδ

∂

∂t
εγδ(t)

(3.7)

The solution to these linear differential equations gives the rate of the
pseudo one-dimensional stresses N

m
αβγδ(t) and M

m
αβγδ(t).

Finally, the general differential equations governing the non-ageing linear
viscoelastic behavior can be obtained from equation (3.4) after summation on
γ and δ indices. One finds

∂

∂t

{
Nαβ(t)
Mαβ(t)

}
=
M∑

m=1

∂

∂t

{
Γmαβ(t)

Ψmαβ(t)

}
+
3∑

γ=1

3∑

δ=1

J∞αβγδ
∂

∂t





1

a1
εγδ(t)

1

a2
χγδ(t)





(3.8)

where Γmαβ(t) and Ψ
m
αβ(t), α, β ∈ {1, 2, 3}, m ∈ {1, . . . ,M} are the solutions

to the following equations
{
Γmαβ(t)

Ψmαβ(t)

}
=
3∑

γ=1

3∑

δ=1

{
N
m
αβγδ(t)

M
m
αβγδ(t)

}
(3.9)

Note that Γmαβ(t) and Ψ
m
αβ(t) can be interpreted as pseudo stresses and repre-

sent the influence of the past history of strain on the material behavior. They
are given by the solution to linear differential equations (3.7). It also should
be mentioned that the non-ageing linear viscoelastic behavior is completely
defined by differential equations (3.8). We note that this formulation, written
in terms of generalized stresses and strains rates, is easily adapted to temporal
discretization methods such as the finite difference method.
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4. Conversion to incremental equations

Here we will describe the solution process of a step-by-step nature in which
loads are applied stepwise at various time intervals. Let us consider the time
step ∆tn = tn+1 − tn. The subscript n and n + 1 refer to the values at the
beginning and end of the time step, respectively. This technique is successfully
used by Chazal and Dubois (2001) in the case of viscoelastic structures. We
assume that the time derivative during each time increment is constant and is
expressed by

∂ζij
∂t
=
ζij(tn+1)− ζij(tn)

∆tn
=
∆(ζij)n
∆tn

(4.1)

where ζij represents generalized strains or stresses. The following expressions
can then be written for the rate of pseudo stresses at the beginning of the time
step

∂

∂t

{
Γmαβ(tn)

Ψmαβ(tn)

}
=
1

∆tn

{
Γmαβ(tn+1)− Γ

m
αβ(tn)

Ψmαβ(tn+1)− Ψ
m
αβ(tn)

}
=
1

∆tn

{
∆Γmαβ(tn)

∆Ψmαβ(tn)

}
(4.2)

A linear approximation is used for strains, and is expressed by

{
εγδ(τ)
χγδ(τ)

}
=

{
εγδ(tn)
χγδ(tn)

}
+
τ − tn
∆tn

H(τ − tn)

{
εγδ(tn+1)− εγδ(tn)
χγδ(tn+1)− χγδ(tn)

}
(4.3)

This linear approximation leads to very accurate results in finite element
discretization as it is shown by Chazal and Dubois (2001). Thus we do not
need higher approximations for the strain during a finite increment of the time
load. This leads to a constant rate during each time increment:

∂

∂t

{
εαβ(tn)
χαβ(tn)

}
=
1

∆tn

{
εαβ(tn+1)− εαβ(tn)
χαβ(tn+1)− χαβ(tn)

}
=
1

∆tn

{
∆εαβ(tn)
∆χαβ(tn)

}
(4.4)

By integrating equation (3.8) between tn and tn+1, it can be written in
the following form

{
∆Nαβ(tn)
∆Mαβ(tn)

}
=
M∑

m=1

{
∆Γmαβ(tn)

∆Ψmαβ(tn)

}
+
3∑

γ=1

3∑

δ=1

J∞αβγδ





1

a1
∆εγδ(tn)

1

a2
∆χγδ(tn)





(4.5)

In order to determine the generalized stress increments from this equation,
we have to determine the generalized pseudo stress increments ∆Γmαβ(tn) and
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∆Ψmαβ(tn) during the time step ∆tn. First, let us consider differential equation
(3.7). The analytical solution to this differential equation can be expressed as

N
m
αβγδ(tn+1)−N

m
αβγδ(tn) =

(
e−λ

m
αβγδ
∆tn − 1

)
N
m
αβγδ(tn)

+
1

a1
Jmαβγδ

∆εγδ(tn)

λmαβγδ∆tn

(
1− e−λ

m
αβγδ
∆tn
)

M
m
αβγδ(tn+1)−M

m
αβγδ(tn) =

(
e−λ

m
αβγδ
∆tn − 1

)
M
m
αβγδ(tn)

+
1

a2
Jmαβγδ

∆χγδ(tn)

λmαβγδ∆tn

(
1− e−λ

m
αβγδ
∆tn
)

(4.6)

Consequently, when we substitute equations (4.6) into equation (3.9), we
obtain the generalized pseudo stress increments ∆Γmαβ(tn) and ∆Ψ

m
αβ(tn)





M∑

m=1

∆Γmαβ(tn)

M∑

m=1

∆Ψmαβ(tn)




=
M∑

m=1

3∑

γ=1

3∑

δ=1

{
N
m
αβγδ(tn+1)−N

m
αβγδ(tn)

M
m
αβγδ(tn+1)−M

m
αβγδ(tn)

}
(4.7)

or

M∑

m=1

∆Γmαβ(tn) =
M∑

m=1

3∑

α=1

3∑

β=1

(
e−λ

m
αβγδ
∆tn − 1

)
N
m
αβγδ(tn)

+
1

a1

Jmαβγδ∆εγδ(tn)

λmαβγδ∆tn

(
1− e−λ

m
αβγδ
∆tn
)

M∑

m=1

∆Ψmαβ(tn) =
M∑

m=1

3∑

α=1

3∑

β=1

(
e−λ

m
αβγδ
∆tn − 1

)
M
m
αβγδ(tn)

+
1

a2

Jmαβγδ∆εγδ(tn)

λmαβγδ∆tn

(
1− e−λ

m
αβγδ
∆tn
)

(4.8)

The incremental constitutive equations can now be obtained from consti-
tutive equation (4.5). Substituting equations (4.8) into (4.5), we find

{
∆Nαβ(tn)
∆Mαβ(tn)

}
=
3∑

γ=1

3∑

δ=1

[
Παβγδ(tn) 0
0 Ξαβγδ(tn)

]{
∆εγδ(tn)
∆χγδ(tn)

}
−

{
Ñαβ(tn)

M̃αβ(tn)

}

(4.9)
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where Παβγδ(tn) and Ξαβγδ(tn) are fourth-order tensors which can be inter-
preted as rigidity tensors in the extensional and bending state respectively,
they are given by

Παβγδ(tn) = J
∞

αβγδ +
1

a1

M∑

m=1

Jmαβγδ∆εγδ(tn)

λmαβγδ∆tn

(
1− e−λ

m
αβγδ
∆tn
)

Ξαβγδ(tn) = J
∞

αβγδ +
1

a2

M∑

m=1

Jmαβγδ∆χγδ(tn)

λmαβγδ∆tn

(
1− e−λ

m
αβγδ
∆tn
) (4.10)

Ñαβ(tn) and M̃αβ(tn) are pseudo generalized stresses which represent the in-
fluence of the complete past history of extensional and bending generalized
stresses. They are given by

{
Ñαβ(tn)

M̃αβ(tn)

}
=
3∑

γ=1

3∑

δ=1

M∑

m=1

(
1− e−λ

m
αβγδ
∆tn
){Nmαβγδ(tn)
M
m
αβγδ(tn)

}
(4.11)

Finally, the incremental constitutive law given by equation (4.9) can now be
inverted to obtain
{
∆εγδ(tn)
∆χγδ(tn)

}
=
3∑

γ=1

3∑

δ=1

[
Θαβγδ(tn) 0
0 Λαβγδ(tn)

]{
∆Nγδ(tn)
∆Mγδ(tn)

}
+

{
ε̃αβ(tn)
χ̃αβ(tn)

}

(4.12)
where Θαβγδ(tn) and Λαβγδ(tn) are compliance fourth-order tensors corre-
sponding to extensional and bending state of deformation respectively, they
are given by the inverse of the rigidity matrix

[
Θαβγδ(tn) 0
0 Λαβγδ(tn)

]
=

[
Παβγδ(tn) 0
0 Ξαβγδ(tn)

]−1
(4.13)

ε̃αβ(tn) and χ̃αβ(tn) are pseudo strains tensors which represent the influence
of the complete past history of strain. They are given by

{
ε̃αβ(tn)
χ̃αβ(tn)

}
=
3∑

γ=1

3∑

δ=1

[
Θαβγδ(tn) 0
0 Λαβγδ(tn)

]{
Ñγδ(tn)

M̃γδ(tn)

}
(4.14)

The incremental constitutive law represented by equation (4.9) can be
introduced in a finite element discretization in order to obtain solutions to
complex viscoelastic problems.
Finally, in order to use the incremental viscoelastic formulation presented

in this paper, we need to identify the relaxation components of the relaxation
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tensor. The experimental identification of viscoelastic properties is treated
in details by Jäger and Lackner (2007) and Müllner and Jäger (2008). The
viscoelastic solution is obtained by the application of the method of functional
equations to the elastic solution to the indentation problem and by means of
torsional rheometry.

5. Finite element discretization

The governing equations of the discretized system, using the finite element
model, are derived from the principle of virtual displacements. Let us consider
a linear quasi-static non-ageing viscoelastic structure. The principle of virtual
displacements implies that the increment in external virtual work is equal to
the increment in internal virtual work
∫

eA

〈δt∆εαβ)n, δt∆(χαβ)n〉

{
∆(Nαβ)n
∆(Mαβ)n

}
deA =

∫

eV

∆(f vi )nδt∆(ui)n d
eV (5.1)

where ∆(ui)n is the incremental displacement field between tn and tn+1,
∆(f vi )n is the incremental body forces per unit volume,

eA and eV are the
area and the volume of the element, and δt is the variation symbol. For the
sake of simplicity, the surface traction term is omitted in the last equation.
Assuming small displacements, strains are derived from shape functions using
a standard manner in the context of the finite element method. Using a matrix
notation, the strain increment can be written as

{
∆εαβ)n
∆(χαβ)n

}
= [BL]{∆(U

e)n} (5.2)

where ∆(U e)n is the local element displacement increment and [BL] is the
strain-displacement transformation matrix. Introducing incremental viscoela-
stic constitutive equations (4.9) into equilibrium equations (5.1) and using
finite element approximation (5.2), the equilibrium equations for linear visco-
elastic behavior can be rewritten as

[KT ]n{∆(U
e)}n = {∆F

ext}n + {∆F
vis}n (5.3)

where

[KT ]n =

∫

eA

[BL]
⊤[Ωn][BL] d

eA (5.4)

and
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{∆F vis}n =

∫

eV

[BL]
⊤





1

a1
(Ñαβ)n

1

a2
(M̃αβ)n




deA (5.5)

{∆F ext}n = {F
ext}n+1 − {F

ext}n is the external load vector increment,
{∆F vis}n is the viscous load vector increment corresponding to the complete
past history and [Ωn] is the viscoelastic constitutive matrix.
The formulation is introduced in the software Cast3m used by the French

Energy Atomic Agency. The software can be employed for linear viscoelasticity
structures using triangular elements. The global incremental procedure for the
relaxation differential approach is described as:
1. At time tn, compute the tangent moduli Παβγδ(tn) and Ξαβγδ(tn) from
equations (4.10)

2. Compute the viscoelastic constitutive matrix [Ωn]

[Ωn] =

[
Παβγδ(tn) 0
0 Ξαβγδ(tn)

]

3. Compute the pseudo generalized stresses {Ñαβ(tn)} and {M̃αβ(tn)}
from equation (4.11)

4. Determine the increment of the viscous load vector {∆F vis}n from equ-
ation (5.5)

5. Update the viscoelastic stiffness matrix [KT ]n from equation (5.4)

6. Assemble and solve viscoelastic equilibrium equations (5.3) in order to
obtain the displacement increment vector {∆(U)}n

7. Compute the generalized strain increment {∆εαβ(tn)} and {∆χαβ(tn)}
from equation (5.2)

8. Compute the generalized stress increment {∆Nαβ(tn)} and {∆Mαβ(tn)}
from equation (4.9)

9. Using the results of step 3, compute the generalized pseudo-strains
{ε̃αβ(tn+1)} and {χ̃αβ(tn+1)} from equation (4.14)

10. Update the state

{U}n+1 = {U}n + {∆(U)}n

{Nαβ}n+1 = {Nαβ}n + {∆(Nαβ)}n

{Mαβ}n+1 = {Mαβ}n + {∆(Mαβ)}n

{εαβ}n+1 = {εαβ}n + {∆(εαβ)}n

{χαβ}n+1 = {χαβ}n + {∆(χαβ)}n

11. Go to step 1
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6. Numerical example

This example will be illustrated by a viscoelastic circular cylindrical shell
fixed at one end and loaded at the free end. The applied load is a unit radial
loading at the free end while the other end is built on. The geometrical and
loading details are given in Fig. 1. It should be noted that the mesh of the
cylinder is graded so that there are more elements near the loaded point, since
in this region the stresses and deflections change most rapidly. The material
properties used for the cylinder are given in Table 1.

Fig. 1. Circular cylindrical shell using axisymetric shell elements

Table 1. Constants used for material properties

J0 J1 J2 λ1 λ2

1.45 · 10−5 20 · 10−5 33.33 · 10−5 0.001 0.01

The results of the numerical process are shown in Figs. 2-5. In Figure 2,
the numerical results for the radial displacement are plotted versus the axial
position measured from the free end, while in Fig. 3, the meridional moment
is plotted for 20-element idealization. Both the radial displacement and the
meridional moment are compared with the theoretical solution given in Timo-
shenko et al. (1959). A very good agreement with the theoretical results can
be observed.
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The results of the viscoelastic analysis are given in Figs. 4 and 5. Figure 4
shows how the radial deflection varies versus time, while in Fig. 5, we plotted
the variation of the meridional strain versus time. It can be shown that strains
keep on building up leading to the strain failure.

Fig. 2. Variation in the radial deflection of the shell undergoing radial load

Fig. 3. Variation in the meridional moment in the shell undergoing radial end load

Fig. 4. Free end radial displacements versus time in the shell with radial load applied
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Fig. 5. Free end meridional strains versus time in the shell loaded radially

7. Conclusions

The transformation in differential terms of the integral formulation of the
viscoelastic continuum problem has been successfully achieved through the in-
troduction of a discrete spectrum representation of the relaxation tensor. This
leads to a new linear incremental formulation in the time domain for non-
ageing viscoelastic materials undergoing mechanical deformation. The formu-
lation is based on a differential approach using the discrete spectrum repre-
sentation for the relaxation components. The governing equations are then
obtained using a discretized form of the Boltzmann superposition principle
(Boltzmann, 1878). The analytical solution to the differential equations is ob-
tained using finite difference discretization in the time domain. In this way,
the incremental constitutive equations of the linear viscoelastic material use
a pseudo fourth order rigidity tensor and the influence of the whole past hi-
story on the behavior of the material at time t is given by a pseudo second
order tensor. The generality allowed by this approach has been established by
finding an incremental formulation through simple choices of the tensor relaxa-
tion components. This approach appears to open a wide horizon(to explore) of
new incremental formulations according to particular relaxation components.
Remarkable incremental constitutive laws, for which the above technique is
applied, are given.
Among the numerous applications of the incremental formulations presen-

ted in this paper, there is numerical implementation in finite element software,
thus the behavior of complex boundary viscoelastic problems can be obtained.
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Teoretyczna i numeryczna analiza lepko-sprężystych właściwości

materiałów za pomocą różniczkowej metody relaksacji opartej na

zmiennych uogólnionych

Streszczenie

W pracy zbadano zagadnienie inkrementalizacji czasowej zjawisk zachodzących
w liniowych, niestarzejących się materiałach lepko-sprężystych poddanych mechanicz-
nej deformacji. Zastosowano metody analityczne do określenia lepko-sprężystego za-
chowania się materiału w dwuwymiarowej przestrzeni, używając zmiennych uogólnio-
nych i realistycznych parametrów określających właściwości próbki. Badania przepro-
wadzono poprzez zdefiniowanie tych właściwości w postaci szeregu Dirichleta umoż-
liwiającego transformację całkowej reprezentacji badanego kontinuum w formę róż-
niczkową. Równania stanu zaczerpnięto z liniowego modelu opisanego równaniami
różniczkowymi bazującymi na zdyskretyzowanym widmie relaksacji. Pozwoliło to uzy-
skać konstytutywne wyrażenia przyrostowe poprzez całkowanie różnic skończonych,
co z kolei wyeliminowało konieczność zachowywania historii odkształceń w pamięci
komputera. Pełna analiza przebiegu deformacji liniowo lepko-sprężystego materiału
została przeprowadzona w dziedzinie przyrostów uogólnionych naprężeń i odkształceń.
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