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Reliability of prestressed concrete structures considering creep models
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The reliability of prestressed concrete structures subject to viscoelastic behaviour is investigated regarding the creep model
defined by the Eurocodes. A probabilistic phenomenological model is proposed for long-term creep strains on the basis of large
database of creep tests. The uncertainties in the geometrical and mechanical parameters are modelled by random variables. The
proposed model considers also the statistical fitting error in creep strain predictions. The reliability analysis is performed on a
prestressed concrete deck, in order to show the large impact of time-dependent phenomena on the reliability of prestressed
structures, and consequently the importance of considering appropriate viscoelastic models in the design of this kind of
structures.Moreover, the errors related to creepmodels are shown toplay avery important role in the structural safetyassessment.
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List of symbols

Ac: concrete cross section

Ecmðt0Þ: mean secant modulus of concrete at

time t0
Ecm: mean secant modulus of concrete at

28 days

Eiðt0Þ: instantaneous modulus at the age t0
f cm: mean compressive concrete strength at

28 days

f ck: characteristic value of compressive

concrete strength

bH,wRH: coefficients depending on relative

humidity

h0: notional member size

u: cross-section perimeter subject to the

environment effects

Jijkl: creep compliance tensor

Jðt; t0Þ: creep function at time twhen prestres-

sing is applied at t0
wðt; t0Þ: creep coefficient at time t when

prestressing is applied

d: model error due to data scatter

1ftotðtÞ, 10ðt0Þ, 1cðtÞ: total, instantaneous and creep strains,

respectively

sij; 1ij: stress and strain tensor component

DPc: prestress losses induced by creep

1. Introduction

Creep plays an important role, sometimes crucial, in the

in-service behaviour of concrete structures, especially for

long-term integrity of prestressed concrete. Inaccurate

prediction of creep deformations leads to undesirable

consequences for designers, constructors, owners, users,

insurers, etc. Under the effect of long-term loading,

environment and prestressing, concrete material under-

goes large viscoelastic strains (Miyagawa, 2006; Mohsen

& Ahmad, 1995; Moutou Pitti, Dubois, & Petit, 2010;

Raphael, Faddoul, El-Asmar Selouan, & Chateuneuf,

2009) which decrease their performance and may lead to

structural collapse. Recent developments of viscoelastic

models (Chazal and Moutou Pitti, 2010; Seongcheol, Soo

Won Cha, & Hwan, 2010) provide a better understanding

of this phenomenon and consequently improve the lifetime

prediction. Nevertheless, this forecast is subjected to

uncertainties which are mainly due to the calibration of

viscoelastic parameters, the variability of the loads during

the structural lifetime and, finally, the short- and long-term

evolution of concrete properties.

In civil engineering literature, many authors have

considered the time-dependent phenomena in concrete

structures. Among them, Destrebecq and Jurkiewiez

(2001) have proposed a numerical analysis of creep and

relaxation in concrete bridges, by combining the

incremental formulation in Ghazlan, Caperaa, and Petit

(1995) and the creep law in Bazant and Carol (1974). In

fracture mechanics, the incremental viscoelastic formu-

lation (Moutou Pitti, Dubois, Pop, & Absi, 2009) has been

applied in order to model the crack propagation in

structures. Judycki (1992) has discussed the nonlinear

viscoelastic behaviour in asphaltic concrete structures. In

order to take into account the random behaviour of
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viscoelastic parameters in structural durability, Gabrielsen

(1968) has proposed stochastic models for viscoelastic

materials, and Jordan (1980) has applied the probabilistic

analysis to concrete under creep loading.

The creep phenomenon has a double effect on

prestressed concrete structures as it induces long-term

concrete deformations, on one hand, and prestressing force

losses, on the other hand. The prestressing losses may

increase concrete cracking and therefore affects the

serviceability limit state. In this work, the reliability

analysis of prestressed concrete structures under creep is

considered. The creep formulation defined by the

Eurocodes (CEN, 2004) is compared with a large database

of creep tests. In order to better fit the test results, a

probabilistic phenomenological model is proposed, where

the model uncertainty is evaluated in terms of data scatter.

In addition, the uncertainties in geometrical and

mechanical parameters of the structure are modelled by

random variables and the first-order reliability method

FORM (Lemaire, Chateauneuf, & Mitteau, 2010; Soares,

Chateauneuf, Venturini, & Lemaire, 2002) is applied to

evaluate the failure probability.

In the following sections, the creep model adopted in

the Eurocodes is described and then compared with test

results. The probabilistic phenomenological model is then

defined in order to better fit the creep data. Finally, the

proposed model is applied to a bridge deck in order to

show the high importance of viscoelastic parameters and

model errors in the assessment of structural reliability.

2. Creep models for concrete

2.1 Creep behaviour

The concrete material is characterised by viscoelastic

behaviour where strain comes from the combination of

instantaneous and time-dependent parts. From the

mechanical point of view, the behaviour of viscoelastic

materials varies between the vitreous solid behaviour and

the viscous behaviour according to loading conditions and

climatic variations. Although the consideration of creep

strain effects in viscoelastic materials is a current practice

in engineering design, the creep models are still very poor

in predicting appropriately the time-dependent defor-

mations. Besides the model accuracy, the mechanical

modelling of viscoelastic structures is facing difficulties

related to large demand in computer resources, due to the

need to integrate the whole history of the structure. Two

alternatives can be proposed by using either empirical

models (e.g. CEN, 2004) or incremental formulation (e.g.

Chazal & Moutou Pitti, 2010). The former has the

advantage of simple use in engineering design, while the

latter has the advantage of providing accurate results as

long as the input parameters are well calibrated. In the

present work, we consider only the empirical models

which are mainly applied in civil engineering design

procedures.

In general, the mechanical behaviour relating strain to

stress history is given by the following expression

(Moutou Pitti et al., 2009):

1ij tð Þ ¼
ðt

t0

Jijkl t2 jð Þ·
›skl

›t
dj; ð1Þ

where 1ij is the strain tensor, skl the corresponding stress

tensor, Jijkl the fourth-order creep tensor, t the actual time

and t0 the time at loading. In prestressed concrete, the

viscoelastic behaviour mainly results from permanent

loading, i.e. dead loads and prestress forces. The creep test

consists in applying a constant stress which is maintained

along the test duration (Figure 1). The elastic strain,

observed instantaneously at the loading time t0, is followed

by a time-dependent strain known as creep strain. In this

specific case, for a loading time t0, the stress of amplitude

s0 is applied according to the expression:

sðtÞ ¼ s0·Hðt2 t0Þ; ð2Þ

where H traduces the Heaviside function. The strain

evolution as a function of time is given by

1ðtÞ ¼ s0·J t; t0
� �

; ð3Þ

where J is the creep function for the time t . t0. The

solution of viscoelastic problems can be performed by

t0 t0
t

=J

ttt tt

0

0

Figure 1. Applied stress profile and creep strain.
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transforming the time-dependent problem into an equiv-

alent elastic problem.

Instead of performing complex nonlinear analysis, the

Eurocode 2 (CEN, 2004) proposes a simplified empirical

formulation of the creep behaviour on the basis of strain

decomposition in two parts: instantaneous and time-

dependent.

1ðtÞ ¼ 10ðt0Þ þ 1cðtÞ; ð4Þ

where 1ðtÞ is the total strain, 10ðt0Þ the instantaneous strain
and 1cðtÞ the creep strain. The formulation is summarised

in the following section.

2.2. Eurocode creep model

The strain expression (4) can be rewritten in the form:

1ðtÞ ¼ 10ðt0Þ· 1þ
1cðtÞ
10ðt0Þ

� �

¼
s0

Eiðt0Þ
· 1þ wðt; t0Þ
� �

; ð5Þ

where Eiðt0Þ is the instantaneous elastic modulus at the age

t0, and wðt; t0Þ is the creep coefficient; thus,

Jðt; t0Þ ¼
1ðtÞ
s0

¼
1

Eiðt0Þ
· 1þ wðt; t0Þ
� �

: ð6Þ

The creep coefficient wðt; t0Þ in this equation depends

on the loading magnitude, time and duration. It represents

the relationship between the free creep strain and the

instantaneous strain. The creep function Jðt; t0Þ, also called
compliance, depends on the creep coefficient and

represents the total creep acting on the member under

unit stress. The Eurocode 2 rewrites Equation (6) in terms

of the mean secant modulus of concrete as follows:

Jðt; t0Þ ¼
1

Ecmðt0Þ
þ

wðt; t0Þ
Ecm

; ð7Þ

where Ecmðt0Þ is the mean secant modulus at loading time

t0 and Ecm the mean secant modulus at 28 days.

The creep coefficient wðt; t0Þ is given by

wðt; t0Þ ¼ w0 £ bcðt2 t0Þ ð8Þ

with

w0 ¼ wRH £ bðf cmÞ £ bðt0Þ and

bcðt2 t0Þ ¼
ðt2 t0Þ

bH þ t2 t0

� �0:3

;
ð9aÞ

bðf cmÞ ¼
16:8
ffiffiffiffiffiffiffi

f cm
p and bðt0Þ ¼

1

0:1þ t0:20

; ð9bÞ

where f cm is the mean compressive strength of concrete at

28 days, bH and wRH are coefficients depending on the

relative humidity (RH%) and the notional member size h0.

In the case of high strength concrete f cm . 35 MPa, these

coefficients are given by

bH ¼ max 1:5 1þ 0:012RHð Þ18
� �

h0 þ 250a31500a3

� 	

wRH ¼ 1þ
12 RH=100

0:1
ffiffiffiffiffi

h0
3
p a1


 �

a2

ð10Þ

with a1 ¼ ð35=f cmÞ0:7, a1 ¼ ð35=f cmÞ0:2 and a1 ¼
ð35=f cmÞ0:5. The notional member size h0 (mm) is given by

h0 ¼
2 £ Ac

u
; ð11Þ

where Ac is the concrete area and u the cross-section

perimeter exposed to environmental effects.

2.3. Proposed creep model

Creep deformations are very sensitive to material,

structural and environmental conditions, leading to large

scatter in the parameter estimation whatever the involved

model. Moreover, uncertainties and fluctuations of the in-

service conditions have great influence on the creep

predictions. In this sense, the need for accurate model is

mandatory for lifetime management of concrete structures.

However, as it has been observed through field

measurements on real structures (Delhomme, Baroudi, &

Debicki, 2009; Goel, Kumar, & Paul, 2007; Takács, 2002),

the design codes of practice are still unable to provide

satisfactory physical explanations and predictions of creep

deformation.

Takács (2002) compared the predictive models

(namely CEB-FIP MC90 and B3 models) with real

measurements in three bridges in Norway (Norddalsfjord,

Støvset and Stolma Bridges) and found significant

differences in most cases, without clear identification of

the trend. Bažant and Guang-Hua (2008) and Bažant, Yu,

and Li (2012) indicated that standard creep models give

18-year deflection estimates that are 50–77% lower than

measured and yield unrealistic shapes of deflection. For

these reasons, the model uncertainties become, at least, as

large as inherent statistical uncertainties.

In practice, three major sources of uncertainty can be

observed in creep modelling (Raphael, 2002):

. Model errors: they result from ignorance or

simplifications. In most of the cases, the underlying

physical phenomena controlling the behaviour of

the system are insufficiently understood and

parameter interactions are hardly detected. More-

over, the model format may take inappropriate

forms regarding the long-term material behaviour

and operating conditions.
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. Measurement errors: a mathematical model is

calibrated by using the available experimental

data. However, the data are acquired by measure-

ments which are prone to random and systematic

errors. The use of inaccurate measurements to

determine the model parameters leads to additional

uncertainties in the predictive model.
. Statistical errors: in dealing with statistical models,

an infinite set of data is required for each

configuration, in order to find the ‘exact’ point

estimates of the parameters. Due to high cost and

destructive nature of testing, only limited data-sets

are available in practice, leading to significant

statistical uncertainties on parameter expectation

and dispersion.

To cope with design code inadequacy, Raphael,

Kaddah, Geara, Favre, and Calgaro (2002) have

collected a large database for creep testing carried out

by several research institutes in Europe. The database

includes 432 creep tests on samples of various shapes

and dimensions, under different environmental con-

ditions. The specimens in the database were subjected to

axial strain conditions, under the following testing

configuration range:

. The tests are performed for different types of

cement (classes S, N and R, i.e. slow, normal and

rapid hardening), with nearly one-third of the

number of tests undertaken with each cement type.
. The compressive strength of concrete at 28 days

(MPa) varies between 11 and 118MPa while the

mean radius rm of the specimen varies from 1.75 to

15.25 cm.

. Regarding the loading date t0, it varies from 0.5 to

3300 days.

. The relative ambient humidity RH varies between

1% and 100%.
. The applied stress s varies between 0.69 and

45.2MPa.

The duration of the test after the loading date (t 2 t0)

exceeds 3000 days for some experiments. The level of

stress s/fckj does not exceed in any case the value of 0.4 (i.

e. it varies for all tests between 0.06 and 0.383). Regarding

the definition of creep strain levels, three categories of

compliances are identified in the database:

. Small creep strain: 126 tests corresponding to creep

compliance J between 0 and 60 £ 1026 MPa21.

. Moderate creep strain: 187 tests corresponding to

creep compliance J between 60 £ 1026 and 120

£ 1026MPa21.
. Large creep strain: 119 tests corresponding to creep

compliance J . 120 £ 1026MPa21.

We want to mention that all the samples are doubled in

the database. One of each sample is loaded (submitted to

a stress level) while the second is not and is used to

predict the shrinkage strain which is deducted from the

total strain of the first sample. So the difference allows to

eliminate the shrinkage, and therefore to get only creep

strains.

This database allows us to verify the accuracy of the

creep models defined in the codes of practice. Figure 2

plots the measured compliance (i.e. creep strain per unit

stress) versus the Eurocode-predicted compliance, for all

strain levels. In this figure, short- and long-term

predictions are mixed. It is easy to see that accurate

prediction of creep is only possible for small strains. On

the opposite, the comparison of the experimental results

with Eurocode predictions shows that the long-term

creep strain is highly underestimated. In some cases, the

error reaches up to 300%. It can be clearly shown that

the creep model underestimates, in most cases, the long-

term strain.

In order to improve the long-term predictions, Raphael

(2002) proposed a creep model on the basis of the analysis

of creep behaviour; the model parameters are then fitted

using the experimental database. The proposed model,

known as MPF, is described as follows:

J 2 Jinit ¼ A 12 e2ððt2t0Þ=30Þ
� 

þ B log10
t

t0


 �

; ð12Þ

where t0 is the age of concrete at prestress application

(days), t the age of concrete at the considered time, J the

creep compliance and Jinit the compliance at t ¼ t0. The

model constants A, B and Jinit are evaluated by fitting

Predictive compliance according to Eurocode 2 (x10–6)
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Figure 2. Eurcode 2 prediction versus experimental
compliance (MPa21).
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the database results, leading to the following equations:

Jinit ¼ 32:963þ 0:225A2 0:0625f c28 þ 0:271h0

2 0:0083t0 þ 1:74a2 0:12f cmðt0Þ;

A ¼ 211:80þ 1:5Bþ 0:363Jinit þ 0:25s

2 0:144f c28 þ 0:00122RH2 1:25h0

2 0:0096t0 þ 0:233T;

B ¼ 19:795þ 0:356A2 0:0910s

2 0:00168RHþ 0:389h0 þ 0:006955t0

2 0:0525T;

ð13Þ

where fc28 is the compressive concrete strength at

28 days (MPa), fcm(t0) the mean compressive concrete

strength at t0 (MPa), h0 the notional cross-section size

(mm), T the temperature (8C), s the applied compressive

stress (MPa), a an index related to the cement type

(equal to 21, 0 or 1, for slow, normal and fast actions,

respectively) and RH the relative humidity of the

environment (%).

Figure 3 compares the MPF predictions with the

experimental results. The mean trend is much better fitted

than for the case of the Eurocode 2 (Figure 2), as the bias

of the results is removed. Nevertheless, the scatter is still to

be considered as it depends on random phenomena in

testing materials, conditions and procedures. The confi-

dence interval at 95% shows that the range of uncertainty

is very wide, especially for long-term creep. For this

reason, we introduce herein a random variable d in order to

represent the model error associated to data scatter. As the

confidence interval increases proportionally to the mean

compliance, the probabilistic MPF model is rewritten in

the form:

J ¼ d £ Jinit þ A 12 e2ððt2t0Þ=30Þ
� 

þ B log10
t

t0


 �� �

;

ð14Þ

where d represents the model error, with mean value equal

to one, as the deterministic MPF corresponds to the best

fitting of test results.

Figure 4 illustrates the histogram of the model error, as

well as its best fitting using normal, lognormal and

Weibull distributions, corresponding to the probability
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density functions:

Normal density function :

f d dð Þ ¼
1

ffiffiffiffiffiffi

2p
p

£ 0:287
e2ð1=2Þððd21Þ=0:287Þ2 ;

Lognormal density function :

f d dð Þ ¼
1

ffiffiffiffiffiffi

2p
p

0:287ðd2 0:06Þ
e2ð1=2Þð ln ððd20:06Þþ0:041Þ=0:287Þ2 ;

Weibull density function :

f d dð Þ ¼
2:2

0:6

d2 0:48

0:6


 �1:2

e2ððd20:48Þ=0:6Þ2:2 :

ð15Þ
These distributions correspond to respective mean and

standard deviation equal to 1.00 and 0.287 for normal

distribution, to 1.00 and 0.293 for lognormal distribution

with a shift parameter of 0.06, and to 1.46 and 0.255 for

Weibull distribution with a shift parameter of 0.48. The

comparison of these three distributions (Figure 4) shows

that the lognormal distribution fits better the model error

tails, while normal and Weibull distributions overestimate

the lower tail and underestimate the upper tail. The x 2

statistics is equal to 2802.3, 31.6 and 69.6 for normal,

lognormal and Weibull distributions, respectively. In

addition, the lognormal distribution is shown to model

appropriately the extended effect in the upper tail, which is

important for safe design. In other words, the lognormal

distribution allows for larger amount of excessive creep

strains, which is conformal to experimental observations.

It is therefore suggested to use this distribution for creep

error modelling in reliability analysis.

3. Reliability analysis

3.1. Prestressed concrete deck

Let us consider a simply supported bridge deck with a span

of 24m and road width of 7m. The cross section of the

deck is shown in Figure 5. The deck is subjected to a

permanent distributed load equal to 251 kN/m (including

its own weight) and to a traffic load composed of a

distributed load of 34 kN/m and a wheel load of 1.02MN.

The area of concrete cross section is 8.528m
2, its moment

of inertia is 0.639m4 and the centre of gravity is located at

0.56m from the bottom of concrete cross section. The

characteristic concrete strength is fck ¼ 40MPa and the

prestressing cable eccentricity is 0.41m. The design

according to Eurocode 2 (CEN, 2004) leads to 18

prestressing cables of type 12T17 with cross section

Ap ¼ 2850mm2 and maximum force Pmax ¼ 3.45MN; the

total prestressing force is therefore 62.1MN. According to

Eurocode 2, the losses due to creep are calculated as

DPc ¼ 3.87MN and those due to other phenomena

(including short term, shrinkage and relaxation) are

7.32MN, leading to a net applied prestressing force of

50.92MN.

The prestressing losses due to creep DPc can be

computed by the Eurocode formula (CEN, 2004):

DPc ¼
Ap Ep=Ecm

� �

w t; t0
� �

sc;QP

1þ Ep=Ecm

� �

Ap=Ac

� �

1þ Ac=Ic
� �

z2cp

� 

1þ 0:8w t; t0
� �� �

;

ð16Þ

where Ac, Ic and Ecm are, respectively, the concrete area,

the moment of inertia and the mean elasticity modulus, Ap

and Ep are the prestressing steel area and elasticity

modulus, respectively, zcp is the position of the

prestressing cables, wðt; t0Þ is the creep coefficient and

sc;QP is the stress on concrete around the cables under

quasi-permanent loading.

3.2. Creep models

In this section, the EC2 model is compared with the MPF

model, with respect to structural uncertainties. The

random variables are given in Table 1 where the

distribution types and standard deviations are obtained as

follows:

. The concrete compressive strength f c is lognormally

distributed with a coefficient of variation of 0.15, as

suggested in the JCSS model code (JCSS, 2000) as

1
.0

0
 m

0
.3

5
 m

7.00 m

Figure 5. Prestressed concrete bridge deck.

Table 1. Random variable distributions and parameters.

Variable Symbol Distribution Mean Standard deviation Coefficient of variation (%)

Concrete strength f c ðMPaÞ Lognormal 48 4.86 10.13
Dead load g ðkN=mÞ Lognormal 251 25.1 10.00
Prestressing force P0 ðMNÞ Lognormal 62.1/69.0 1.24/1.38 2.00
Cable eccentricity e0 ðmÞ Normal 0.41 0.01 2.44
Model error d Lognormal (shift ¼ 0.06) 1.00 0.293 29.3
Relative humidity RH (%) Lognormal, truncated at 100% 80 5 6.25

6



well as in many papers (e.g. Aoues & Chateauneuf,

2008; Biondini & Frangopol, 2009).

. The coefficient of variation of the prestressing force

P0 is deduced from engineering practice (Freyssinet,

2012) and recommendations (BPEL91, 1999).
. The deviation of cable eccentricity e0 is based on

recommendations (CEN, 1992; Freyssinet, 2012).

. Regarding the model error d, the distribution type

and standard deviation are derived from the

statistical analysis performed in the present paper.

. The standard deviation of the relative humidity RH

is obtained by considering typical weather records;

as lognormal distribution is adopted for the relative

humidity, the distribution has to be truncated at

100% to keep the variation in the physical range.

. Finally, the dispersion of dead load g and live loads

UDL and TS are defined according to usual

assumptions in the literature (e.g., JCSS, 2000).

Under quasi-permanent loading conditions, the maxim

stress on the bridge deck is 14.6MPa, which is below

0.4fck ¼ 16MPa. In this study, three models are compared:

. EC2 – Design and creep models according to

Eurocodes: this case corresponds to standard design

conditions, but does not meet the real conditions due

to EC2 deviations regarding test results.

. MPF18 – Design based on Eurocodes (18 cables)

while creep is calculated by MPF: this case allows

us to calculate the effective losses when the deck is

designed according to the Eurocodes; as the real

losses are higher than those of EC2, this case cannot

satisfy the serviceability limit state.
. MPF20 – Design using MPF (20 cables) and creep

calculated by the same model: this case considers

full design using the MPF creep model, which is

more coherent with field observations; it can be

noticed that two additional cables are required to

satisfy real creep losses (i.e. the required initial

prestress is 69MN instead of 62.1MN).

Table 2 provides the mean values and standard

deviations of the calculated prestress losses due to creep,

with and without considering the model error. It is

important to remind that the model error considered in this

study represents the deviation between the theoretical

model predictions and the experimental test results; its

probability distribution, mean value and standard devi-

ation are characterised in Section 2.3. In this sense, the

model error includes mechanical and statistical uncertain-

ties affecting the theoretical predictive model. Figure 6

depicts the various distributions of the creep-induced

losses of prestressing. The effect of the model errors on the

scatter of losses can be clearly observed, especially for

MPF20. Although the prestressing losses mean is 3.87MN

for EC2, it grows to 7.96MN for MPF with the same

number of cables (i.e. 18 cables), and to 10.48MN when

20 cables are used. The comparison of the two first cases

shows that the EC2 underestimates the mean and standard

deviation of the losses by almost 50%. For this reason, the

design performed by the EC2 cannot fulfil the service-

ability limit state which has been effectively observed on

several structures (Rapahel, 2002).

The standard deviations of losses predictions are at

least doubled when the model errors are considered: while

the coefficient of variation is about 15% without

considering the model errors, it increases to 32% under

the effect of this error. This large dispersion explains why

field observations are often far from design prescriptions.

This fact highlights the need for accurate predictive creep

models. The probability of losing 20% of the prestressing

force by creep is given in Table 2 for various cases. This

condition may be considered as catastrophic for structural

serviceability and even durability when cracks take place.

Although this event is seen as practically impossible for

EC2 without considering model error (9.3 £ 10
218), the

Table 2. Statistical parameters and failure probabilities for various predictive creep models.

Without model error With model error

Case model Mean Standard deviation 20% loss probability Mean Standard deviation 20% loss probability

Eurocode 2 3.872 0.602 9.3 £ 10218 3.876 1.220 2.9 £ 1028

MPF (18 cables) 7.960 1.182 5.8 £ 1025 7.652 2.550 3.8 £ 1022

MPF (20 cables) 10.48 1.307 8.4 £ 1023 10.26 3.288 1.5 £ 1021
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Figure 6. Distributions of prestress creep losses with and
without model error (d).
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failure probability becomes very significant for MPF18

considering model error (3.8 £ 1022). The higher failure

probabilities for MPF20, compared with MPF18, can be

explained by the larger percentage of mean creep losses in

addition to larger standard deviations, due to the increase

in the concrete compressive stress. The increase in the

number of cables has strong effects on the failure

probability (reaching up to 15% for the considered

structure), and safe solutions could not be found without

increasing the concrete cross section.

Figure 7 depicts the importance of the input variables

on the scatter of the creep losses. It can be observed that

the most important variables are the mean compressive

strength (61.9%) and the dead load (15.4%) for the EC2,

while they are mainly the dead load (38.7%) and the

relative humidity (19.1%) for the MPF model. As the

prestressing force and position are well controlled during

construction, their effects on reliability are very small and

their uncertainties can be neglected for this limit state. The

importance of the compressive strength is strongly reduced

in the MPF. In general, the importance factors are better

distributed on most of the variables for the MPF than those

for the EC2 where 61.9% are related to the compressive

strength. This distribution of the importance is interesting

from the design point of view, because an error in one

parameter has lower impact on the member reliability

assessment, leading to robust design. Moreover, as the

dead load can be more accurately evaluated than the local

concrete strength, the MPF leads to less scattered creep

predictions in practical use.

3.3. Reliability analysis

In this part of the study, the design rule is considered to be

violated when the tensile stress in concrete smax exceeds

the tensile strengthf ct, leading to cracking under traffic

loading. In this case, the failure probability is given by

Pf ¼ Pr smax . f ct
� �

, which can be evaluated by the first-

order reliability method (FORM) (Ditlevsen & Madsen,

1996; Enevoldsen, 2011; Neves, Chateauneuf, & Ventur-

ini, 2008). It is important to remind that, in this study,

‘failure’ does not mean ‘collapse’, but simply the violation

of the design criterion. The random variables in this

analysis are given in Table 3.

Figure 8 plots the evolution of the serviceability failure

probability as a function of the structure age. It can be seen

that this probability grows quickly in the first years,

especially for the EC2 model where creep is localised in

the first 5 years. At 50 years of service, the failure

probability is 1:8 £ 1022 for EC2, 9:4 £ 1022 for MPF18

fc
61,9%

RH
7,6%

Po

5,8%

e0

9%

g
15,4%

Importance factors:EC2

fc
13,6%

RH
19,1%

Po

11,4%e0

9%

g
38,7%

Importance factors:MPF

Figure 7. Importance factors for EC2 and MPF.

Table 3. Random variable distributions and parameters.

Variable Symbol Distribution Mean Standard deviation Coefficient of variation (%)

Compressive strength f c ðMPaÞ Lognormal 48 4.86 10.13
Tensile strength f ct ðMPaÞ Lognormal 3.5 0.7 20.00
Dead load g ðkN=mÞ Lognormal 251 25.1 10.00
Uniform live load UDL ðkN=mÞ Lognormal 34 5.1 15.00
Concentrated live load TS ðMNÞ Lognormal 1.02 15.3 15.00
Prestressing force P0 ðMNÞ Lognormal 62.1/69.0 1.24/1.38 2.00
Cable eccentricity e0 ðmÞ Normal 0.41 0.01 2.44
Model error d Lognormal (shift ¼ 0.48) 1.00 0.293 29.30
Relative humidity RH (%) Lognormal, truncated at 100% 80 5 6.25
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and 1:85 £ 1022 for MPF20. While the two design cases

EC2 and MPF20 give similar failure probabilities

regarding the serviceability limit state, the MPF18 shows

a failure probability five times more than in the two other

cases. We can conclude that the EC2 overestimates the

deck reliability by a factor of 5, which is not appropriate

for design purpose. The use of 20 cables instead of 18

leads to reliability levels which are higher than those

assumed by the EC2 in the range from 0 to 50 years.

For instance, the statistical error in creep models has

not yet been considered. As shown in Section 2.3, the

feedback from real tests shows a wide variation regarding

the predictive models and consequently the model error

should be included in the reliability analysis. Figure 9

compares the importance of the variables when the model

error is considered (the relative humidity is omitted for

clarity). The live and dead loads show the largest effects

on the deck reliability regarding concrete cracking: they

have 63% of importance for MPF20 and up to 82.3% for

EC2. On the other hand, the concrete compressive

strength, and the prestressing force and eccentricity have

small effects on the creep loss predictions, i.e. ,7% for

the three variables.

It is important to note that although the compressive

strength has significant effect on creep losses (Figure 7),

its importance decreases for cracking limit state because

creep loss is just a small portion of the total prestressed

force, in addition to the dominant effect of the applied

loads (i.e. an influence reduction takes place for

uncertainties related to internal variables). We can also

observe that, while the effect of concrete tensile strength is

almost constant (about 8.5%), the model error has larger

importance in the MPF model than in the EC2.

Figure 10 plots the deck reliability when the model

error is included as a random variable (Table 3). At

50 years of service, the failure probability increases to

1:9 £ 1022 for EC2, 1:2 £ 1021 for MPF18 and 3:4 £ 1022

for MPF20. The consideration of the model error has small

influence on the EC2, while it increases the failure

probability by a factor of 2 in the case of MPF20. From

another point of view, the modelling of the EC2 dispersion

is not sufficient to provide realistic estimation of reliability

(i.e. 1:9 £ 1022 instead of 1:2 £ 1021). This wrong

estimation is explained by the bias of the EC2 fitting

with respect to real data points, which cannot be recovered

by simply considering a large dispersion in the model.
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4. Conclusions

The viscoelastic behaviour of prestressed concrete

structures has significant effects on long-term losses,

leading to serious risks regarding the serviceability limit

state. The creep model defined by the Eurocode 2 is

compared with a probabilistic phenomenological model

developed on the basis of a large database. The reliability

analysis shows the impact of the model parameters on the

dispersion of the predictive creep losses. This study shows

that the model error plays a significant role in prestressed

structure design.

Two aspects of prediction error should be considered,

namely the deviation of the average trend and the

dispersion around this average. The first type results from

the insufficiency of modelling creep physics and its

relationship with structural and environmental conditions.

In this sense, the proposed model gives satisfaction.

The second type of error should take into consideration the

epistemic uncertainties in testing conditions, as well as the

randomness in real structural conditions. This effect could

not be neglected as we have shown in this work that the

creep prediction scatter plays a significant role in

establishing the design rules for prestressed structures,

which is mandatory to fit the target reliability. It is

therefore recommended to put further research effort to

characterise the predictive creep prediction errors for

large-scale infrastructures.
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Takács, P.F. (2002). Deformations in concrete cantilever bridges:

Observations and theoretical modelling. PhD Thesis,
Norwegian University of Science and Technology Trond-
heim, Norway.

11


	Abstract
	List of symbols
	1. Introduction
	2. Creep models for concrete
	2.1 Creep behaviour
	2.2. Eurocode creep model
	2.3. Proposed creep model

	3. Reliability analysis
	3.1. Prestressed concrete deck
	3.2. Creep models
	3.3. Reliability analysis

	4. Conclusions
	References

