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This paper deals with a finite element algorithm for the creep crack growth process in a viscoelastic med-
ium. The main developments focus on the coupling between the M-integral and an incremental formu-
lation for the viscoelastic behavior. In this context, mixed mode configurations are simulated for
orthotropic symmetries. An algorithm uncoupling viscoelastic incremental formulation and the fracture
procedure is resolved with finite element software. The global approach is validated in terms of the evo-
lution of energy release rate versus time and the advance of cracks. Numerical simulations are based on a
Constant Tension Shear model. The insensitivity of the M-integral to the integration domain is shown
from creep crack growth simulations for mixed mode configurations.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Many composite materials are subjected to mixed-mode crack
growth development induced by complex processes over a long
period (Bian and Lim, 2007). These different observations are in-
creased when their anisotropic and orthotropic character combine
with the viscoelastic behavior (Barbero and Luciano, 1995; Cortés
and Elejabarrieta, 2006) of these materials. Therefore, several
investigations, based on numerical and analytical approaches, have
been performed in fracture mechanics. Among them, Tenchev and
Falzon (2007) have proposed analytic solutions for wood speci-
mens loaded in the mixed-mode. Sun and Qian (1997), Vasic
et al. (2005) and Ratnesh and Chandra Kishen (2008) have used
numerical methods for the study of fracture mechanics properties.
Also, Moutou Pitti et al. (2007a) have proposed a numerical and
analytical model adapted to separating mixed modes in the visco-
elastic case, but this tool is limited to static cracking. Consequently,
in order to exactly translate the real effects described previously,
the development of new methods is required.

Using the M-integral approach, we develop a method for sepa-
rating mixed-mode fractures in viscoelastic media during the creep
crack growth process. The M-integral approach was initially pro-
posed by Chen and Shield (1977) and is based on conservation laws
(Noether, 1971). Moutou Pitti et al. (2007a) have adapted this form
to viscoelastic material with a bilinear form of the Helmholtz strain
energy density F�. In order to model time dependent crack growth
ll rights reserved.

: +33 555 934 531.
Pitti).
processes in materials, he has generalized this method to visco-
elastic behavior (Moutou Pitti et al., 2006; Moutou Pitti et al.,
2007b). In this paper, this third approach is implemented and
solved using the finite element method.

The analytical and modeling expressions of the M-integral
method are proposed in the first section. According to a general-
ized Kelvin Voigt model, this integral is adapted to viscoelastic
behavior in the second part. Also, the viscoelastic energy release
rate is deduced through the stress intensity factor using the M ap-
proach. In the third section, an incremental viscoelastic formula-
tion and a fracture algorithm are used in order to implement
analytical tools in a finite element process. In the numerical pro-
cess, the mixed-mode ratio is introduced by the application of a
modified CTS (Constant Tension Shear) specimen. This specimen
has been initially developed by Richard (1981) and Richard and
Benitz (1983) so as to generate mixed-mode ratios in isotropic
materials, and it was adapted to orthotropic media by Valentin
and Caumes (1989). In the last section, the variations of energy re-
lease rate versus time and crack length are shown in mixed-mode
configurations for different path integrations.
2. Invariant integrals

2.1. M-integral

In linear elastic materials, the energy release rate is generally
computed with Rice’s J-integral (Rice, 1968). In order to separate
fracture modes, Chen and Shield (1977) first proposed the M-inte-
gral based on a J-integral concept. This M approach is based on a

http://dx.doi.org/10.1016/j.ijsolstr.2009.05.020
mailto:rostandpitti@yahoo.fr
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr
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conservation law (Noether, 1971) applied in an Arbitrary Lagrang-
ian Eulerian (ALE) configuration (Moutou Pitti et al., 2007a; Dubois
et al., 1999). Moutou Pitti et al. (2006, 2007b) have developed a
generalized M-integral form that is adapted to viscoelastic ortho-
tropic materials during the crack growth process. Without pressure
on the crack lips, the new expression of the M-integral is given by:

M¼
Z

C1

F� �n1�
@F�

@ui;j
�ui;1þ

@F�

@v i;j
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Here, aðx1; x2; tÞ is a spatial and temporal function, nj are the compo-
nents of the normal vector ~n of the curvilinear integration domain
C1, and AðC1Þ designates the area enclosed by C1 (Fig. 1). u and v
are real and virtual displacement fields, respectively. The virtual
displacement v is given according to Sih’s (1974) singular form:
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with qj ¼ cosðuÞ þ i � sj � sinðuÞ; j 2 f1; 2g ð3Þ

and pj ¼ S11 � s2
j þ S12; qj ¼

S22

sj
þ S12 � sj: ð4Þ

s1 and s2 are the roots of the classical characteristic equation given
by Airy’s representation:

S11 � s4
j þ ð2 � S12 þ S33Þ � s2

j þ S22 ¼ 0: ð5Þ

S11; S12; S22; S33 indicate components of the compliance tensor
according to an orthotropic symmetry for plane stress assumptions.
vKbðb 2 f1;2gÞ are virtual stress intensity factors in opening and
shear mode, respectively. r and u are the ordinary polar coordinates
in a reference frame centered at the crack tip. F� is a bilinear form of
the strain elastic energy defined by Chen and Shield (1977) in these
terms:
Fig. 1. Contour and area around the crack tip.
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Introducing the bilinear form (6) in expression (1), we obtain:
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in which rðvÞij and rðuÞij are virtual and real stresses, respectively.

2.2. Mh integral

The expression of interest is defined on the curvilinear integra-
tion contour C1. In order to evaluate the M-integral with a finite
element method using a displacement approach, the surface do-
main is preferred. This problem is solved by introducing a vector
field~h (Destuynder et al., 1983) (h1 ¼ 1 and h2 ¼ 0 inside the ring,
~h ¼~0 outside it, Fig. 2).

Let us now consider the following expression:

_pj;k ¼
1
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� �
: ð8Þ

Substituting expression (8) in (7), we obtain this third expression:
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The application of Gauss–Ostrogradski’s theorem to the first
term of gives us:
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According to the insensitivity of the M-integral to the integra-
tion domain, AðC1Þ can be replaced by the difference between
the total surface X and the crown surface V. Then, the second term
of expression (10) can be rewritten as follows:
Fig. 2. Integration domain.
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The combining of equations, and gives the final form of the Mh
integral:
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The first term of expression translates the modeling ap-
proach for stationary cracking. The second term introduces the
modeling form for the crack growth process (Moutou Pitti
et al., 2007b).
3. Viscoelastic generalization and physical interpretation

3.1. Viscoelastic generalization of M-integral

The introduction of viscoelastic behavior is due to the general-
ized Kelvin Voigt model, composed of N cells of Kelvin Voigt for dif-
fered response and one specific spring for elastic and instantaneous
response. (Fig. 3).

Then, equation can be generalized by the following expression:
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Employing prðuÞij and prðvÞij as real and virtual stress components
in the pth spring and introducing equivalent real (up

i Þ and virtual
vp

i

� �
displacements of the complex pth Kelvin Voigt cell, respec-

tively, the Mh form of expression (12) becomes:
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Fig. 3. Generalized Ke
3.2. Physical interpretation of M-integral

According to the definition of the energy release rate G, the
superposition principle gives (Moutou Pitti et al., 2007a; Dubois
et al., 1999):

Mhp
v ¼ Cp
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I

8
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II

8
: ð15Þ

uKp
I and uKp

II are the real stress intensity factors in mode I and mode
II, respectively. Cp

1 and Cp
2 designate the reduced viscoelastic compli-

ances in opening and shear modes, respectively (Valentin and Mor-
lier, 1982). Their form is given by the following:
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Each virtual stress and displacement field induces virtual stress
intensity factors, denoted vKp

I and vKp
II for each fracture mode,

respectively. The perfect separating mixed-mode fracture is given
by performing two distinct calculations and choosing judicious val-
ues of the corresponding virtual stress intensity factors, for exam-
ple (Moutou Pitti et al., 2007a):
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From expressions (14), (15) and (17), the viscoelastic energy release
rate Gp

v is given by:

Gp
v ¼ 1Gp

v þ 2Gp
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1Gp
v and 2Gp

v represent the energy release rate contribution induced
by the free energy stored in the pth spring for opening and shear
modes, respectively. Finally, the total partition of the energy release
rate is given by the following summation:

Gv1 ¼
X

k

1Gp
v and Gv2 ¼

X
k

2Gp
v with p ¼ ð0;1 . . . ; NÞ: ð19Þ
4. Finite element process and crack growth algorithm

4.1. Finite element computation

In order to evaluate mechanical fields and use the energy bal-
ance in the time domain, a finite element method is preferred.
The linear viscoelastic behavior can be expressed with a discrete
spectrum representation of each creep function component
(Ghazlan et al., 1995). For viscoelastic material, the relationship
connecting strain eij and stress rkl is given by the Boltzmann
equation:
N
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lvin Voigt model.
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eijðtÞ ¼
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ds: ð20Þ

JijklðtÞ are components of the four order creep compliance tensor de-
scribed with spring rigidities kp

ijklðp 2 f0; 1; . . . ; NgÞ and dash-pot
viscosities gm

ijklðm 2 f1; . . . ; NgÞ such that

JijklðtÞ ¼
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In the Kelvin Voigt generalized mode (Fig. 3), the total partition
of the strain tensor is translated as

eij ¼
X

k;l

Pijkl with Pijkl ¼ Pð0Þijkl þ
XN

m¼1

PðmÞijkl m ¼ ð1; . . . ; NÞ: ð22Þ

Here, PijklðtnÞ represents the part of the strain component generated
by the stress component rklðtnÞ. Then, the governing equations can
be obtained using finite difference integration and a step-by-step
process. This method allows to resolve, in the time domain, the
hereditary behavior (20) without retaining the complete past his-
tory of the stress tensor. According to the superposition principle,
the incremental constitutive equation using a linear approximation
of stress in each time step Dtn ¼ tn � tn�1 is given by (Ghazlan et al.,
1995; Moutou Pitti et al., 2007a):

DeijðtnÞ ¼ Wijkl � DrklðtnÞ þ ~eijðtn�1Þ: ð23Þ

The terms DeijðtnÞ and DrklðtnÞ designate the strain and stress
increments during the time increment Dtn:~eijðtn�1Þ represents the
global influences of the mechanical history. Wijkl translates the
equivalent compliance function. Its form is given by:
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Introducing the creep function form in the definition of the free
energy density (Dubois and Petit, 2005), F can be rewritten as:
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In the time domain, the evaluation of FðtnÞ, or Eq. (25), requires
the computation of the increments De0

ijðtnÞ and Dem
ij ðtnÞ. With rela-

tions (26), these increments may be noted as follows:
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where DPijklðtnÞ is the increment of PijklðtnÞ and is written as
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The incremental formulation is resolved with a finite element
method by using a nodal displacement vector increment
fDupgðtnÞ in the following balance equation (Ghazlan et al., 1995;
Chazal and Dubois, 2001):

Kp
T � fDupgðtnÞ ¼ DFp

ext

� �
ðtnÞ þ feF pgðtn�1Þ: ð29Þ
Kp
T is the tangent matrix defined with the Jacobean matrix B and the

equivalent compliance tensor ½W� by

Kp
T ¼

Z
X

BT � ½Wp��1 � BdX: ð30Þ

DFp
ext

� �
ðtnÞ represents the increment of the nodal force vector

induced by external increment loading. feF pgðtn�1Þ is the supple-
mentary viscous load vector representing the complete mechanical
history. It is given by

feF pgðtn�1Þ ¼
Z

X
BT �Wp � f~epgðtn�1ÞdX; ð31Þ

where f~epgðtn�1Þis the strain vector, defined for each integration
point.

4.2. Viscoelastic crack growth algorithm

For mixed-mode crack problems, the loading and geometry
symmetries are affected by the extent of the advancing crack tip.
In this case, a re-meshing of the numerical model is necessary after
each crack tip advance. To overcome this difficulty, hereditary
mechanical fields have been projected in the transformed mesh.
This complex algorithm must separate the time and geometry vari-
ations (see Fig. 4).

First, all mechanical fields and the crack length a are supposed
to be known at time tn. That way, the stress and external loading,
riðtnÞ and FiðtnÞ, respectively, are defined in the initial mesh Wi and
characterized by a crack length a (step 0).

Second, the instantaneous crack tip advance Da is fixed; the
new mesh denoted Wiþ1 is found by re-meshing. The stress
riþ1ðtnÞ is computed with this new geometry. We define rp

i ðtnÞ to
be the geometric projection of riðtnÞ on the mesh Wiþ1. The in-
duced perturbation field can be defined as follows:
DriðtnÞ ¼ riþ1ðtnÞ � rp

i ðtnÞ.
Third, �DriðtnÞ is applied as a cohesion stress (equivalent exter-

nal loading) by using the superposition principle. This supplemen-
tary loading allows for closing the new crack on Da. In this case, we
obtain an equivalent configuration between steps 0 and 3 (the
same mechanical state) with two different meshes. Dri can be
interpreted as the stress cohesion in a process zone around the
crack tip (Schapery, 1984).

Fourth, the crack length advance is fixed, and viscoelastic proce-
dures are allowed to operate. The stress cohesion Dri is employed
in the viscoelastic incremental procedure as an external load vec-
tor during the time increment Dtn (see Eq. (29)), inducing a non
cohesion of crack lips as the crack propagates in time. In the time
domain, viscoelastic mechanic fields are obtained.

Fifth, the virtual procedure and Mh procedure are applied in or-
der to calculate fracture parameters.

5. Numerical validations

In this last section, we present numerical simulations which
prove the non path dependence of the M-integral on hereditary
behavior and discuss the crack growth process over time. In recent
works, Moutou Pitti et al. (2007a) have shown that this approach is
valid for a stationary crack. Now, we propose to generalize the val-
idation by imposing a time dependent crack tip advance according
to the numerical algorithm presented in Fig. 4.

5.1. CTS specimen and mechanical properties

The numerical simulation requires a specific specimen on which
to impose different mixed-mode ratios, orthotropic properties and
viscoelastic behaviors. According to certain specifications, we have
opted for a Constant Tension Shear initially developed by Richard
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Fig. 4. Viscoelastic crack growth algorithm.
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(Richard, 1981; Richard and Benitz, 1983) in order to obtain mixed-
mode configurations in isotropic and ductile materials (Zhang et al.,
2006; Ma et al., 2006). In order to take into account orthotropic
assumptions, Valentin and Caumes (1989) have adapted the geom-
etry to orthotropic materials such as wood. Steel Arcan enables us
to impose different mixed-mode ratios. In Fig. 5, the loading points
Aa and Ba with a 2 ð1 . . . ; 7Þ are oriented according to the angle b.
The pure mode I is obtained by using opposite forces in A1 and B1

with b ¼ 0�. In the same way, loading points A7 and B7 (with
b ¼ 90�) are employed in order to impose a pure shear mode. Inter-
mediate positions induce different mixed-mode ratios.

The simulations integrate orthotropic viscoelastic behavior for
long term loadings. We propose to choose a spine spruce specimen
characterized by a four order creep tensor. Experimental identifica-
tion challenges us to choose a simplified and proportional creep
tensor, defined as follows:

JðtÞ ¼ f ðtÞ � C0: ð32Þ

f ðtÞ is a creep function. C0 is an unitary constant compliance tensor
that can take this form:

C0 ¼
1 �t 0
�t EX

EY
0

0 0 EX
GXY

2664
3775: ð33Þ

EY and GXY are the transverse and shear modulus, respectively, and t
is Poisson’s ratio in the XY plane. For the simulations, these proper-
ties are fixed according to the characteristics of pine spruce (Dubois
et al., 2001):

EX ¼ 15;000 MPa; EY ¼ 600 MPa; GXY ¼ 700 MPa; and t ¼ 0;4:

ð34Þ

The creep function f ðtÞ has been interpolated by Dubois et al.
(2001) using a crack opening displacement method on a Double Can-
tilever Beam specimen. According to long time simulations, we have
opted for a creep interpolation requiring six Kelvin Voigt cells. Each
characteristic time is defined by the spectrum decomposition. In
these conditions, the creep function is given, in MPa�1, by:
f ðtÞ ¼ 6:7 � 10�7 �
100þ 1:35 � ð1� e�22tÞ þ 1:34 � ð1� e�2:2tÞ
þ4:37 � ð1� e�2:2�10�1tÞ þ 3:62 � ð1� e�2:2�10�2tÞ
þ12:8 � ð1� e�2:2�10�3tÞ þ 31:0 � ð1� e�2:2�10�4tÞ

264
375:

ð35Þ
5.2. Finite element mesh

The finite element mesh is shown in Fig. 5. The asymmetry of
the loading requires a total geometry discretization. In order to
show the non-dependence of the integration domain for the M-
integral, we opt for a circular mesh around the crack tip composed
of seven crowns (C0, C2, C4, C6, C8, C10, C12, see Fig. 6). The inte-
gration domain is defined by the~h vector in which each component
is treated as a field gradient in each crown.

5.3. The insensitivity of the M-integral to the integration domain

The first application deals with the insensitivity of the M-inte-
gral to the integration domain during crack growth process. The
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Fig. 6. (a) numerical mesh around the crack tip and (b) crowns around the crack tip.
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simulation starts with an initial crack length of 25 mm. The slow
crack tip speed is fixed to 7 � 10�5 mm/min. We stop the process
at a final crack length of 30 mm. During the crack growth process,
the energy release rate is computed using different integration
crowns. The M integral is employed by uncoupling part of open
mode Gv1 and part of shear mode Gv2. Three mixed-mode config-
urations have been studied, pure mode I ðb ¼ 0�Þ, pure mode II
ðb ¼ 90�Þ and mixed mode ðb ¼ 45�Þ. The mechanical loading is im-
posed by two unitary opposite forces.

Figs. 7 and 8 show the final values for Gv1 and Gv2 at the final
crack length (30 mm). Crowns C2 and C4 are in the singular field
region for which the M-integral results give evidence of numerical
perturbations. However, if we integrate far mechanical fields
(crowns C6 to C12), the results show relative stability with an aver-
age error of 5%. In this context, we can conclude that the global
algorithm of mixed mode uncoupling during the crack growth pro-
cess is validated.
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Fig. 7. Energy release rate Gv1 versus integration crown.
5.4. Energy release rate versus crack tip speed

A second numerical application deals with the variation of en-
ergy release rate versus the crack growth speed during creep load-
ings. The initial crack length is 24 mm. Four successive cracks in
increments of 8 mm have been simulated up to a final crack length
of 62 mm. We operate a crack growth simulation by imposing dif-
ferent values for the crack growth speed as characterized by a spe-
cific time increment during each step of the crack tip advance. In
order to examine the uncoupling process, we limit the simulation
to a mixed-mode configuration ðb ¼ 45�Þ. According to past simu-
lations, the loading is constant with unitary opposing forces. The
computation is performed using integration crown C6. The time
increment 0 represents an elastic or instantaneous crack growth
process. Part of the open mode is presented in Fig. 9 in terms of en-
ergy release rate versus time increment. The same representation,
in terms of shear mode, is presented in Fig. 10. These results show
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Fig. 8. Energy release rate Gv2 versus integration crown.
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the importance of the viscoelasticity in the creep crack growth pro-
cess in a progressive incohesion of crack lips.

A last simulation deals with the influence of the crack speed on
the apparent energy release rate versus the crack tip position. In
this case, the crack increment is 1 mm and we impose three differ-
ent speeds (instantaneous response, 1.67 � 10�2 mm/min and
7 � 10�5 mm/min). In the following results, crown C6 was chosen
and the crack increment was set to be 1 mm. Figs. 11 and 12 show
the evolutions of Gv1 and Gv2 in mixed mode ðb ¼ 45�Þ versus
crack length. These results show the continuous crack lip incohe-
sion in the process zone caused by the relaxation time induced
by viscoelastic effects. However, if this simulation gives evidence
of the energy release rate evolution versus crack speed, it is char-
acterized by a constant stress field distribution. In this case, we
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Fig. 10. Energy release rate Gv2 versus time in mixed mode 45� (part of shear
mode).
can conclude that stress intensity factors must only be dependent
on the crack length, and not on time. This fact is proved in Figs. 13
and 14, and it validates the crack growth algorithm and the M-inte-
gral response.

6. Conclusions

An analytical formulation of the M-integral separating mixed-
mode fractures in viscoelastic media during the creep crack growth
process has been proposed. Using the generalized Kelvin Voigt
model, this approach has been generalized to include viscoelastic
behavior. In order to implement the M-integral in finite element
software, a complex algorithm uncoupling viscoelastic incremental
formulations and fracture procedures has been developed. In
numerical process, the mixed-mode ratios have been reproduced
by the CTS specimen. Then, the insensitivity of the M-integral to
the integration domain has been proven by the stability of energy
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Fig. 12. Energy release rate Gv2 versus crack length and crack growth speed (part of
shear mode).
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release rate Gv versus different crowns. Also the variations of Gv
have been determined as a function of time and crack length in
the mixed mode of 45�. Finally, this numerical approach is vali-
dated according to a stability of stress intensity factors versus
crack growth speed. So, this work requests experimental
validation.
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