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Abstract The crack characterization in a pre-cracked
aluminum specimen is investigated in this study using
the grid method. The images of this grid are analyzed
to provide the crack tip location as well as the dis-
placement and strain fields on the surface of the spec-
imen during a tensile test. Experimental data are used
to calculate the energy release rate with the compliance
method A fracture analysis is also performed using the
invariant Mθ integral in which both real and virtual dis-
placement fields are introduced. This integral is imple-
mented in the finite element software Cast3M. Both
approaches give similar results in 2D case.
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1 Introduction

In the mechanical and civil engineering fields, many
materials such as wood, asphalt, composites, steel,
polymers or aluminum are submitted to complex and
long-time loadings (Moutou Pitti et al. 2008; Réthoré
et al. 2010; Grédiac and Toussaint 2013). Among sev-
eral cases, the real serviceability of structures made
of these materials is often due to the crack initia-
tion and the crack growth process during their life-
time (Dubois and Moutou 2012). This must be taken
into account to enhance the reliability of such struc-
tures (Moutou Pitti and Chateauneuf 2012). The char-
acterization of the crack tip location and growth
appears therefore to be a key-issue in the communi-
ties involved in prediction of the behavior of structures
and in machine safety (Chalivendra 2009; Atkinson
and Eftaxiopoulos 1992; Suo and Combescure 1992;
Parks 1974, 1977). This is due to the singularity of
the mechanical fields at the crack tip on the one hand,
and to the problems raised by the identification of
the crack tip location and propagation on the other
hand, even when recent image analysis methods are
employed.

An overview of the literature in this field shows that
many studies have been undertaken in order to char-
acterize cracking in various types of materials. In the
past, McNeill et al. (1987) have been already evaluated
stress intensity factor by means of digital image cor-
relation. Recently, Zanganeh et al. (2013) have local-
ized the crack tip using a comparative study based
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110 R. Moutou Pitti et al.

on displacement field data. The digital image corre-
lation (DIC) technique has been used in order to char-
acterize crack tip growth (Yates et al. 2010; Pop et al.
2011). Recently, Méité et al. (2013a,b) have studied
mixed-mode fracture by means of full-field optical and
finite element calculations. DIC has also been applied
to evaluate fatigue crack propagation law with the so-
called integrated digital image correlation for which
an a priori solution for the displacement/strain fields
is necessary to reduce measurement noise (Mathieu et
al. 2011). The same technique has been proposed to
extract fracture mechanics parameters from kinematic
measurements (Réthoré et al. 2012), and to identify
crack tip location (Réthoré et al. 2012). Some of these
methods are combined with a finite element analysis
to update at the same time the actual mechanical fields
during the crack propagation process. Réthore et al.
(2008) have pointed out the drawback due to the vir-
tual extension field theta that plays a major role when
displacement measurements are noisy. Several authors
also mention the use of interaction integrals to extract
fracture mechanics parameters (Réthore et al. 2005,
2008 for instance).

In the present paper, the grid method is employed
to analyze the cracking process in an aluminum speci-
men. The big advantage is that no a priori closed-form
solution for the displacement/strain distribution is nec-
essary to analyze the strain field, the latter being directly
measured, within certain limits, at the crack tip despite
the high strain gradient that occurs. This is obtained
thanks to the very good compromise between strain
resolution and spatial resolution of this measurement
method.

The paper is organized as follows. First, the main
characteristics of the grid method are recalled. The
experimental device and the experimental procedure
are then briefly described. Obtained results are given
and discussed by comparing typical experimental and
numerical strains and displacement maps. In the second
section the invariant integral Mθ formulation applied in
the isotropic case is recalled and then used to compute
the energy release rate in the opening mode case. In the
third section, the procedure employed to determine the
crack tip localization is described. It is directly based
on some features of the strain maps near the crack tip.
The crack tip location is identified for different val-
ues of the load applied to the specimen. The critical
energy release rate is deduced from the measurements
using the compliance method, assuming that displace-

ments are imposed. These values are finally compared
with the numerical energy release rate given by the Mθ

integral approach.

2 Experimental procedure

2.1 The grid method

The grid method is one of the white-light techniques
available to measure bidimensional displacement and
strain fields. It consists first in depositing a crossed
grid on the surface of the specimen under investigation
in order to track with a camera the slight change in
the grid as loading increases. In the current case, a 12-
bit/1,040 × 1,376 pixel SENSICAM camera connected
to its companion software CamWare was employed.
The grid was transferred using the procedure described
in (Piro and Grédiac 2004). The pitch of the grid was
equal here to 0.2 mm along both directions.

With this technique, the in-plane displacement and
strain fields are deduced from the images of the grid
taken during the test by processing them with the
windowed Fourier transform (WFT). This transform
actually provides the phases and its derivatives of the
quasi-regular marking of the surface. It can be easily
demonstrated that the change of the phase between
any current grid image and the reference grid image
is directly proportional to the in-plane displacement
(Surrel 2000). Strain components and local rotations
are merely obtained from the spatial derivatives of the
phase, using the definition of these quantities (respec-
tively half the sum and half the difference between the
displacement gradient and its transpose). In practice
the WFT is merely carried out by convolving the grid
images by a suitable kernel. Since the window of this
transform has a certain width greater than one pixel,
estimating the strain components at a given pixel relies
on the information contained in the neighboring pix-
els. The kernel of the WFT used here to perform this
calculation is a 2D Gaussian envelope whose standard
deviation is equal to sigma = 5 pixels. Using the classic
“3-sigma rule”, the width of this envelope can be esti-
mated to 2 × 3 × 5 = 30 pixels. The lowest distance
between two independent measurements being equal to
the width of the Gaussian envelope, this width is actu-
ally the spatial resolution of the technique for strain
measurement. Note that sigma = 5 pixels is the lowest
value that can be used here because the frequency of the
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Characterization of a cracked specimen with full-field measurements 111

grid in the image is f = 1/5 pixels −1 and because the
following inequality holds: f × sigma ≥ 1, as recently
rigorously demonstrated in Sur and Grédiac (2014).

It has been shown that the metrological performance
of this technique could be significantly improved (espe-
cially for small strain measurements) by getting rid of
most of the grid marking defects that unavoidably occur
when grids are printed on their support (Badulescu et
al. 2009a,b) . In particular, a very good compromise is
obtained between resolution in strain and spatial res-
olution. For instance, a typical resolution is strain is
some hundreds of microstrains for a spatial resolution
in strain equal to 30 pixels. These quantities however
strongly depend on various parameters such as the qual-
ity of the grid and lighting. Another feature of this tech-
nique is that the displacement and strain components
are calculated pixelwise, thus allowing detecting very
localized phenomena. Note however that these mea-
sured quantities are not independent from one pixel
to each other because measuring the phases and their
derivatives is performed at any pixel by relying on the
information contained in the neighboring pixels. Full
details on strain calculation with this technique can be
found in (Badulescu et al. 2009a,b) for unidirectional
and crossed grids, respectively.

2.2 Experimental device and procedure

The test was performed on a pre-cracked aluminum
specimen with a thickness of 10 mm. The aluminum
2024-T3 is used in this study with the Young modu-
lus of 70 GPa, the shear modulus of 28 GPa, the shear
strength of 283 MPa, the ultimate tensile strength of
483 MPa and the tensile yield strength of 345 MPa.
The choice of this metal is due to his good machin-
ability, surface finish capability and his high strength
of adequate workability. A schematics view is shown
in Fig. 1. As may be seen, a horizontal notch was first
machined but the dimensions of the specimen are not
those of a standard CT specimen. The reason is that it
was first placed in an Arcan-like testing device which
was rotated by θ=30◦, thus the notch was rotated by
θ with respect to the horizontal direction. This device
was then mounted in a MTS servo-hydraulic fatigue
testing machine and subjected to a cyclic load so that
a crack appeared and progressively propagated. The
test was stopped as soon as the crack was 3 mm in
length. Hence the specimen featured at the end of this

48,35 mm

22
,8

 m
m

18
,8

 m
m

70 mm
90

 m
m

d

3 mm

21 mm

Fig. 1 Specimen geometry and boundary condition

Fig. 2 Pre-cracked specimen mounted in the testing machine

first loading stage a crack inclined by θ with respect to
the notch (see Fig. 1). This pre-cracked specimen was
then machined so that it could be placed in the grips of a
quasi-static tensile machine (see Fig. 2). A quasi-static
test was finally performed up to failure.

A 48.35 × 41.6 mm2 grid was also transferred after
the fatigue test around the crack in order to measure the
displacement and strain fields in this region during the
quasi-static test by applying the grid image processing
technique described above.
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112 R. Moutou Pitti et al.

This procedure illustrate the fact that both the loca-
tion of the crack tip and the strain distribution can be
obtained for various crack angles, the orientation of the
crack near the tip changing during the quasi-static test
to become perpendicular to the applied load.

3 Invariant integrals

For the simple fracture mode, the energy release
rate G is generally computed by the curvilinear
J -integral (Rice 1968). Chen and Shield (1977) intro-
duced another integral, which also takes into account
mixed-mode fractures. Its main development is based
on invariant integrals and conservatives laws (Noether
1971), which induce a bilinear form of the free energy
density energy. Moutou Pitti et al. (2008), completed
this formulation by adding a propagation term. Finally,
the M-integral writes as follows:

M = 1

2

∫

�1

(
σ v
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ij · vi,j

)
· njd�1

+ 1

2
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The first integral is the stationary crack and the sec-
ond one accounts for the crack growth. This integral
involves a combination of derivatives of the real dis-
placements ui and stresses σ

(u)
i j on the one hand, and

derivatives of the virtual displacements vi and stresses
σ

(v)
i j on the other hand.

The M-integral in Eq. (1) involves stress compo-
nents and displacement gradients. Using a finite ele-
ment discretization, these fields are computed at the
integration points of the mesh. In this case, the curvi-
linear domain �1 requires a numerical interpolation. It
is therefore preferred to transform the boundary inte-
gral into a surface integral. According to the Destuyn-
der’s technique (Destuynder et al. 1983), the integration
domain is bordered by a map denoted �θ defined by the
curve shown in Fig. 3. This vector must be continuous
and differentiable on the domain � under considera-
tion.

According to these conditions, the general form of
the M-integral is given as follows (Moutou Pitti et al.
2008):
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Fig. 3 Integration domain (Moutou Pitti et al. 2008)
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Moutou Pitti et al. (2007), have shown that the Mθ

integral is equal to the energy release rate by substitut-
ing the virtual and real fields. Thus:

Gθ = Mθ =C1 · (
u K I )

2

8
with u K I = 8 · Mθ(v K =

I 1)

C1

(3)

C1 is the reduced elastic compliances in mode I. u K I

and v K I denote the real and virtual stress intensity fac-
tors for the opening mode, respectively. The real stress
intensity factor u K I which appears in Eq. (3) can be
obtained by considering a particular value for the vir-
tual stress intensity factors, as shown in the following
equation

4 Results and discussion

4.1 Displacement and strain maps

4.1.1 Comparison between numerical and
experimental results

Numerical and experimental results are first compared
in order to check that the measurement method pro-
vides reliable results. Various horizontal and vertical
experimental displacement fields are shown in Fig. 4a,
c, respectively. In this figure, note that 1 pixel = 40 μm
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Characterization of a cracked specimen with full-field measurements 113

Fig. 4 Numerical and experimental displacement maps (1 pixel = 40 μm), F = 70.95 kN

and the crack opening is given in millimeters. They are
compared with their numerical counterparts obtained
with a FE calculation performed with the ABAQUS
Finite Element package (see Fig. 4b, d, respectively)
in 2D case. Note that these simulations are carried out
within the framework of linear elasticity, so plastic-
ity that is likely to appear at the crack tip is not taken
into account. 10500 CPS4R elements were used for
the model. The constitutive material is assumed to be
isotropic elastic linear, with a Young’s modulus equal
to E = 70 GPa and a Poisson’s ratio υ equal to 0.34.
The boundary conditions in this case are obtained by
collecting the experimental displacement distributions
at the top and bottom of the grid and imposing them to
the FE model, see Fig. 5. Numerical and experimen-
tal results are globally in good agreement. On close
inspection however, it can be observed that the curva-

ture of the isolines located just above the crack tip is
more pronounced for the numerical model. The dif-
ference is small, but it will obviously be magnified by
differentiation when calculating the strain components,
as confirmed below.

The corresponding experimental strain maps ε are
shown in Fig. 6a, c, e and compared again with the
maps obtained with the FE model, see Fig. 6b, d,
f. As may be seen, the very high strain gradient that
occurs at the crack tip is clearly visible even though it
is slightly noisy. Interestingly, some differences can be
observed between numerical and experimental maps.
Concerning εxx (see Fig. 6a, b) the blue lobes are much
wider in the experimental map while the red ones are
very similar. The experimental εyy distribution (see Fig.
6c) exhibits bigger lobes than the numerical one (see
Fig. 6d). These lobes are also more inclined in the
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114 R. Moutou Pitti et al.

Fig. 5 Finite element
model and boundary
conditions

(a) (b)

experimental map. The red lobes in the εxy experimen-
tal map (see Fig. 6e) are smaller than in the numerical
map (see Fig. 6f). The inclination angle of the red
lobe located at the top is also different between the two
maps. These slight differences can potentially be due to
various causes. For example, the crack tip may be not
perfectly perpendicular to the front face of the specimen
because 3D phenomena arise, or the actual angle of the
crack near the tip is not exactly that used in the model,
or a small plastic zone spans in front of the crack tip.
This result emphasizes that methods based the use of
an a priori knowledge of the form of the displacement
and strain distributions near the crack tip may provide
incorrect results if the model is not suitably chosen.

This type of strain map was used to determine the
crack tip location and to deduce the crack propagation
during the test, as explained in the following section.

4.2 Finding the crack tip location from the strain
and local rotation maps

Finding the location of the crack tip is a key issue in
many problems dealing with cracked specimen char-
acterization. In many recent studies in which DIC is
involved, an a priori knowledge of the form of the strain
field ahead of the crack is necessary to have an infor-
mation that the measurement technique cannot directly
provide. In this case, the crack tip location is part of the
unknowns that are measured. This location is found by
performing optimization calculations (Zanganeh et al.
2013 for instance). In addition to these calculations, the
problem is that any deviation of the actual strain dis-
tribution from the model, as in the example discussed
above, can be really detected since no reliable measure-
ment of the strain field in this zone can be made, the res-

olution and spatial resolution in strain of the measure-
ment method used being not sufficient. In the present
study, the fact that strain fields can be measured despite
the high strain gradient (beyond a certain strain level
which is the resolution of the technique) leads the crack
tip location to be determined directly. Finding the crack
tip has been performed here using two different routes:
the first one relies on the strain fields, the second one
on the local rotation fields. They are briefly explained
and illustrated below.

It can be seen in Fig. 6e that the εxy strain field ahead
of the crack tip exhibits lobes. Taking the absolute
value of this quantity therefore leads to a distribution
which features clear peaks and valleys (see Fig. 7). It
is observed that these valleys all converge to a unique
point which is actually the crack tip. In addition, the val-
ley floor is approximately a straight line near the cross-
ing point between the valleys. The idea is to take advan-
tage of these two remarks by finding the valley floor in
the experimental strain maps, and then to deduce the
crossing point between these lines, thus giving the loca-
tion of the crack tip.

This procedure was tested first on synthetic data
obtained with a finite element model. This model,
which contains 12500 CPS4R elements, is depicted in
Fig. 5. The εxy strain field is depicted in Fig. 8b.
This strain field is obtained first with an irregular mesh
because the mesh density is greater near the crack tip.
This first field is then interpolated on a regular mesh to
mimic measurements that would be obtained on a reg-
ular grid: actually the CCD chip of the camera since a
measurement point is available at each pixel, see Sect.
2 above. Taking the absolute value of this distribution
leads to the lobes shown in Figs. 7, 8 shows the sub-
sequent stages of the procedure for F = 70.95 N. First
the valley floors are merely obtained by collecting the
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Characterization of a cracked specimen with full-field measurements 115

Fig. 6 Numerical and experimental strain maps, F = 70.95 N

points for which the strain amplitude is lower than a
threshold value chosen here to be equal to 1.5 E-04
(white points in the figure). This threshold value is

defined by trial and error. It is slightly greater than the
value that actually takes place along the valley floor to
be able to find the points located along it.
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Fig. 7 3D Strain configuration

The points located in each valley and near the crack
tip are then collected (red points in the figure). They
are used to define a straight line for each valley by lin-
ear regression of the white point cloud. Since there are
here three lines, the information is redundant and there
is no unique crossing point in practice. The crack tip
location is therefore considered to be the point located
at the lowest distance from the three crossing points
in the least square sense. Figure 8 shows such straight
lines superimposed to each valley. Comparing the coor-
dinates of the actual crack tip considered to define the
mesh (633,628) (or (25.30, 25.09) in mm) and the iden-
tified one (633.50, 627.15) (or (25.28, 25.08) in mm)
shows that the distance between them is tiny (0.022 mm
in the current example).

A second simulation has been performed with a
crack which becomes curved near the tip, as in the cur-
rent experiment when the crack propagates, thus lead-
ing to lobes whose shape is different from the preceding

one. Despite this new crack shape, performing the same
procedure leads to an error of the same order of mag-
nitude as in the preceding case (results not reported
here).

Finally, the preceding examples have been recon-
sidered after adding a white Gaussian noise to the ref-
erence numerical fields, (see Fig. 8b). The amplitude
of this noise is equal to 3.90E-04, which is roughly the
same order of magnitude as the actual noise observed in
the actual strain maps processed in this study. The pre-
ceding coordinates for the identified crack tip become
(633.64, 626.54) (or (25.31, 25.03) in mm), which leads
to an error of 0.286 mm, which remains quite accept-
able. Figure 9 shows the experimental location of the
crack tip for different applied loads F between 40 and
97.35 kN.

Another possibility for the determination of the
crack tip is to consider the local rotation map. An exam-
ple is shown in Fig. 10. This map features only one
valley, but this valley directly points to the crack tip.
The very high contrast between the colors in this very
confined region helps finding the location of the crack
tip directly on the map. The fact that only one valley
is observed instead of three for the strain map leads to
a lower resolution in the crack tip location, but both
approaches are complementary. The reason is that the
grid began to damage at the end of the test, when the
crack went through the specimen. This made it dif-
ficult to use the first method because the lobes were
not all clearly visible. The second method was there-
fore employed from F = 97.35 kN on. Typical local
rotation maps are shown in Fig. 11. It can be seen
that the deep blue valley goes to the crack tip while
the effect of the damage of the grid appears mainly at
the top of the crack. Both methods have been applied

Fig. 8 Crack type
identification with and
without noise

(a) (b)

123



Characterization of a cracked specimen with full-field measurements 117

Fig. 9 Close-up view of the
strain field near the crack
tip. Straight lines provide
the location of the crack tip
for various loading levels
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Fig. 10 Local rotation
maps

to the experimental measurements obtained here with
the grid method. Obtained results are gathered in Fig.
9 where the lines used to determine the crack tip are
superimposed to the strain field when the first method is
employed (see thin white portions of lines). The result-
ing crack tip coordinates are reported in Table 1. In
this table, F corresponding the critical force providing
crack propagation.

As a last remark, noise impairing the current strain
and local rotation measurements can be seen in Figs.
9 and 10 (see the blobs superimposed to the smooth
actual strain and rotation fields, especially for low val-
ues of the applied load). The relative weight of this
noise logically decreases as the strain level increases
from one figure to each other. It is however worth not-
ing that noise does not seem to impair the crack tip
location for the early stages of the load since the three
straight lines converge to nearly the same point.

Note that the out-of-plane movement induces ficti-
tious strain whose order of amplitude is equal to �l/ l,
where l is the distance between the grid and the CCD
chip of the camera (Molimard and Surrel 2012), and �l
the amplitude of the movement. This distance being
equal to 80 cm and the amplitude of this movement
being no greater than 1 mm, this fictitious strain is not
greater than 0.0125 %, which is negligible compared to
the strain values that are provided by the system in this
zone.

4.3 Crack tip location

Figure 12 presents the evolution of the load versus the
applied displacement, and Fig. 13 the same evolution
versus time. The corresponding locations are recalled
in Table 1.
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Fig. 11 Local rotation maps at the end of the test

4.4 Critical energy release rate

The experimental evaluation of the critical energy
release rate can be performed by using the compliance
method with an imposed displacement. This quantity

Fig. 12 Evolution of the applied force versus displacement

Fig. 13 Evolution of force versus time

Table 1 Values of critical
forces and crack tip location

Critical Ni Force Grip displacement Crack growth dF (kN) Crack tip position

F (kN) d (mm) da (mm) X (mm) Y (mm)

0 0.000 0.000

1 40.000 0.297 0.000 40.000 32.333 16.947

2 51.110 0.35 0.150 11.110 32.233 16.835

3 60.000 0.477 0.082 8.890 32.178 16.774

4 70.950 0.686 0.046 10.950 32.179 16.728

5 80.160 0.864 0.018 9.210 32.162 16.721

6 96.340 1.441 0.071 16.180 32.097 16.692

7 97.350 1.441 0.422 1.010 31.899 16.320

8 98.680 2.246 0,815 1.330 31.240 15.840

9 98.260 2.245 0.963 −0.420 30.600 15.120

10 85.500 3.083 8.867 −12.720 22,000 12.960

11 76.880 3.922 4.585 −8.620 17.440 12.480
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Fig. 14 Experimental elastic energy release rate G versus crack
length: compliance method

is given by the following equation

GC = F2
C

2 · b
·
(

�C

�a

)
d

(4)

where C = �d
�FC

, FC is the critical load inducing a
crack propagation length da, b is the thickness of the
specimen (equal to 10 mm here), and C is the compli-
ance given by Eq. (4). d denotes the displacement of
the moving grip. �FC represents the change in force
between two consecutives critical points reported in
Table 1.

The critical energy release rate is calculated using
Eq. (4) and the values reported in Table 1. The points
corresponding to the critical numbers 0, 1, 6, 9, 10 and
11 were not taken into account. This reason is the sin-
gularity of the compliance formulation (4) in imposed
displacements when the crack propagation is too small.
Figure 14 shows the evolution of the critical energy
release rate versus crack length. For this figure, we note
that the evolution of the crack tip lies between 32.50
and 33.95 mm and that the critical energy release rate
increases around 400 N/mm. The location of the last
point (G = 200 N/mm, which is lower than G for the
preceding loading stages) is justified by the decrease of
the energy release rate and the beginning of the material
collapse, as shown in Fig. 13.

4.5 Numerical energy release rate

The finite element software cast3M has been used in
order to implement the Mθ integral and obtain numer-
ical results. The value for the Young’s modulus E and
the Poisson’s ratio v are those already given above.
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Fig. 15 Comparison of numerical and experimental energy
release rate versus crack length

The boundary conditions are those depicted in Fig. 1.
Figure 15 shows the comparison between the numer-
ical energy release rate given by the Mθ integral Eq.
(2), and the experimental data obtained using the com-
pliance approach explained above Eq. (4). Numerical
and experimental results are in good agreement. The
small difference which is observed is due to the fact that
identifying the critical force inducing the specific crack
length during the crack process is somewhat tricky.

5 Conclusion

The grid method was employed here to measure the dis-
placement, strain and local rotation fields near the crack
tip of a pre-cracked specimen subjected to a tensile test.
It has been shown that these fields are very similar to
those obtained with a FE analysis in 2D configuration.
The strain and rotation fields were employed to deduce
the crack tip location in the images and to measure
the crack propagation during the test. The crack tip
propagation was also employed to obtain the critical
release rate at various load levels using the compliance
method. Finally, the Mθ integral in the crack growth
case has been implemented in a finite element soft-
ware in order to compute the numerical energy release
rate. The obtained values have been compared with the
experimental data. This illustrates the efficiency of the
proposed identification crack tip technique and the rel-
evancy of the numerical approach. In further work, the
model proposed in this paper will be generalized to
mixed mode crack growth process and deconvolution
will be used to enhance the strain maps near the crack
tip (Grédiac et al. 2013).
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