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The diffraction of fast atoms at crystal surfaces is ideal for a detailed investigation of the surface
electronic density. However, instead of sharp diffraction spots, most experiments show elongated
streaks characteristic of inelastic diffraction. This paper describes these inelastic profiles in terms
of individual inelastic collisions with surface atoms taking place along the projectile trajectory and
leading to vibrational excitation of the local Debye oscillator. A quasi-elastic regime where only
one inelastic event contributes is identified as well as a mixed quantum-classical regime were several
inelastic collision are involved. These regimes describe a smooth evolution of the scattering profiles
from sharp spots to elongated streaks merging progressively into the classical diffusion regime.

I. INTRODUCTION

The interaction of keV atoms with surfaces has a long
history, motivated, in part by industrial applications such
as plasma facing materials in tokamaks, but also by the
specific behavior of ions and atoms to probe surfaces
compared with photons or electrons. The combination
of grazing incidences and single crystal surfaces has of-
fered perfect conditions to understand a variety of basic
physical processes taking advantage of the periodic en-
vironment such as, for instance the resonant coherent
excitation[1] of H atoms by the surface electric field or,
reversely the excitation of surface optical phonons by the
electric field of the moving projectile ions[2, 3]. The in-
teractions of keV ions or atoms with the surface consist
of multiple collisions that are well controlled so that in-
dividual surface electronic excitations such as excitons[4]
or trions[5] have been identified together with their role
in electronic emission from ionic insulator[2, 4]. Progres-
sively weaker and weaker interactions were probed result-
ing in the observation of a quantum behavior illustrated
by diffraction features in the scattering profile[6–8].

Grazing incidence fast atom diffraction (GIFAD or
FAD) is an extreme surface sensitive technique (see[9] for
a review) perfectly suited to probe, in real time and at
high temperatures, the surface specific structures known
as surface reconstructions[10].

Despite elastic diffraction of keV atoms being pre-
dicted theoretically [11, 12], initial experimental diffrac-
tion patterns[6–8] did not consist of sharp diffraction
spots located on the Laue circle i.e. corresponding to en-
ergy conservation which is the signature of elastic diffrac-
tion. Later on, several experiments using surfaces with
large enough coherence length revealed clear evidence of
elastic diffraction[13–16].

This is illustrated in Fig.1 where a typical experimen-
tal setup is sketched. A keV ion beam is first neutralized
and sent inside a UHV chamber to interact with the sur-
face at angles close to one degree. If the crystal surface is
aligned along a low index direction, the detector placed
downstream shows a diffraction pattern, for example the

FIG. 1: Schematic view of a GIFAD setup. A beam of keV
helium atoms interacts at grazing incidence with crystal sur-
face. Here a pristine GaAs surface at ∼ 900K inside a MBE
chamber[10, 14]. The diffraction pattern is recorded ∼ 1m
downstream on a detector. The bright spots sitting on the
Laue circle correspond to the elastically scattered intensity.
The insets on the left show patterns[8, 17] with larger streaks
corresponding to inelastic regimes investigated here.

one displayed in Fig.1 corresponds to the β2(2 × 4) re-
construction of GaAs(001)[15]. It was recorded inside
a molecular beam epitaxy (MBE) vessel using a GaAs
surface at high temperature (∼ 580◦C) where the recon-
struction is stable. In addition, the quality of the termi-
nal layer is a prerequisite before monitor layer by layer
growth dynamics[10].

In most cases the Laue circle clearly visible in Fig.1 for
the GaAs surface is not present indicating the lack of en-
ergy conservation. This raises two important questions:
is the diffraction information impaired in this inelastic
regime ? is there something to be learned from these
inelastic profiles?

Before addressing these issues, the inelastic regime
must be understood better and this paper proposes an
approach based on a sudden approximation where indi-
vidual phonon modes are not included explicitly.

The paper is organized as follows : theoretical mod-
els are rapidly presented together with well established
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results on decoherence using the Debye Waller factor
(DWF ) in spatial and momentum approaches. Then the
specific conditions of grazing incidence scattering are ex-
amined from both spatial and momentum points of view.
A planar description of the interaction of the atom with
the surface is proposed leading to a new presentation of
the DWF where the classical projectile energy loss de-
termines the elastic scattering probability and suggests
the existence of a new mixed quantum-classical regime.
A unified description of these different regimes is pro-
posed showing a smooth continuity through the crossover
between quantum and classical diffusion. From the sta-
tistical properties of the individual collisions, the model
predicts the angular and energy loss distributions and the
associated line shapes of the inelastic diffraction peaks.
These predictions are then confronted with existing ex-
perimental results in the literature.

II. THEORETICAL DESCRIPTIONS

All theoretical diffraction models for fast atom diffrac-
tion start from a rigid surface lattice with atoms stand-
ing still at their equilibrium positions. The potential
energy landscape is determined by quantum chemistry
techniques, density functionals, or model binary poten-
tials. The specificity of grazing angles is accounted
for by averaging the actual 3D potential energy sur-
face V3D(x, y, z) along the direction of the fast move-
ment (here x as in Fig.1) producing a 2D landscape
V2D(y, z) where a particle with energy E⊥ diffracts just
as in standard thermal energy atom scattering[8, 18].
The range of validity of this axial channeling approxi-
mation has been investigated in detail[19, 20, 39]. With
this energy landscape, several techniques have success-
fully described the diffraction patterns such as exact wave
packet[8, 14, 21], close coupling[15] or multi configuration
time-dependent Hartree[20]. Other approaches based
on Bohmian trajectories[23] or even classical trajectories
and semi classical approaches[24, 25] including specific
correction of the rainbow divergence[25] have shown good
agreement with experimental results.
The simplest model is the hard corrugated wall ap-

proach (HCW) which considers that the momentum
transfer is localized at the turning point[26] and the av-
eraged 2D potential energy landscape V2D(y, z) is simply
replaced by a 1D corrugation function Zc(y) defined by
energy conservation V2D(y, Zc(y)) = E⊥. Considering
this 1D corrugation function Zc(y) as a mirror like grat-
ing, an optical model is enough to predict the diffracted
intensities as a Fourier like transform of Zc(y). Since elas-
tic diffraction implies that no energy is exchanged with
the surface, the spot profile is supposed to be the same
as the primary beam, in contrast with most experimental
results.
In the case of inelastic diffraction although many ex-

perimental results have been demonstrated, no well-
established theory is available to analyze them. So far,

experiments have been interpreted using elastic theories.
There has been an attempt to describe observed diffrac-
tion results using an elastic wave packet calculation per-
turbed by random kicks to the wave function[21]. It
showed good agreement to inelastic data but the angu-
lar profile was not predicted, it was adjusted by tuning
properties of the initial wave packet. Furthermore, this
calculation did not account for elastic diffraction and no
indication was given how to link both processes. Soon
after, a general framework based on the trasition matrix
formalism was proposed in[11] to describe both elastic
and inelastic processes. This model includes all phonon
modes however, there is no easy way to calculate the rel-
evant transition matrix elements. The model developed
hereafter can be seen as a simplification where the scat-
tering process is expanded in terms of individual elastic
or inelastic collisions rather than in terms of individual
phonons. Before doing so a brief recall of the Debye-
Waller factor is presented.

III. COHERENCE AND DIFFRACTION

Once elastic diffraction is identified at Bragg angles,
the coherence ratio of a diffraction pattern is the fraction
of the total scattered intensity at the Bragg peaks and is
called the Debye-Waller factor ;

DWF =
Ic
I0

= e−q2⟨z2⟩ (1)

where Ic is the coherent intensity and I0 the total scat-
tered intensity or that of the incident primary beam. As
usual in quantum mechanics, several interpretations are
possible from the standpoint of either real space or mo-
mentum space.

A. Spatial approach

This compact form of Eq.1 where q is the momentum
transfer and ⟨z2⟩ denotes the thermal mean square dis-
placement of the surface atoms have a simple geometric
interpretation. It is related to the path difference be-
tween trajectories leading to an identical final scattering
angle of momentum. Bragg conditions correspond to di-
rection in space (q⃗) where particles with a wave-vector
q⃗ emitted by a periodic array of atoms located at their
equilibrium position interact constructively. Then a dis-
placement δr⃗ gives rise to a path difference δr⃗ and a
phase shift δφ = q⃗.δr⃗ (Fig.2a). Switching to one dimen-
sion z for simplicity, a Gaussian distribution of δz with
standard deviation σz produces a gaussian phase distri-
bution with standard deviation σφ = qσz. The global

coherence of these waves (amplitudes) is given by e−q2σ2
z

which is the DWF if ⟨z2⟩ is equal to σ2
z .

The evaluation of ⟨z2⟩ is usually performed in the har-
monic approximation defined by the frequency ω, for the

ground state ⟨z2⟩ = ~
2mω so that DWF = exp(− q2~

2mω ).
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FIG. 2: Schematic view of the two approaches to the deco-
herence due to thermal vibrations. a) the coherence of an
ensemble is limited by the spatial spread of the emitters. b)
the probability pe = of recoilless emission from an harmonic
oscillator in its ground state ψ⟩ is |⟨ψ|eiqz|ψ⟩|2. Both ap-
proaches give identical result.

B. momentum approach

The DWF can also be written in a form where the
recoil energy Er = ~2q2

2m is explicit i.e.

DWF = e
−Er
~ω . (2)

This presentation is more familiar to the atomic and
nuclear physics community as the Mössbauer-Lamb-
Dicke factor giving the fraction of recoilless emission from
independent trapped particles. At a single particle level,
it is more convenient to define it as a probability for re-
coilless emission. This can be Mössbauer spectroscopy
where γ rays are absorbed by iron nuclei in a crystal[27],
or spectroscopic line narrowing at high pressure[28] or
Doppler free interaction of light with cold atoms in an
optical lattice[29].
In these cases, there is no interference between emit-

ted waves and Eq.2 can be interpreted as the probability
pe = |⟨Ψ |eiqz|Ψ⟩|2 that the wavefunction Ψ is left un-
changed after exchanging a momentum q with a particle.
Modeling the trap by an harmonic oscillator with reso-
nant frequency ω, the solution is straightforward using
the Bloch theorem[30] ;

⟨eiqz⟩ = e−
1
2 q

2⟨z2⟩ = e
−Er
2~ω . (3)

With a squared value |⟨eiqz⟩|2 = e
−Er
~ω identical to the

DWF factor.
The recoil energy Er reported above is the classical ki-

netic energy lost by the projectile and transferred to the
surface atom associated with the momentum q exchanged
with the surface atom. However, when this DWF prob-
ability is close to unity, i.e. in the recoilless Lamb-Dicke
regime, the trapped atom does not change momentum.
The basic laws of physics are preserved since the sys-
tem is not isolated; the whole crystal or the experimental

setup, responsible for the trapping potential, collects the
exchanged momentum without recoil energy.

In thermal energy atom scattering (TEAS) both in-
terpretations of the same formula can be given ; on the
one hand elastic diffraction implies that no energy is ex-
changed with the surface i.e. recoilless reflection and, on
the other hand bright diffraction peaks can be observed
only if the thermal fluctuations of the scatterer do not
destroy the coherence. A specificity of neutron or helium
diffraction is that the mass mp of the projectile is com-
parable to the mass m of the surface atoms so that, the
Lamb-Dicke regime or high coherence diffraction can ex-
ist only for projectile kinetic energies on the order of ~ω
the surface atoms vibration energy. This explains why
diffraction of keV atoms came as a relative surprise even
when considering the relative decoupling of motion ∥ and
⊥ to the surface.

IV. GRAZING ANGLE, COHERENCE AND
MULTIPLE COLLISIONS

A. Momentum approach

Taking a rigid LiF lattice and the binary interaction
potential published in[15], the trajectory of a 1 keV he-
lium atom impinging at one degree incidence can be in-
tegrated numerically. Figure 3 shows such a trajectory
together with the acceleration γx along the beam direc-
tion and γz perpendicular to the surface. A peak in the
acceleration along z is present each time that the projec-
tile flies over a surface atom. γx oscillates around zero
indicating that the slowing down in front of an atom is
immediately followed by an acceleration behind, limiting
the momentum transfer along x. Overall, the integral
of γx tends to zero as noted by[8, 18, 19, 24] and calcu-
lated analytically in[31, 32]. This justifies the use of the
axial surface channeling approximation where, schemat-
ically the surface egg-carton-like 3D surface corrugation
is replaced by a 2D washboard-like surface potential pro-
file, which acts as a diffraction grating for the projectile
wave. This cancellation of the integral momentum trans-
fer along x does not apply for γz because all peaks are
positive (directed towards the vacuum) and progressively
repel the projectile always in the same direction allowing
specular reflection.

For each binary collision, the momentum transfer can
be converted into a virtual recoil energy and these are
plotted in Fig. 4. The probability Pe that all binary col-
lision are elastic is the product of each individual proba-
bility pe ; Pe = Πi=N

i=1 pe. Taking the form of Eq.2 for each
of these collisions with individual recoil energies Eri for
pe, one obtains a form where factorization leads to the
sum of the recoil energies Eloss = Σi=N

i=1 Eri.

Pe = Πi=N
i=1 exp(

−Eri

~ω
) = exp(

−Σi=N
i=1 Eri

~ω
)
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FIG. 3: (Color online) Classical trajectory z(x) of a 1keV
helium projectile calculated on top of a row of fluorine atoms.
Note that the z scale (left) is ∼ 100 times the x scale. The
smooth trajectory is made of successive localized interactions
with the surface atoms as illustrated by the components γx, γz
of the acceleration along the trajectory (right scale).
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FIG. 4: (Color online) The energy transferred to the surface
atoms is estimated by taking the integral under each peak in
the acceleration curve γz of Fig.3 for trajectories on top of the
atomic rows (black histogram) or in between two rows (blue).
The predictions of the structureless planar model is the quasi
gaussian red curve (σ ∼ 1.04/Γa). The Neq model (dashed
red ) assumes Neq equivalent lattice sites.

producing a form similar to Eq.2 where the projectile
energy loss replaces the individual recoil energies of the
surface atom.

Pe = exp(−Eloss

~ω ) (4)

Such a compact form, similar to that of the Lamb-
Dicke regime is new in the grazing incidence context
where Eloss is the sum of virtual energy transfer over
a large number of collisions.

B. Trajectory length, continuous model, and
projectile energy loss

The trajectory reported in Fig.3 is derived from a
straightforward integration of the Newtonian equations
of motion. Each peak in the acceleration curve can be
integrated and associated to a given momentum exchange
and recoil energy transferred to the surface atoms at each
lattice site producing an energy deposition curve. Two
examples corresponding to ’on-top’ and ’in the valley’
trajectories are plotted in Fig.4. Both display a strong
gaussian character with significantly different amplitudes
but with a common well defined width. Note that for the
grazing angle considered here all trajectories end up on
the Laue circle confirming the axial channeling model in
the classical regime.

A simpler model can be proposed where the contribu-
tions of the binary potentials V (r) are averaged to pro-
duce a planar potential Vp(z). For a Moliere form of of

the radial potential V (r) = V
r e

−Γr the planar form is

Vp(z) =
2π
Γ nsV e−Γz where ns = 1/a2 is the surface den-

sity with one Fluorine atom per lattice site (a = 2.85Å =

4.03/
√
(2))[33]. In this translation invariant exponential

potential the movements parallel and perpendicular to
the surface are decoupled. Let us call v∥ = vix and v⊥ =
−viz the initial velocity component parallel and perpen-
dicular to the surface, θ = tan(v⊥/v∥) ∼ v⊥/v∥, and z0
the turning point such that Vp(z0) = E⊥ = E sin2 θ. The
characteristic time τ for a half turn on the surface de-
pends on the range 1/Γ of the potential, τ ∼ 1/Γv⊥ so
that the interaction length is L ∼ v∥τ ∝ 1/Γθ indepen-
dent of the projectile mass or energy.

More precisely, the trajectory z(t) can be integrated
analytically as well as its derivative ż and second deriva-
tive z̈ giving the angle θ(t) = ż/v∥ and its square µz̈2/2
(µ = mproj/mtarget is the mass ratio) corresponding to
an energy deposition curve;

z(t) = z0 + v⊥t+
2

Γ
ln(

1 + exp(−Γv⊥t)

2
)

dE(t) = µEa
1

v3∥

Γ2v4⊥
4 cosh4(Γv⊥t/2)

dE(x) ∼ µEaΓ2θ4

4 cosh4(Γθx/2)

(5)

The trajectory and energy deposition curves are plot-
ted in Fig. 3 and 4 respectively. Compared with their
numerical counterpart calculated on top of the fluorine
rows or in between, the planar formula shows a compara-
ble width and a magnitude somewhere between ’on-top’
and ’in-between’. Eq.5 can be integrates to produce the
total energy loss Eloss specific to grazing incidence[11].

Eloss =
2
3µEΓaθ3in (6)
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It is interesting to outline the surface effect by com-
paring the energy loss of Eq.6 to the energy loss δEsingle

expected if only one atom would produce the total de-
flection 2θ=(θin+θout); δEsingle = µE(2θ)2 (small angle
formula derived from energy momentum conservation).
The ratio of these two values indicates[11] that Eloss is
Neq times smaller than δEsingle with Neq given by

Neq =
6

Γaθin
(7)

Another important parameter is the peak value δEmax

of Eq.5 per lattice unit, corresponding to the central and
most violent collision encountered along the trajectory.

δEmax = µE Γ2a2θ4in/4 (8)

C. The equivalent scatterers model

In the equivalent scatterers model, used hereafter only
for illustration purposes, a further simplification is made
by considering that Neq successive collisions participate
equally, by δθeq = 2θ/Neq to the total deflection, and to
the total energy loss by Er = Eloss/Neq. The contribu-
tions of an individual scattering are;

δθeq = Γaθ2/3 , Er = µEΓ2a2θ4/9 (9)

Note that with θ ∼ 1deg ∼ 1/57 rad., θ4 is on the
order of 10−8 underlining that there should always be an
angle for which the Lamb-Dicke regime will be reached,
i.e. where the individual recoil energy Er is much less
than the vibration energy quantum ~ω. Of course, this
holds only if the surface quality allows such grazing tra-
jectories to develop without encountering topological de-
fects.
This equivalent scatterers model considers a straight

line trajectory of length L = Neq × a parallel to the sur-
face. It is a discrete version of the effective length model
used, for instance, to link the observed variation of the
neutralization fraction with the angle of incidence to an
electron density dependent Auger rates[34]. Fig.4 shows
that the length defined here is close to twice the fwhm
of the energy deposition curve and, consistently, that the
effective recoil energy is close to half of the maximum.

D. Spatial approach

As recalled in Eq. 1, the DWF can be expressed as a
function of the spatial fluctuation of the scatterers and
interpreted as a dephasing of the scattered waves. At
grazing incidence the reflection of the projectile occurs
on the rows of well aligned atoms. Considering that these
rows consist of Neq scatterers[11, 35], the thermal posi-
tion fluctuations of the portion of the row probed, should

be reduced to σz/
√
Neq where σz is the position fluctu-

ation of a single surface atom.

DWF =
Ic
I0

= exp(
−q2⟨z2⟩
Neq

) (10)

This is identical to Eq.6 and 4 so that the decoherence
in GIFAD can also be presented both in spatial and en-
ergetic terms. In the elastic diffraction calculation these
rows are considered infinite but it is precisely the finite
length that allows a simple estimate of the elastic scat-
tering probability via the phase coherence in the DWF
adapted to grazing incidence.

E. Temperature and Debye Model

The simple formulae reported above are valid for iso-
lated ground state harmonic oscillators. They have to
be adapted to solids where all the local oscillators are
connected together giving rise, in the Debye model, to
an increase of ⟨z2⟩ by a factor 3 when summing over all
phonon contributions[36]. The temperature effects are
easily accounted for by multiplying the ground state ex-
tension ⟨z2⟩ by coth(TD

2T ) where TD is the Debye tem-
perature describing the local oscillator; kBTD = ~ω.
This exact formula, derived from Boltzmann weighting
of the harmonic oscillator wave-functions, starts at unity
for T = 0, increases slowly above two for T = TD and
reaches the classical Dulong and Petit limit with a linear
behavior above TD. Overall the crude estimate of ⟨z2⟩
from an isolated oscillator in Eq.3 has to be multiplied
by 3 coth(TD

2T ).

⟨z2⟩ = 3~
2mω

coth(
TD

2T
) =

3~2

2mkBTD
coth(

TD

2T
) (11)

for an individual event associated with an energy δE
this gives an elastic probability pe;

pe = exp(−3
δE

kTD
coth(

TD

2T
)) (12)

and for the entire trajectory;

DWF = Pe = exp(
−2µE Γaθ3

in

kTD
coth(TD

2T )) (13)

Consistently, using Eq.12 in the Neq model gives a con-
stant individual probability

peq = exp(−µE Γ2a2θ4
in

3 kTD
coth(TD

2T )).

On surfaces and along the surface normal (along z),
the local harmonic oscillator strength is expected to be
half that of the bulk due to the absence of any layer on
top. The equipartition of energy is accounted for by con-
sidering a surface Debye temperature TDs ∼ TD/

√
(2).
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F. Different scattering regimes

The quantum and classical regimes are often identified
by the presence or absence of diffraction features[7, 8].
Here we will consider the quantum regime as defined by
the elastic scattering which is a more strict requirement.
In the above approach it means that all individual col-
lisions are elastic, and the scattering profile is a delta
function at the specular angle without associated energy
loss. Surprisingly the classical limit is more difficult to
define. Strictly speaking, the probability Pc that all colli-
sions along the trajectory are inelastic will always be zero.
This is because, at comparatively large distances from the
surface, in the wings of the profile in Fig. 4, the elastic
probability is unity. By construction, such events are not
taken into account in the Neq equivalent scatterer model
which considers only the collisions participating actively,
so that Pc is well defined as (1−pe)

Neq . This probability
is displayed in Fig.5 for 1 keV helium atoms. It shows
that the quasi-elastic and quasi-classical regimes are com-
pletely separated and that a mixed regime is present in
between. Here, direct observation of the individual elas-
tic collisions is probably impossible, hidden beneath the
almost equivalent number of inelastic ones but where pre-
dictions of the purely classical behavior would be overes-
timated due to the contributions or, more precisely the
lack of contribution from the significant number of elas-
tic collisions. Before discussing the associated energy loss
distribution and angular scattering profiles, the effect of
a single inelastic collision is investigated in detail.

V. A SINGLE INELASTIC COLLISION

Taking into account all possible inelastic transitions at
a finite temperature is complex in quantum mechanics,

even for a harmonic oscillator, whereas it is compara-
tively simple using classical mechanics. One simply con-
siders position and momentum distributions given by the
Gaussian quantum probability in Eq.11. In the present
case, the collision time of keV projectiles is smaller than
the typical vibration period by several orders of mag-
nitude. Compared with TEAS the interaction time with
the surface is the same (τ = 1/Γv⊥) but it is typicallyNeq

smaller with each surface atom. The sudden approxima-
tion corresponds here to a frozen approximation for the
surface atom. Only the position distribution has to be
taken into account in an inelastic collision by randomly
distributing the surface atoms around their equilibrium
position (see e.g.[3, 37, 38]).

A. Inelastic angular and energy profiles

At a distance z to the surface, the projectile deflection
associated with a surface atom at its equilibrium position
corresponds to the elastic value θe ∝ e−Γz (height of the
γz peaks in Fig.3). If the surface atom is displaced below
or above its equilibrium value by σz, the actual impact
parameter z becomes z ± σz and the deflection is dis-
tributed around the elastic reference δθ± = δθee

∓Γσz i.e.
an angular distribution which is the exponential of a nor-
mal position distribution. Such a distribution is known
as the lognormal distribution; P (δθ) = LN [δθe; Γσz](δθ).
This distribution LN [x0;w](x) is characterized by its me-
dian value x0 and a scale parameter w, here the median
value is the elastic scattering angle x0 = δθe and the scale
parameter w = Γσz with σ2

z the variance of the normal
distribution and Γ the coefficient in the exponential form
linking δθ and z.

LN [x0;w](x) =
A√
2πwx

exp(
−(ln x

x0
)2

2w2
) (14)

The scattering δθ angle appears in a ratio to the me-
dian value δθe associated with the equilibrium position
z = 0. For the simple interaction potential considered
here, Γ is fixed and the scale parameter w = Γσz does
not depend on the impact parameter (turning point) z0.
It is therefore the same for all binary collisions along the
trajectory and whatever the angle of incidence θ provid-
ing a universal angular profile for individual deflection
where only the magnitude varies. The width σθ of this
profile is proportional to the deflection angle and can be
defined via the variance σ2

θ of the lognormal distribution.

σ2
θ = ew

2

(ew
2

− 1)δθ2e (15)

The variance of the angular broadening induced by an
individual inelastic collision is therefore proportional to
the small angle binary recoil energy (Er = µEδθ2e) i.e.

σ2
θ = ew

2

(ew
2 − 1) Er

µE .

The recoil energy Er reported here is only the cen-
tral recoil energy associated with an inelastic collision
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Er = µEδθ2e . The energy loss profile of the projectile
can be obtained by considering that the values δE± as-
sociated with a displacement of the surface atoms by ±σ
are δE± = Er e∓2Γσ. This leads to a lognormal dis-
tribution P (δE) = LN [Er; 2Γσz](δE) of the energy loss
with a scale parameter w = 2Γσz i.e. twice the width of
the angular deflection distribution, due to the quadratic
dependence of the energy loss on the angular deflection.
Note that the inelastic angular profile is considered as a
variation around the central elastic value δθ, but the en-
ergy profiles are drastically different since, by definition,
the elastic scattering does exchange energy and is there-
fore not centered around Er. This is consistent with the
fact that for an elastic collision the wave function is left
unchanged in Eq.3.

B. Out of plane broadening

In the previous sections, the scattering was described
only in the specular plane (along z), either with the pla-
nar surface model or for trajectories located on top of a
row of atoms. Within these ”top row” trajectories, the
out-of-plane inelastic deflection originates from a target
displacement inside the surface plane and perpendicular
to the specular (x, z) plane, i.e. along the y direction.
A position δy of the scattering center will induce a lat-
eral deviation δθy. This corresponds in Fig.3 to a surface
atom displaced out of the figure plane and producing a
rotation by δθy of the scattering plane. This position
δy is normally distributed with a variance σ2

y determined

by the bulk Debye temperature i.e. ∼ half of σ2
z . The

distance to the target is now ρ =
√
z20 + y2 and the scat-

tering plane is tilted by an angle α = arctan(y/z0). The
deviation δθy is δθy = δθe sinα.
For perpendicular energies E⊥ . 1eV , z0 & few

Å so that for reasonable surface temperature, the ra-
tio σy/z0 . 1/10 suggesting further simplifications of
ρ ≃ z0 and sin(α) ∼ α. This leads to a linear form
δθy = y δθe/z0 indicating that, at this position, the typi-
cal lateral deviation δθy is an order of magnitude smaller
than δθe and that δθy should follow a normal distribution
if the z variation is neglected;

δθy =
Γaθ2 y

3z0
, σθy =

Γaθ2 σy

3z0
(16)

C. Averaging over the lattice unit

Eq.16 discussed above indicates that the on-top situ-
ation is not representative of lateral momentum transfer
mainly because the angle α of the scattering plane is cen-
tered around zero whereas this angle α can be significant
for positions y close to that producing the rainbow scat-
tering angle[2] i.e. such that dθy/dy = 0.
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FIG. 6: For 1keV helium atoms along the < 100 > direction,
the elementary elastic deflection functions δθz(by) (top) and
δθy(by) (bottom) are plotted with the inelastic broadening
σθz and σθy obtained by distributing the scattering center
located at by = 0 by a thermal gaussian distribution with σz

from Eq.11 and σy = σz/
√
2.

The actual profiles of the momentum transfer both in
the specular plane (δθ) and perpendicular (δθy) have to
be evaluated over all possible impact parameters forc-
ing us to abandon the planar model and adopt the string
model (could also be called row model)[39, 40] where inte-
gration of the individual binary contribution is performed
along the identical rows along the low index direction
probed. Along the < 100 > direction only one string (a
row of alternating F and Li) is needed per lattice site
(inset in Fig.4).

Vs(ρ) = 2V nxK0(Γρ), ρ =
√
y2 + z2 (17)

Where nx is the linear density and K0 is the modified
Bessel function of the second kind. Close to the sur-
face (z < a), the potential energy landscape can be esti-
mated accurately by summing the contributions of only
five rows, a central one and two adjacent rows on either
side. The turning point z0 now depends on the lateral
impact parameter by defining the corrugation function
zc(by). In this description, the elastic contribution is
given by deflection functions δθz(by) along z and δθy(by)
along y of an individual elastic collision with all surface
atoms still at their equilibrium position.

The corresponding inelastic scattering profile is now
derived by distributing the central atom according to the
σy and σz. Each point of the elastic deflection func-
tion is now a distribution and we follow these δθz(by)
and δθy(by) distributions along the corrugation function.
Taking the corrugation function zc(by) corresponding to
E⊥ = 0.1eV , the values of the elastic scattering along y
and z and their standard deviations σθz and σθy are plot-
ted in Fig.6 for the < 100 > direction. In this direction,
the linear periodicity within the string is a

√
2 while the

string periodicity or transverse periodicity, as observed
in diffraction, is ay = a/

√
2 = 2.015Å.

As anticipated, σθy is minimum on top of a row (the
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FIG. 7: Angular straggling δθz (right) and δθy (left) of an in-
dividual inelastic collision averaged over the lattice cell. Com-
pared with the ”on top” trajectory, the lateral broadening has
acquired a Lorentzian character with wL ∼ 3 times that of
Eq.16 while the lognormal scale parameter wz describing the
broadening of the polar distribution is reduced by ∼ 30%.

scattering plane is perpendicular to the displacement),
corresponding in Fig.6 to by = 0 and almost ∼ 3.5 times
larger in the bottom of the corrugation function where
the displacement has a large projection into the scatter-
ing plane. In addition, the shape of the inelastic scat-
tering profile averaged over the lattice unit are displayed
in Fig.7. The δθz inelastic angular distribution, along
the z axis, still shows a pronounced lognormal character
but clear departures can be observed for the tails. The
inelastic width σθy at by = ±ay/2 is almost half that at
by = 0 resulting in an average scale parameter reduced by
∼ 30%, but this ratio originating mainly from geometric
projection of the z contribution could be system specific.

Fig.7 shows that the inelastic δθy distribution is almost
gaussian for on-top conditions as in Eq.16 but large side
wings are produced by the tails of the lognormal distri-
butions on both sloping sides of the corrugation function.
In this geometry, both the displacements in y and z con-
tribute to the δθy profile. A lorentzian profile is super-
posed showing a resemblance but also clear departure on
the wings. The standard deviation averaged over the lat-
tice unit is almost three times larger than the prediction
of Eq.16 which was restricted to on-top trajectories.

The inelastic angular width σθy depends both on the
in-plane and out-of-plane movement σy and σz. Since
these two values are proportional to each other, the ratio
of σθy to σθz should not depend on temperature. Also,
the ratio should hardly evolve with the angle of incidence
because the turning point z0 varies smoothly so that the
geometry changes very slowly. Last but not least, the
integration over the lattice unit shows that, for moder-
ate angles of incidence, the length of the trajectory does
not vary significantly but that the associated energy loss
does. This is visible in Fig.4 where the energy depo-
sition curves associated with ’on-top’ and ’in-between-
rows’ trajectories both display a width comparable to
that of the planar model, but with quite different mag-
nitudes.
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FIG. 8: (Color online) The lognormal angular profile of a
single scattering event LN1(θ) (red curve) is self convoluted
N times (blues curves). They are displayed using a 1/N scale.
These are well fitted by lognormal distributions (red dots)

having a lognormal scale parameter wN = w1/
√
N (inset).

VI. THE CLASSICAL LIMIT

A. angular and energy profiles

As stated above it is not possible to reach a condition
where all collisions would be inelastic, there will always
be a significant probability that collisions on the wings of
the energy deposition curves are elastic. However, since
the final scattering width depend on the energy loss, the
classical angular distribution can be defined as the one
corresponding to an energy loss equal to the classical
limit derived in the planar model in Eq.6. The result-
ing angular variance σ2

cl will be the sum of individual
variance. As each individual variance is linked to the as-
sociated recoil energy, the resulting variance is given by
the sum of the recoil energies Eloss = ΣEr in Eq.6.

σ2
cl = ew

2

(ew
2

− 1)
Eloss

µE
, w = Γσz

σ2
cl = ew

2

(ew
2

− 1)
2

3
Γaθ3in

(18)

where Eloss from Eq.6 is not virtual anymore but
should correspond here to the measured energy loss. This
result can be derived also from the Neq model where the
ensemble of participating sites is finite and restricted to
Neq most important collisions each associated with a log-
normal scattering profile. The convolutions of lognormal
distributions are not lognormal distributions but, prob-
ably because here w < 1, they display a very strong
lognormal character as can be seen in Fig. 8 where
successive self convolutions perfectly superimpose with
their fit by lognormal distribution with scale parameter
wNeq = w/

√
N . Both the total energy loss approach

and the Neq approach agree on a classical angular dis-
tribution corresponding to a lognormal distribution with
median value 2θ and a scale parameter wcl = Γσz/

√
Neq .
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Similarly, the classical energy loss profile is a lognor-
mal distribution with a median value Eloss = ΣEr(Eq.6)
and scale parameter twice as large as the angular one or,

within the Neq model LN [NeqEr; 2ΓσzN
−1/2
eq ](δE) which

can be derived from successive convolutions.

B. Angular and energy correlations

At the single collision level, the energy and angular dis-
tribution are strictly correlated as Er = µEδθ2. Naively,
there is a concern that successive convolutions would blur
this correlation but this is not the case. The correlation
is well preserved so that, for a given angle of incidence
θin, the energy loss depends on the scattering angle θout
within the angular profile. More precisely it evolves with
cube of the scattering angle referred to the primary beam
direction and not to the surface ; ∆E ∝ (θin + θout)

3.

C. Neon LiF

There has not been many experiments where the en-
ergy loss has been recorded for neutral projectiles at graz-
ing angle of incidence. The main reason is that elec-
trostatic analysis is not possible and that sub-eV accu-
racy is desirable on top of keV energies. To our knowl-
edge, only Neon atoms have been carefully investigated
between 1 and 5 keV on LiF target oriented along a ran-
dom direction and for angle of incidence larger than one
degree[37, 38, 41, 42]. According to Eq.13 this corre-
sponds to a situation close to the classical limit.
J. Villette[41] showed that the energy loss profile can

be well described by a lognormal distribution, where the
scale parameter w varies slowly with the angle of inci-
dence and depends only on the surface temperature for
fixed incidence angles. The measured energy loss ∆E
was found to depend both on the angle of incidence and
on the outgoing angle. It was found to be proportional
to the overall scattering angle ∆E ∝ (θin + θout)

3. For
grazing incidence data using Ne atoms between 1-3 keV
on a LiF surface at room temperature, all the data could
be described by ∆E

E = α(θin+θout)
3 with α = 8±3 10−6

if θ is expressed in deg. These features were reasonably
well reproduced in numerical simulations where the sur-
face atoms were randomly displaced according to Eq.11
and a Debye surface temperature of 539K, allowing a dis-
cussion in terms of an effective number of colliders using
a range Γ = 3.5Å−1 from Ref[3].
Soon after, a planar model was developed linking the

lognormal scale parameter w to the range Γ of the in-
teraction potential and providing the energy loss[11, 43].
Similar qualitative conclusions were reached by [37, 38,
42] with higher projectile energy and a surface temper-
ature twice as large. They also developed a more elab-
orate tracking of systematic errors and found a value of
α almost twice larger. Using a comparable value of Γ

their simulations suggested a surface Debye temperature
of 250K instead of 539K.

All these observations find a natural interpretation in
the present frozen lattice formalism where the shape and
correlations of these quantities are calculated and linked
together without adjustable parameters. In the present
form, using the range parameter of the binary interac-
tion potential in[38, 41] the coefficient is ∆E

E = 2µΓa
3×8 ∼

4 10−6(θin+θout)
3, which indicates that the planar model

is capable of semi quantitative prediction. Eq.6 indicates
an energy loss independent of the temperature, but a
Debye surface temperature as low as 250K would imply
large amplitude of surface atoms so that, for instance,
the Li+ ions would not be completely hidden by the F−

ions as assumed here from the Fig.3 where Li+ ions are
almost invisible. For an equivalent momentum transfer,
the recoil energy of these Li ions is three times larger du
to their lighter mass. More work is needed to analyze
different contributions by simulations.

VII. MIXED QUANTUM-CLASSICAL REGIME

This is the regime where both pNe and (1 − pe)
N , the

probabilities for the successive collisions to be all elas-
tic or inelastic respectively are far from one (red and
blue curves in Fig.5). The observables such as the en-
ergy loss and angular profiles should lie in between the
delta function of the quantum regime and the broader
log-normal distribution discussed above. The actual
mean energy loss results from the Lamb-Dicke weight-
ing of all individual collisions along the trajectory i.e.
∆E = Σi=+N

i=−NδE(i)P (δE) with i = x/a and P (δE(x))
given by Eq.5. In contrast to Eloss which was defined
earlier as the sum of the possible (virtual) recoil ener-
gies, (becoming real in the classical limit), ∆E is the
actual energy loss i.e. the sum of the inelastic events.
The mean variance of the inelastic angular profile is

σ2
ine = ew

2

(ew
2

− 1)
∆E

µE
,w = Γσz (19)

It is displayed in Fig. 16 and lies well below the classical
limit σCl of Eq.18. The curve starts with a linear be-

havior (see Eq.20 below) and then merges with the E
3/4
⊥

classical dependence implicit in Eq.18.
Alternately, given the (quasi gaussian) energy deposi-

tion profile displayed in Fig.4, the statistical weight of
any combination of elastic and inelastic collision can be
calculated to generate the proper combination of all the
(∼ Neq!) associated scattering profiles instead of using
the one associated with the average energy loss. In ad-
dition, the perturbation can be developed by expanding
in terms of the number Nine of inelastic events where
all contributing profiles weighted by their probability are
taken into account. For illustration purposes, this can be
done by hand within the Neq model keeping in mind that
the flat probability distribution is a poor representation
of the quasi gaussian one displayed in Fig.4.
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FIG. 9: (Color online) For 1 keV He atoms, the red curve
indicates the number of lattice sites participating to the de-
flection (trajectory length) as a function of θin. The blue
curve indicates the number Nine of inelastic collisions that
actually participate to the energy loss and angular straggling.

The equivalent colliders model assumes independent
events with well defined probability pe and pine = 1− pe
that any individual collision is elastic or not, making the
statistics straightforward with a binomial weight

(
Neq

Nine

)
of Nine inelastic events among Neq collisions and angular
profile Pine(θ) given by

P (Nine) =

(
Neq

Nine

)
pe

Neq−Nine(1− pe)
Nine

Pine(θ) = Σ
Neq

Nine=1 P (Nine)LNNine(θ)

For large enough values of Neq this distribution can be
characterized by its mean value ⟨Nine⟩ = (1 − pe) Neq,
and variance equal to Neq pe (1− pe). These are plotted
in blue on Fig.9 with the standard deviation as an error
bar. The mean angular straggling and mean energy loss
will simply be given by the classical value (fully inelastic)
multiplied by pine = 1 − pe, the blue line in Fig.9. This
line indicates approximately how the observables connect
to the classical behavior.
The consequence on the scattering profiles are quite

significant since the final variance is only Nine times
that of a single collision, much less than the Neq of
the classical profile. For a number of inelastic colli-
sions exactly Nine (among Neq), the scale parameter is
wNine = w

√
Nin/Neq. The mean scattering profile cor-

responds to a scale parameter wmean = wCl

√
(1− pe)

which can be much narrower than the classical limit
which is itself much narrower than the individual scat-
tering width (central and external curves in Fig.8).
Returning to the more realistic planar model, the en-

ergy deposition curve is more localized and so is the
inelastic probability distribution. In the quasi-elastic
regime, i.e. when Eq. 13 gives an overall probability
larger than few percent, the individual inelastic proba-
bilities (Eq.12) are small enough to be approximated by
pine = 1−pe = 1−e−βδE ≃ βδE with β = 3

kTD
coth(TD

2T ).

The probability follows the same gaussian like distri-
bution so that the weighted distribution, i.e. the prod-
uct, should follow an even more localized distribution
with a variance reduced by a factor two. This suggests
that the inelastic properties will be governed by the few
central collisions making the Neq model inappropriate in
this quasi-elastic regime where only one or two inelastic
events contribute to the inelastic profile. The most prob-
able angular broadening will be associated with δEmax

the peak of the energy deposition curves (Eq.8), giving
a standard deviation of the θz inelastic angular profile
(Eq.15) ;

σ2
sc = ew

2

(ew
2

− 1) Γ2a2θ4/4

σsc = Γa
E⊥

2E
(e Γ2σ2

z (e Γ2σ2
z − 1))1/2

(20)

which should be characteristic of the quasi-elastic regime.
The θ2 dependence indicates that the inelastic width

can be extremely small at the lowest grazing angles and
Eq.20 can be useful to indicate the angular resolution
needed to resolve inelastic events. σsc can also be ex-
pressed as σ2

sc ∼ σ2
cl

3Γaθin
8 . This is approximately twice

as large than predicted by the Neq model which also gives

a linear behavior but with σ2
sc ∼ σ2

cl/Neq = σ2
cl

Γaθin
6 be-

cause the average value considered in the Neq model is ∼
half the value of the peak.

A. Temperature dependence

Two temperatures enter the model, the surface De-
bye temperature TD describes the most important sur-
face property here, namely the frequency of the Debye
local oscillator. Expressed as a temperature it gives an
idea whether, at a given temperature T the surface atoms
are mainly in the vibrational ground state or not. The
Debye temperature enters in two places to calculate the
elastic probability. One is via the simple ratio Eloss

kTD
and

the other is in the term coth(TD

2T ) which also scales as

T/TD providing a high 1/T 2
D sensitivity inside the ex-

ponent of the elastic ratio as illustrated in Fig.15. The
actual temperature T does not enter in the energy loss
Eloss because, the momentum transfer is calculated with
respect to the center of the wave-function and is there-
fore temperature independent. The temperature T enters
only in the term coth(TD

2T ) and in the inelastic properties.
It determines the spatial extent σz of the surface atoms
(see Eq.11) and therefore the width w = Γσz of the log-
normal scattering profile of an individual inelastic event.
For small values of the scale parameter (w2 ≪ 1), the
pre-factor present in the variance of the lognormal distri-

bution can be simplified ew
2

(ew
2 − 1) u w2 so that the

quasi elastic angular width (Eq.20) receives a compact
form.

σsc ∼ ΓaΓσz
E⊥

2E
. (21)
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In this respect the He-LiF system is probably not a favor-
able case because large value of the work function usually
mean large value of Γ and light mass of surface atoms
contribute to large values of σz.

VIII. INELASTIC DIFFRACTION

The inelastic processes have been described as angu-
lar straggling around the elastic scattering values. Each
deflection is so tiny that it hardly perturbs the overall
trajectory but induces significant broadening in the final
angle. The associated recoil energy is, on average, less
than a vibration quantum and does not allow path lo-
calization that would prevent diffraction. Of course the
inelastic events have have different final momentum do
not interfere with the elastic one even if some inelastic
event can accidentally end up exactly at Bragg position.
This makes the line profile and data analysis more com-
plex.

In the following sections, we use existing data[8, 15]
on the well investigated helium LiF system for which
the parameters of the model binary interaction potential
have been published[15]. The direction < 100 > (inset in
Fig.13) was chosen because only one row of alternating
Li and F ions is needed with a negligible role from the
Li ions at limited temperature and perpendicular energy
E⊥ (see Fig.3). Before comparing with the predictions of
the model developed in the previous sections, we briefly
review some of the specific aspects of inelastic diffraction
in the experiments.

A. data (re)analysis

In the early experiments where well resolved diffrac-
tion features were first observed with fast atoms[7, 8],
there was no clear evidence of an increased intensity at
the Laue circle (see e.g. Fig.10). In this context where
the energy is not conserved, even the central concept of
wavelength is not uniquely defined . The detector is lo-
cated far away from the surface, so each pixel corresponds
to well defined scattering angles θy, θz or ky, kz with the
fast movement kx perpendicular to the detector. To an-
alyze the diffracted intensities, a polar transformation is
needed indicating, for each pixel, to which diffraction cir-
cle (keff ) it belongs while preserving the coordinate ky
where diffraction is observed.

A priori, two polar transformations are possible, one
taking the center of the Laue circle as a universal refer-
ence i.e. the shadow edge (red circle in Fig.10 concentric
to Laue circle), and the other one referring all angles to
the position of the direct beam (white circles in Fig.10).
This is purely semantic for the elastic diffraction since
the Laue circle are identical in both approaches but, away
from the Laue circle, the effective diffraction circles are
different.
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FIG. 10: For 460eV He4 at 1.57◦ (i.e. E⊥ = 345 meV com-
parable to Ref[21, 51]), the diffraction circles containing the
beam position in the raw image a) are transformed into hor-
izontal lines in c). The effect of the doubly differential filter
applied in the z direction and isolating the elastic ky profile
and intensity[45] is illustrated in b) and d), the kz, vertical
extension is then given by the bandwidth of the filter.

Schematically the scattering by the surface consists of
an incoming and an outgoing part. The first scheme con-
siders that only the part leaving the surface is important
while the incoming trajectory is forgotten The second one
illustrated in Fig.10 considers, for each pixel, a diffrac-
tion circle intersecting to the primary beam and having a
diameter that is the average between incoming and out-
going trajectories.

In the previous discussion, the total scattering an-
gle appears in several equations as a natural reference
for all trajectories. The optical analogy implicit in the
HCW model allows a simple interpretation. In the HCW
model, the surface corrugation function is a mirror with
a shape zc(y) and the phase difference responsible for the
diffracted intensity is 2kinzc in the specular plane. The
inelastic diffraction can be regarded as a modification
of the wavelength by the surface so that, the phase dif-
ference between possible paths naturally splits into two
terms corresponding to the incoming and outgoing wave-
vectors resulting in phase modulation (kin+kout)zc with
keff = (kin + kout)/2. The relevant circle contains the
primary beam and the pixel of interest and is forced to
preserve the specular plane. With this transformation an
effective wave vector keff is associated to any pixel on the
detector[45]. All circles become horizontal lines while the
diffraction coordinate ky is left unchanged showing evenly
spaced diffraction peaks ky = mGy labeled according to
the specular one. In elastic diffraction, these intensities
Im are directly connected to the form factor, i.e. to the
scattering elements inside the unit cell. In the present
case the form factor is the potential energy landscape of
the frozen lattice unit cell.

To analyze how the relative intensities evolve on either
side of the Laue circle, we use an automatic fitting pro-
cedure using a multi-parameter profile that can adapt to
different line-shape but that is common to all diffraction
orders. For each given value of keff the fit produces a
line-shape and peak intensities Im. For successive val-
ues of keff the fit leaves the line-shape free to evolve
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FIG. 11: Polar transformed diffraction patterns of He on LiF
along the < 100 > direction. a) 460 eV from Ref[15] and b)
c) d) 200 eV from Ref[8]. Each horizontal line corresponds
to a well defined keff . The polar plots in Fig.12 and Fig.14
correspond to projections on the vertical axis i.e. P(keff ).

independently from previous k values. The fitted rela-
tive intensities are reported in the top panel of Fig.12 for
diffraction images recorded with 200 eV He3 projectiles
on LiF< 100 > at six different incidence angles[8] with
their associated profiles reported in the bottom panel of
Fig.12. Obviously, there is a smooth continuity and, look-
ing only at from the relative diffracted intensities it is
impossible to guess the location of the Laue circle. Only
the polar profiles indicated below and in fig.14, or the fit
parameters used to describe the peaks profiles indicate
the location of the Laue circle[46].

Here, the elastic diffraction profiles reported as dashed
lines under the scattering profiles are obtained by passing
a doubly differential ’Mexican hat’ filter having a band-
width equal to that of the primary beam σθ on the 2D
transformed images[14, 45, 47]. It relies on the fact that
inelastic profiles evolve more smoothly than the elastic
profile with the scattering angle θ so that subtracting
the half sum of the intensities located at angle θ+σθ and
θ−σθ from the intensity at θ gives only the rapidly vary-
ing elastic intensity at the Laue circle. Though not fully
quantitative, this procedure[45] provides a value of the
Laue circle and gives an indication of the absolute elastic
fraction. These estimated elastic peaks are displayed here
only to underline that continuity in the intensity ratios
Im(keff ) is not accidentally due to the absence of elas-
tic diffraction. It also shows that elastic diffraction was
present in the data[8, 15] but was not identified as such
because there was no model of the inelastic profile. Most
important, the intensity ratios Im(keff ) derived on both
side of the Laue circle seem to connect to each other as
if elastic or inelastic regime were giving identical results.
This alone is a clear motivation to better understand the
inelastic behavior. Note though that profiles analyzed
here have an elastic component indicating that the colli-
sions on the surface take place in the quasi-elastic regime
and that the continuity of the intensity ratios holds only
for scattering values within the fwhm of each polar pro-
file. Beyond this limited angular range, the inelastic in-
tensity ratio Im departs from the one measured under
the elastic component.

To interpret the intensity ratios Im(keff ) we use the
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FIG. 12: Scattering profiles as a function of the average mo-
mentum keff for six different angle of incidence[8] (Lower
panel). The elastic component is estimated from a doubly
differential filter (see Fig.14 for a better estimate). The cor-
responding relative intensities on the top panel show no sin-
gularity when passing though the elastic component.

HCW model which is here particularly simple along the
< 100 > direction where the LiF corrugation function
Zc(y) was shown[8, 9, 35] to be close to a simple cosine
Zc(y) = zc/2 cos(Gyy) with zc the full corrugation ampli-
tude. In this case the HCW predict diffracted intensities
Im given by Im = J2

m(2keffzc) where Jm is the Bessel
function of rank m. A fit to this model allows a direct
evaluation of the corrugation function and the results
are displayed in Fig.13. It indicates clearly that the cor-
rugation amplitude depends only on the perpendicular
energy E⊥ (axial channeling approximation) and that,
along this < 100 > direction, zc increases with E⊥ ; the
more the projectile presses on the surface, the larger the
corrugation amplitude. This is not surprising here since
the minimum of the corrugation function is in between
the rows[17], at a location where there is no atom so that
the local repulsion evolves less rapidly that on top of the
rows (inset in Fig.13). At larger perpendicular energy
(≥ 10eV ), the projectile will eventually penetrate in be-
tween the rows. Note that the energy region investigated
in TEAS is below 100 meV.

B. Elastic ratio

The DWF or elastic ratio can be estimated from the
relative area of the elastic peak. As illustrated in figs.10
the 1D doubly differential filter isolates an almost pure
elastic component when applied along kz, i.e. perpendic-
ular to the ky diffraction coordinate. On the Laue circle
the resulting 1D profile preserves the relative intensities
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FIG. 14: (color online) Polar angle distributions of 200 eV He
atoms corresponding to different angle of incidence θin. The
inelastic width and the elastic ratio are estimated using a two
component fit. A narrow gaussian component of fixed width
σ = 0.04 deg. corresponding to the primary beam profile and
a broader a lognormal with free width w.

of the diffraction orders[14, 45, 47] but the absolute in-
tensity is quite sensitive to the bandwidth. Here the in-
tensity of the elastic and inelastic components are deter-
mined by fitting the polar scattering profile by a gaussian
peak with a constant width equal to that of the primary
beam profile and a free lognormal profile as illustrated in

Fig.14. In this figure, the e−θ−3 ∝ θ−3 dependence of the
elastic ratio of Eq.13 is visible with the eyes of a believer.
The height of the elastic peak decreases more or less lin-
early while both the height and the width of the inelastic
profile increase linearly with the polar scattering angle.

More quantitatively, the Fig.15 displays the absolute
elastic fraction determined from the fits in Fig.14. It
shows an exponential decay but with a maximum coher-
ence limited to 50% and with a slope of ≈ 0.24meV −1.
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FIG. 15: The absolute elastic diffraction probabilityDWF es-
timated by the fit of the polar profile in Fig.14 are reported as
a function of the product Eθ3 and compared with prediction
of Eq.13 (scaled by by 0.4) for Debye surface temperatures of
540K[21, 22], 310K[48] and 250K[37, 38, 42].

Assuming a value of Γ=3.3 Å−1[14] the results of Eq.13
are reported for different values of the surface Debye tem-
perature found in the literature. However, different val-
ues of Γ were also proposed in the literature but a critical
analysis of TD and Γ is beyond the scope of the paper.
The comparison shows that at least 50% of the deco-
herence is not accounted for by the present model. The
possible origin will be discussed with help of the polar
and transverse inelastic angular profiles.

C. Polar angle inelastic line profiles

To our knowledge, the shape of the polar inelastic pro-
files (along kz) has never been analyzed in the diffraction
regime. Even in the quantum monte-carlo description
of the decoherence in Ref[21, 22], the kz profile is re-
produced by artificially broadening the projectile wave
packet.

According to the present model, a significant elastic
diffraction probability indicates a quasi-elastic regime
where only few collisions are inelastic. The width should
then follow Eq.20 and scale linearly with E⊥/E. The rms
widths of the inelastic profiles are displayed in Fig.16.
Once again, the comparison with prediction is far from
quantitative. The most salient disagreement being that
the experiment widths indicate a minimum value of 0.13
deg. This could be due to the limited surface quality,
either microscopic in the form of a reduced mean ter-
race dimension or macroscopic, in the form of mosaic
domain[16] which was indeed present on some part of
the crystal but difficult to identify due to the limited res-
olution. In this context, the prediction of Eq.18,19 and
20 are only plotted to illustrate the distinct angular de-
pendences associated with these three simple regimes.
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FIG. 16: (color online) The polar widths measured in Fig.14
are plotted as a function of the ratio E⊥/E and compared
with the prediction of the classical limit (Eq.18), of the quasi
elastic limit (Eq.20) and of the mixed inelastic regime (Eq.19).

D. transverse inelastic line profiles

All published analysis of the diffracted intensity have
focused on the Laue circle but since the inelastic contri-
bution can not be neglected the question of the peak pro-
file in general and of the inelastic contribution in particu-
lar are not well defined. Some empirical descriptions[35,
51] have been proposed which do not take into account
the intensity away from the Laue circle and can not com-
pare with the present description. As shown on the 2D
plots of Fig.10 the elastic profile on the Laue circle can
be isolated by a doubly differential filter. The 1D profiles
corresponding to Fig.11b) is plotted in the lower part of
the Fig.17 and displays a strong gaussian character with
a width σθ corresponding to that of the primary beam.
This however does not give an answer to the inelastic line
profile because the filter is not considered fully quan-
titative. Assuming that the elastic contribution drops
rapidly away from the Laue circle, the transverse profiles
are analyzed in the upper part of the Fig.17 at a dis-
tance ot 3 standard deviation σθ from the Laue circle.
This later is well fitted by a Lorentzian profile as used
in ref.[51] but with little precision whether the wings are
correct or not. As the Fig.7 suggests that Lorentzian has
too large wings, this specific aspect is evaluated in Fig.18
recorded along the < 110 > direction. The Fig.18b) sug-
gests that pure Lorentzian profile have indeed too large
wings producing significant intensity above the rainbow
angle and negative intensities when a diffraction order
with low intensity is located in between more intense
peaks. Since the profile calculated in the model and dis-
played in Fig.7 are not analytic we have used a simple
but empirical ”bounded Lorentzian” profile looking like
a standard Lorentzian Lw(x) = A/(x2+w2/4) in its cen-
ter but with wings attenuated by a Gaussian function

BLw(x) = Lw(x)× e−x2/4w2

. The good news is that the
variance is well defined σBL ∼ 0.732.w while it is not for
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cation doubly differential filter suppressing the inelastic con-
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the elastic standard deviation σθ =35 mdeg. Data from ref.[8].
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no elastic intensity is found the inelastic profiles close to the
rainbow angle are analyzed by a Bounded Lorentzian profile
in a) (see text) and by pure Lorentzian profile in b).

a Cauchy-Lorentz distribution.
To investigate further the disagreement pointed above

that inelastic scattering width do not tend to zero in
the quasi-elastic regime we have analyzed the data of
ref.[15] recorded with 460 eV He4 atoms at 1 deg. with
an angular resolution of 7 mdeg and where no trace of
surface mosaicity was found (Fig.11a)).

The elastic ratio is still limited to 50% but the width
of polar profile is lower around 80 mdeg (not shown)
which is still more than predicted in Eq.20. The Fig.19
shows the corresponding transverse momentum profiles
with narrow elastic peaks on the Laue circle even with-
out application of the doubly differential filter. The in-
elastic profile is made of sharp peaks on top of a com-
paratively broad base. It is not really possible to decide
what is the best line profile but the bounded lorentzian
profile (see above) indicate width ot 17 mdeg rms. It is
tempting to identify this narrow structure as the inelastic
profile originating from the quasi-elastic collisions pre-
dicted here while the broader contributions would orig-
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FIG. 19: Transverse momentum distribution (ky) at the spec-
ular angle (bottom) showing a gaussian profile with σ = 7
mdeg identical to the primary beam[15]. The top curve is
recorded 24 mdeg below and should be inelastic. The sharp
components have a ”bounded Lorentzian” width of 17 mdeg.

inate from surface defects. At 1 deg. incidence a single
terrace edge prevents elastic diffraction over a distance
L & a/θ ≈ 200Å so that the useful fraction of a terrace
of size T is only (T − L)/T . All the projectile getting
closer of the terrace edge undergo more and more vio-
lent collisions. Since a terrace edge perpendicular to the
beam does not affect the transverse periodicity a whole
range of inelastic diffraction conditions can be produced.
It should be mentioned that a quasi linear increase of

the transverse width, qualitatively in-line with Eq.20 and
Eq.19 was measured by [51]. However this observation is
performed at the specular angle with an unknown com-
position of elastic and inelastic contribution and the ab-
sence of a clear definition of the reported width prevents
a direct comparison. Interestingly though, they suggest
that the transverse width is identical along different di-
rections of the crystal surface.
As to the ratio close to three for the kzto ky inelastic

width suggested in the model, it can be observed directly
on Fig.11c) and 11d) where the elastic contribution is
negligible and where the brighter spots sit on a maxi-
mum of the diffraction curve (dIm/dkeff ∼ 0) so that
the polar profile is hardly distorted by the slowly varying
modulation of the Bessel function Jm in this < 100 >
direction. Also, at least in the quasi-elastic regime, the
strict correlation between individual scattering angle and
energy loss can be considered exact so that the quasi lin-
ear dependence of the transverse width with E⊥ is also
present as δky ∝ k2eff in each inelastic diffraction image.
In other words the spots are slightly distorted ellipses.

IX. DISCUSSION

We review here some of the assumptions made in the
model developed above.
At the very heart of the multiple inelastic model is

the local value of the stiffness Γ of the repulsive binary
interaction potential. In itself the existence of such bi-
nary potentials is not a severe requirement, these can
be regarded as an efficient way to fit the 3D potential
energy landscape usually evaluated within density func-
tional theory.

Similarly the requirement that these binary interaction
potentials can be expanded as a leading exponential term
V (r) = V e−Γr for distances to the surface z = zt ± σz

around the turning point zt is probably not a severe con-
straint at limited surface temperature. Most of the de-
flection takes place at these distances where the projec-
tile spends most of the interaction time τ = (Γv⊥)

−1 and
where the resulting forces are almost perpendicular to the
trajectory. The other fundamental input of the model is
the quantum movement of the surface atoms represented
by the Debye surface temperature TD. It enters both
the inelastic scattering properties and the Debye-Waller
factor, how much momentum can the vibrational wave-
function absorb without changing energy?

It turned out that even for the well investigated He-
LiF system, the literature reports quite different values
of Γ[9, 37, 48, 49] and TD [22, 38, 50]. Each have been
fitted to reproduce specific classical or quantum features.
A critical analysis of all these values would certainly help
improving the present model by putting clear boundaries
to the quantitative agreement. The Debye temperature
is of particular importance for the contribution of the Li
atoms completely neglected here. On the rigid lattice
the Li atoms are hidden behind the significantly larger F
atoms but their light mass could helps them spilling out
even at room temperature if TD is low enough.

The VdW attraction also has been neglected and is
certainly important in the 10-50 meV[14, 52, 54, 64] in
the form of the Beeby correction[44] where the effective
energy of impact is E⊥ = E sin2 θ+EV dW with EV dW the
depth of the potential energy well. The VdW attraction
also influences the shape of the binary potential V (r)
and may affect the local value of Γ(E⊥) as illustrated in
[25, 64] but it is not clear yet if the distortion is important
after account of the Beeby correction.

As such, the present model does not predict the
diffracted intensities but the ingredients are the same as
for other treatments namely, the potential energy land-
scape averaged over the lattice. Note that the model
suggests that this PES should not account of the ther-
mal movement as done in Ref[21, 22]. Starting from this
PES, elastic diffraction requires only the projectile mass
while inelastic contributions depend on the surface tem-
perature, mass and Debye frequency.

The model uses a rigid lattice so that all trajectories
remain identical close to the surface irrespective of the in-
elastic event taking place. The influence of these events
is considered only statistically and in the far field. This is
probably the main limitation of the model. For instance,
at high surface temperature or at larger perpendicular en-
ergies, more violent collisions can occur that could make
the associated trajectory significantly different from the
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elastic one close to the surface.
Also the common classical trajectory implicit in the

model is not adapted to more specific quantum effect
where multiple trajectories are involved, for instance
bound state resonances[15] or quantum reflection[53].
Only one inelastic process has been considered here,

the vibrational excitation of a surface atom. In con-
trast with models established for thermal energy atom
scattering, this model was not developed with direct
phonon excitation. If confirmed, this model leaves little
hope to be able to resolve phonon modes as in inelas-
tic TEAS[65, 66]. Note that even at hyperthermal ener-
gies recent measurements and analysis[67] have suggested
that a multiphonon excitation regime can be present with
consequences having similarities with the model devel-
oped here.

X. SUMMARY AND CONCLUSION

A simple and parameter free model has been presented.
It describes the multiple smooth collisions taking place
along the classical trajectory with surface atoms located
at their equilibrium position (rigid lattice). Consider-
ing the short collision time, a sudden approximation is
developed where only the local Debye oscillator is con-
sidered instead of the phonon branches. The successive
virtual binary recoil energies cumulated along the trajec-
tory (Eq.6) is proposed as a criterion to evaluate the over-
all elastic scattering probability (Eq.13). Three regimes
have been identified:
(i) A quasi-elastic one where almost all collisions take

place in the Mössbauer-Lamb-Dicke regime and where
the observed inelastic properties can be understood as
deriving from a single inelastic event.
(ii) A quasi classical regime where almost all collisions

are inelastic and where quantum effects only reduce the
actual amount of energy loss and angular straggling.
(iii) In between a mixed quantum-classical regime is

identified progressively linking the quantum and classical
limits.
The model draws a direct link between the nuclear

energy loss and the polar angular straggling around the
specular angle or Laue circle.
For pedagogical purposes a simpler model where the

Neq collisions taking place close to the turning point are
considered equivalent was presented to illustrate the sta-
tistical treatment.
Qualitatively, the model predicts elastic and inelastic

diffraction intensity and the associated ky and kz line
shapes. The model naturally merges to the classical scat-
tering regime where the cubic dependence Eloss ∝ θ3in
(Eq.6) is in-line with observations, at least for moderate
energies angles and surface temperatures[37, 38, 41, 42].
Quantitatively, the comparison with existing experi-

mental data is less convincing. The measured elastic frac-
tion is much less than predicted, particularly at the low-
est angles of incidence where other sources of decoherence

such as topological defects are suspected to contribute.
This underlines an important difficulty inherent to in-

elastic diffraction that different decoherence mechanisms
tend to have comparable consequences often preventing
unambiguous interpretation. Note also that the com-
parison with scattering profiles is much more demanding
than a 2D color plot where a general impression of good
agreement is easier to reach.

Several analytical formula have been derived allowing
simple estimates of the effect of the change in primary
beam energy or angle of incidence, the projectile mass or
target mass as well as the sensitivity to temperature and
thermal motion.

From the experimental point of view, procedures have
been suggested to analyze inelastic diffraction images
taking the primary beam as a reference for diffraction
circles. The data suggest that the topological defects be-
coming increasingly important at grazing incidence are
the most important limitation to investigate the fully
elastic regime.

The < 100 > direction investigated here is simple in
term of modeling but the random direction investigated
by Ref[51] produces a simpler scattering profiles and it
would be interesting to adapt the present model to ran-
dom direction.

More work is needed with new data and new binary
interaction potentials to be able to discuss the validity of
the model and the underlying assumptions.

Finally, several other inelastic processes can contribute
to the inelastic signal. High energy (∼ 10 eV) local-
ized electronic excitations were found to give rise to a
momentum exchange larger than the reciprocal lattice
vector destroying diffraction[9, 60]. At variance, more
gentle electron-hole pair excitation at the Fermi edge of
metal[56] seem to preserve the diffraction features[57–
59] [? ]. On the projectile side, electronic excita-
tion have not been considered but, for molecular pro-
jectiles, theoretical investigations of the rho-vibrational
excitations[61] have suggested diffraction pattern differ-
ing from the elastic ones. So far, fast atomic diffraction
on molecular layer[55] have shown only inelastic behav-
ior and this remain to be investigated more closely and
the present model offers a direct link to triangulation
approaches[62, 63].
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