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Abstract

Clause Learning is one of the most important components of a conflict driven

clause learning (CDCL) SAT solver that is effective on industrial instances.

Since the number of learned clauses is proved to be exponential in the worse

case, it is necessary to identify the most relevant clauses to maintain and delete

the irrelevant ones. As reported in the literature, several learned clauses deletion

strategies have been proposed. However the diversity in both the number of

clauses to be removed at each step of reduction and the results obtained with

each strategy increase the difficulty to determine which criterion is better. Thus,

the problem to select which learned clauses are to be removed during the search

step remains very challenging. In this paper, we propose a novel approach to

identify the most relevant learned clauses without favoring or excluding any of

the proposed measures, but by adopting the notion of dominance relationship

among those measures. Our approach bypasses the problem of results diversity

and reaches a compromise between the measures assessments. Furthermore, the

proposed approach also avoids another non-trivial problem which is the number

of deleted clauses at each reduction of the learned clause database.
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1. Introduction

The SAT problem, i.e., the problem of checking whether a Boolean for-

mula in conjunctive normal form (CNF) is satisfiable or not, is central to many

domains in computer science and artificial intelligence including constraint sat-

isfaction problems (CSP), automated planning, non-monotonic reasoning, VLSI

correctness checking, etc. Today, SAT has gained a considerable audience with

the advent of a generation of solvers able to solve large instances encoding

real-world problems. These solvers, often called modern SAT solvers [1, 2]

or CDCL (Conflict Driven Clause Learning) SAT solvers have been shown to

be very efficient at solving real-world SAT instances. They are built by in-

tegrating four major components into the classical Davis, Putnam, Logemann

and Loveland procedure, commonly called DPLL [3]: lazy data structures [1],

activity-based variable selection heuristics (VSIDS-like) [1], restart policies [4],

and clause learning [5, 1]. Although a nice combination of these components

contributes to improve the efficiency of modern SAT solvers [6], clause learning

is known as the most important component [7].

The global idea of clause learning is that during the unit propagation process,

when a current branch of the search tree leads to a conflict, moderns SAT

solvers learn a conflict clause that helps unit propagation to discover one of

the implications missed at an earlier level. This conflict clause expresses the

causes of the conflict and is used to prune the search space. Clause learning,

also known in the literature as Conflict Driven Clause Learning (CDCL), refers

now to the most known and used First UIP learning scheme, first integrated in

the SAT solver Grasp [8] and efficiently implemented in zChaff [1]. Most of the

SAT solvers integrate this strong learning scheme. Since at each conflict, CDCL

solvers learn a new clause that is added to the learned clauses database, and

the number of learned clauses is proved to be exponential in the worse case, it is

necessary to remove some learned clauses to maintain a database of reasonable

size. Therefore, removing too many clauses can make learning inefficient, and

keeping too many clauses also can alter the efficiency of unit propagation.
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Managing the learned clauses database was the subject of several studies

[1, 8, 2, 9, 10, 11]. These strategies were proposed with the objective to main-

tain a learned clause database of reasonable size by eliminating clauses deemed

irrelevant to the subsequent search. The general principle of these strategies

is that, at each conflict, an activity is associated to the learned clauses (static

strategy). Such heuristic-based activity aims to weight each clause according

to its relevance to the search process. In the case of dynamic strategies, such

clauses activities are dynamically updated. Although all the learned clause

deletion strategies proposed in the literature are shown to be empirically effi-

cient, identifying the most relevant clause to maintain during the search process

remains a challenging task.

Other works from the literature on the clause learning component have in-

stead focused on the minimization of the learned clause. These works aim mostly

at reducing the number literals from learned clauses [12, 13, 14, 15, 16]. In this

way, more recently, in [17], the authors propose a new in-processing learned

clause minimization approach able to remove redundant literals from learned

clauses for CDCL solvers. This approach is based on Boolean constraint prop-

agation, or more precisely unit (clause) propagation, which is time-consuming

on large instances. The integration of this approach in the state-of-the art

best SAT solvers allows to solve a large number of additional instances coming

from the hard combinatorial and application categories of the 2014 and 2016

SAT competitions. The SAT solver Maple LCM Dist winner of the last 2017

SAT competition on the Main Track instances implements this minimization

approach.

By considering the impact of clause learning on the practical resolution of

SAT instances, our motivation in this work comes from the observation that the

use of different relevant-based deletion strategies gives different performances.

Our goal is to take advantage of several relevant learned clauses deletion

strategies by seeking a compromise between them through a dominance rela-

tionship.

In this paper, we integrate a user-preference point of view in the SAT process.
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To this end, we integrate into the SAT process the idea of skyline queries [18],

dominant patterns [19], undominated association rules [20] in order to learn

clauses in a threshold-free manner. Such queries have attracted considerable

attention due to their importance in multi-criteria decision making. Given a set

of clauses, the skyline set contains the clauses that are not dominated by any

other clause.

Skyline processing does not require any threshold selection function, and

the formal property of domination satisfied by the skyline clauses gives to the

clauses a global interest with semantics easily understood by the user. This

skyline notion has been developed for database and data mining applications,

however it was unused for SAT purposes. In this paper, we adapt this notion

to the learned clauses management process.

In our previously related work [21], we propose to search at each reduction

step of the learned clauses database, the current reference learned clause [21]

(top-1 undominated learned clauses in this paper) according to a set of relevant

measures and to delete all the learned clauses dominated by this clause. In this

paper, we extend this idea by considering instead k current reference learned

clause i.e the top-k undominated learned clauses at each cleaning step and delete

all the learned clauses dominated by at least one of the top-k undominated

learned clauses.

The paper is organized as follows. We first present some effective relevant-

based learned clauses deletion strategies used in the literature. Then, our

learned clauses deletion strategy based on the dominance relationship between

different strategies is presented in Section 4. Finally, before the conclusion, ex-

perimental results demonstrating the efficiency of our approach are presented.

2. Around SAT Problem

Let L be a propositional language of formulas FL built in the standard way,

using usual logical connectives ¬, ∨, ∧, →, ⇒, ⇔, and a set of propositional

variables. Using linear Tseitin encoding [22], any Boolean formula f ∈ FL can
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be translated to CNF (f), a formula in conjunctive normal form. A CNF formula

is a conjunction (∧) of clauses, where a clause is a disjunction (∨) of literals.

A literal is a propositional variable (l) or a negated propositional variable (¬l).

The literals l and ¬l are called complementary literals. A unit clause is a clause

containing only one literal (called unit literal). An empty clause, noted ⊥, is

interpreted as false (unsatisfiable), whereas an empty CNF formula, noted >,

is interpreted as true (satisfiable). A CNF formula Φ can also be seen as a set of

clauses, and a clause as a set of literals. The size of the formula Φ corresponds

to the value
∑

c∈Φ |c| where |c| is the number of literals in the clause c. An

assignment I of is a function which associates a value I(x) ∈ {false, true} to

some of the variables of Φ. I is complete if it assigns a value to every variable of

Φ, and partial otherwise. A model of a formula is an assignment that makes the

formula true. The SAT problem consists in determining if a Boolean formula

expressed in CNF admits a model or not.

SAT is the NP-complete decision problem for which the largest amount of re-

search effort has been expended for the development of sophisticated algorithms

with highly-optimized implementations. Most of the SAT algorithms are highly

complex and empirical studies allows to assess and compare their performance.

An SAT competition organized each year allows both an objective assessment

of these SAT algorithms and a promotion of new SAT solvers. However, one

solver can be better than others at solving some SAT instances from a given

class, but dramatically worse on other instances. There is no solver effective

on all SAT instances class, different solvers perform best on different instances.

Thus, from this observation, rather than following the traditional approach of

choosing the best solver for a given class of instances, some works on SAT build

the portfolios algorithm [23, 24, 25, 26, 27, 28, 29] that selects solvers on a

per-instance basis using empirical hardness models for runtime prediction [30].

These empirical hardness models are usually built using machine learning tech-

niques. A predictor of an algorithm’s runtime on a given problem instance use

the set of features of the instance and the algorithms past performance [31, 32].

In order to do this, instances are grouped into classes based on their features,
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and the best algorithm is calculated for each class. Thereafter, given an in-

put instance, its features are computed and it is assigned to a class (using the

prediction model previously built), and it is solved by the corresponding solver

assigned to that class. In recent years, there have been some works to better

characterize the SAT instances in order to effectively classify them [33, 34]. In

fact, the set of features used to build the classifiers of SAT instances plays a

crucial role. In [35], the authors use some structure features of industrial SAT

instances to build some classifiers of industrial SAT families of instances. The

effectiveness of these classifiers is measured by comparing them to other sets of

SAT features commonly used in portfolio SAT solving approaches. In [36], it is

proved that the ratio between the run-times needed by a CDCL solver and by

a random-specialized solver is related to the scale-free structure of the boolean

formula.

The international SAT competition series stimulate the development of effi-

cient implementations leading to increasingly complex solvers with several num-

ber of parameters. These parameters allow solvers to be customized to a par-

ticular family of SAT instances. However, in the SAT competitions, solvers

are run using a single default parameter setting supplied by the authors for all

benchmark instances in a given track, this poses a problem for a practical use of

SAT who only cares about performance on one particular application and can

invest some time into tuning solver parameters for this application. So, a new

Configurable SAT solver Competition (CSSC) [37] has been designed in order

to evaluate solver performance for each SAT instance after having configured

its parameters. The CSSC takes into account the fact that effective algorithm

configuration procedures can automatically customize solvers for a given distri-

bution of benchmark instances. More precisely, for each type of SAT instances

and each SAT solver, an automated fixed-time offline configuration phase deter-

mines parameter settings of solver optimized for high performance on this type

of SAT instances. Then, the performance of solver on the type of instance is

evaluated with these settings, and the solver with the best performance wins.
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3. On the learned clauses database management strategies

In this section, we present some efficient learned clauses relevance measures

exploited in the most SAT solvers of the literature.

The most popular CDCL SAT solver Minisat [2] considers as relevant the

clauses the most involved in recent conflict analysis and removes the learned

clauses whose involvement in recent conflict analysis is marginal. Another strat-

egy called LBD for Literal Block Distance was proposed in [9]. LBD based mea-

sure is also exploited by most of the best state-of-the-art SAT solvers (Glucose,

Lingeling [38]) and whose efficiency has been proved empirically. LBD based

measure uses the number of different levels involved in a given learned clause to

quantify the quality of the learned clauses. Hence, the clauses with smaller LBD

are considered as more relevant. In [10], a new dynamic management policy of

the learned clauses database is proposed. It is based on a dynamic freezing and

activation principle of the learned clauses. At a given search state, using a rel-

evant selection function based on progress saving (PSM), it activates the most

promising learned clauses while freezing irrelevant ones. In [11], a new criterion

to quantify the relevance of a clause using its backtrack level called BTL for

BackTrack Level was proposed. From experiments, the authors observed that

the learned clauses with small BTL values are used more often in the unit prop-

agation process than those with higher BTL values. More precisely, the authors

observed that the learned clauses with BTL value less than 3 are always used

much more than the remaining clauses. Starting from this observation, and

motivated by the fact that a learned clause with smaller BTL contains more

literals from the top of the search tree, the authors deduce that relevant clauses

are those allowing a higher backtracking in the search tree (having small BTL

value). More recently, several other learned clauses database strategies were pro-

posed in [39, 40]. In [39], the authors explore a number of variations of learned

clause database reduction strategies, and the performance of the different exten-

sions of Minisat solver integrating their strategies is evaluated on the instances

of the SAT competitions 2013/2014 and compared against other state-of-the-art
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SAT solvers (Glucose, Lingeling) as well as against default Minisat. From the

performances obtained in [39], the authors have shown that size-bounded learn-

ing strategies proposed more than fifteenth years ago [8, 41, 42] is not over and

remains a good measure to predict the quality of learned clauses. They show

that adding randomization to size bounded learning is a nice way to achieve

controlled diversification, allows to favor the short clauses, while maintaining a

small fraction of large clauses necessary for deriving resolution proofs on some

SAT instances. In [40], the authors use the community structure of industrial

SAT instances to identify a set of highly useful learned clauses. They show that

augmenting a SAT instance with the clauses learned by the solver during its

execution does not always mean to make easy the resolution of the instance.

However, the authors show that augmenting the formula with a set of clauses

based on the community structure of the formula improves the performance of

the solver in many cases. The different performances obtained by each strat-

egy suggests that the question on how to predict efficiently the ”best” learned

clauses is still open and deserves further investigation.

On the other hand, it is important to note that the efficiency of most of

these state-of-the-art learned clauses management strategies heavily depends

on the cleaning frequency and on the amount of clauses to be deleted each

time. Generally, all the CDCL SAT solvers using these strategies exactly delete

half of the learned clauses at each learned clauses database reduction step.

For example, the CDCL SAT solver Minisat [2] and Glucose [9] delete half of

the learned clauses at each cleaning. Therefore, the efficiency of this amount of

learned clauses to delete (e.g the half) at each cleaning step of the learned clauses

database has not been demonstrated theoretically, but instead experimentally.

For our knowledge, there are not many studies in the literature on how to

determine the amount of clauses to be deleted each time. This paper proposes

an approach to identify the relevant learned clauses during the resolution process

without favoring any of the best reported relevant measures and which frees itself

of the amount of clauses to be removed at each time: the amount of learned

clauses to delete corresponds at each time to the number of learned clauses
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dominated by one particular learned clause of the set of the current learned

clauses which is called in the following sections, the reference learned clause.

4. Detecting undominated learned Clauses

We present now our learned clauses relevant measure based on dominance

relationship. We first motivate this approach with a simple example, and then

propose an algorithm allowing to identify the relevant clauses with some tech-

nical details.

4.1. Motivating example

Let us consider the following relevant strategies: LBD [9], SIZE (which

consider as relevant the clause of the short size) and the relevant measure use

by minisat [2] that we denote here CVSIDS. Suppose that we have in the learned

clauses database, the clauses c1, c2 and c3 with:

• SIZE(c1) = 8, LBD(c1) = 3, CV SIDS(c1) = 1e100;

• SIZE(c2) = 6, LBD(c2) = 5, CV SIDS(c2) = 1e200;

• SIZE(c3) = 5, LBD(c3) = 4, CV SIDS(c3) = 1e300.

The question we ask is the following: which one is relevant? In [9], the authors

consider the clause c1 which has the most smallest LBD measure as the most

relevant. In contrast, the authors of [39] and [43] prefer the clause c3 while the

preference of the authors of Minisat [2] leads to the clause c3. Our approach

copes with the particular preference at one measure by finding a compromise

between the different relevant measures through the dominance relationship.

Hence, for the situation described above, only the clause c2 is irrelevant because

it is dominated by the clause c3 on the three given measures.

4.2. Formalization

During the search process, the CDCL SAT solvers learn a set of clauses which

are stored in the learned clauses database ∆, ∆ = {c1, c2, ..., cn}. At each clean-

ing step, we evaluate these clauses with respect to a set M = {m1,m2, ...,mk}

of relevant measures. We denote m(c) the value of the measure m for the clause
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c, c ∈ ∆, m ∈M. Since the evaluation of learned clauses varies from a measure

to another one, using several measures could lead to different outputs (relevant

clauses with respect to a measure). For example, if we consider the motivating

example, c1 is the best clause with respect to the LBD measure whereas it

is not the case according to the evaluation of SIZE measure which favors c3.

This difference of evaluations is confusing for any process of learned clauses se-

lection. Hence, we can utilize the notion of dominance between learned clauses

to address the selection of relevant ones. Before, formulating the dominance re-

lationship between learned clauses, we need to define it at the level of measure

values. To do that, we define dominance value as follows:

Definition 1 (dominance value). Given a learned clauses relevant measure

m and two learned clauses c and c′, we say that m(c) dominates m(c′), denoted

by m(c) � m(c′), iff m(c) is preferred to m(c′). If m(c) � m(c′) and m(c) 6=

m(c′) then we say that m(c) strictly dominates m(c’), denoted m(c) � m(c′).

Definition 2 (dominance clause). Given two learned clauses c, c′, the dom-

inance relationship according to the set of learned clauses relevant measures M

is defined as follows:

• c dominates c′, denoted c � c′, iff m(c) � m(c′), ∀m ∈M.

• If c dominates c′ and ∃m ∈ M such that m(c) � m(c′), then c stritly

dominates c′ and we note c � c′.

To discover the relevant learned clauses a naive approach consists in com-

paring each clause with all other ones. However, the number of learned clauses

is proved to be exponential which makes pairwise comparisons costly. In the fol-

lowing, we show how to overcome this problem by defining at each cleaning step

of learned clauses database, a particular learned clause that we call here current

Reference Learned Clause (in short RLC) which is an undominated clause of ∆

according to the set of learned clauses relevant measures M. At each cleaning

step, all the learned clauses dominated by the current Reference Learned Clause
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(in short RLC) will be considered as the irrelevant learned clauses and thus

deleted from the learned clauses database.

To define current Reference Learned Clause, we need a new relevant measure

based on all the learned clauses relevant measures of M. We call this new

measure Degree of compromise, in short DegComp defines as follows:

Definition 3 (Degree of compromise). Given a learned clause c, the degree

of compromise of c with respect to the set of learned clauses relevant measures

M is defined by DegComp(c) =

∑|M|
i=1

m̂i(c)

|M | , where m̂i(c) corresponds to the

normalized value of the clause c on the measure mi.

Following the same idea, and in order to avoid keep too much learned clauses

in the learned clauses database at each reduction step, we propose a variant of

our dominance strategy that considers k Reference Learned Clauses (in short k-

RLC) instead one that we called here 1-RLC. More precisely, k-RLC strategy

is defined as follows: at each reduction step, we delete from the learned clauses

database all the clauses dominated by at least one of the k first undominated

learned clauses according to the set of learned clauses relevant measures.

In fact, in practice, measures are heterogeneous and defined within different

scales. For example the values of the learned clauses relevant measures in [2] are

very high, in exponential order while the values of the relevant measures in [9]

are smallest ones. Hence, in order to avoid that the measures with the higher

values make marginal the measures with smallest values in the computation of

the comprise degree of a given learned clauses, it is recommended to normalize

the measures values. In our case here, we choose to normalize all the measures

in the interval [0, 1]. More precisely, each value of measure m(c) of any learned

clause c must be normalized into m̂(c) within [0, 1]. The normalization of a given

measure m is performed depending on its domain and the statistical distribution

of its active domain. We recall that the active domain of a measure m is the set

of its possible values. It is worth mentioning, the normalization of a measure

does not modify the dominance relationship between two given values. If

we consider the learned clause c1 given in the motivating example in the section
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4.1, with its three values : DegComp(c1) =
̂CV SIDS(c1)+ ̂LBD(c1)+ ̂SIZE(c1)

3 , then,

we have, DegComp(c1) =
1

1e100
+ 3

nV ars()
+ 8

nV ars()

3 , with nV ars() the number of

variables of the Boolean formula.

Let us precise that, the value domain of all measures should be in accordance

i.e either lower values are better or higher values are better. For example, if we

consider the learned clause c1, and the three relevant measures LBD, SIZE and

CV SIDS, we take 1
CV SIDS(c1) value as the normalized value of the clause c1 on

the measure CV SDIS. In fact, CV SIDS higher value is better, whereas LBD

and SIZE values are better. As CV SIDS higher value is better, 1
CV SDIS(c1)

smaller value is so better also. In this way, the measures become comparable

over clauses.

After giving the necessary definitions (current reference learned clause and

Degree of compromise), the following lemma offers a swifter solution rather than

pairwise comparisons, to find relevant clauses based on dominance relationship.

Lemma 1. Let c be a learned clause having the minimal degree of compromise

with respect to the set of learned clauses relevant measures M, then c is an

undominated clause.

Proof 1. Let c be a learned clause having the minimal degree of compromise

with respect to the set of learned clauses relevant measures M, we suppose

that there exists a learned clause c′ that strictly dominates c, which means that

∀m ∈ M, m(c′) � m(c) and ∃m′ ∈ M, m′(c′) � m′(c). Hence, we have

DegComp(c′) < DegComp(c). The latter inequality contradicts our hypothesis,

since c has the minimal degree of compromise with respect to M.

In our k-RLC dominance strategy, the k first undominates learned clauses

are the k first learned clauses ranked in the increasing order of their degree

of compromise. It is important to note that at each reduction step the k first

undominates learned clauses are not necessary the k first learned clauses in

the learned clauses database ranked in the increasing order of their degree of

compromise.
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Property 1. Let M be the set of learned clauses relevant measures, ∀c, c′, c”

three learned clauses, if c � c′ and c′ � c” then c � c”.

Searching for all undominated clauses during each cleaning step can be time

consuming, such that we only compute the undominated clauses with respect

to the k reference learned clauses during each reduction step.

During the search process, at each cleaning step of the learned clauses

database, We compare all the remaining learned clauses with each of the current

reference learned clauses. Thus, for each learned clause, we perform at least 1

comparison and at most k comparisons with the k current reference learned

clauses to determine if the clause is dominated and then deleted or if the clause

is not dominated and therefore conserved.

Property 2. Given a learned clause database ∆ = {c1, c2, ..., cn}, k the number

of the current Reference Learned Clauses, the time complexity of our k-RLC

dominance approach is linear in the worst case.

Proof 2. Let ∆ = {c1, c2, ..., cn} be a a learned clause database, k the num-

ber of the current Reference Learned Clauses. For the k-RLC dominance ap-

proach, each learned clause is at most compared to the k first undominated

learned clauses. So we can make at most k × n comparisons to detect all the

learned clauses not dominated by none of the k first reference learned clauses.

4.3. Algorithm

In this section, after presenting the general scheme of a deletion strategy

of learned clauses (reduceDB(∆)) adopted by most of the reported solvers,

we propose an algorithm allowing to discover relevant learned clauses by using

dominance relationship.

Algorithm 1 depicts the general scheme of a learned clause deletion strategy

(reduceDB(∆)). This algorithm first sorts the set of learned clauses according

to the defined criterion and then deletes half of the learned clauses. In fact,

this algorithm takes a learned clauses database of size n and outputs a learned
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clauses database of size n/2. This is different from our approach which first

sorts the set of learned clauses according to the degree of compromise of each

clause and then removes all the learned clauses that are dominated by at least

one of the first k undominated learned clauses.

Algorithm 2 depicts our learned clause deletion strategy. It is important to

note that our dominance relationship approach does not remove learned clauses

whose size (number of literals) and LBD are less than or equal to 2. These

clauses are considered as more relevant and are maintained in the learned clauses

database.

Algorithm 1: Deletion Strategy: reduceDB function

Input: ∆: The learned clauses database of size n

Output: ∆ The new learned clauses database of size n/2

sortLearntClauses() ; /* by the defined criterion */1

limit = n/2;2

ind = 0;3

while ind < limit do4

clause = ∆[ind] ;5

if clause.size() > 2 and clause.lbd() > 2 then6

removeClause() ;7

else8

saveClause() ;9

ind + +;10

return ∆ ;11
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Algorithm 2: reduceDB-Dominance Relationship

Input: ∆: The learned clauses database; M: a set of relevant measures;

k: the number of reference learned clauses

Output: ∆ The new learned clauses database

sortLearntClauses() ; /* by degree of compromise criterion */1

ind = 1;2

j = 1;3

undoC = 1 ; /* the number of current undominated clauses */4

while ind < |∆| do5

c = ∆[ind] ; /* a learned clause */6

if c.size() > 2 and c.lbd() > 2 then7

cpt = 0 ;8

while cpt < undoC and ¬dominates(∆[cpt], ∆[ind], M) do9

cpt++ ;10

if cpt >= undoC then11

saveClause() ;12

j + + ;13

undoC = min(k, j) ; /* minimum between j and k */14

else15

removeClause() ;16

17

else18

saveClause() ;19

j + + ;20

undoC = min(k, j) ; /* minimum between j and k */21

ind + +;22

return ∆ ;23

Function dominates(cMin: a clause, c: a clause, M)24

i = 0;25

while i < |M| do26

m =M[i] ; /* a relevant measure */27

if m(c) � m(cMin) then28

return FALSE ;29

i + +;30

return TRUE ;31
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Proposition 1. The k Reference Learned Clauses considered by the algorithm

2 correspond to the k first undominated learned clauses ranked in the increasing

order of their degree of compromise.

Property 3. Let ∆ = {c1, c2, ..., cn} be a learned clause database and k the

number of the considered Reference Learned Clauses. Let u be the number of

undominated learned clauses after applying the algorithm 2. We have k ≤ u ≤

|∆|.

Proof 3. Trivial by using the proposition 1.

5. Experiments

For our experiments, we use three relevant measures for the dominance re-

lationship to assess the efficiency of our approach. Notice that the user can

choose to combine different other measures. We use SIZE [43], LBD [9] and

CV SIDS [2] measures. All these measures have been proved effective in the

literature [2, 9, 39]. It is possible to use more relevant measures, but it should be

noted that by adding a measure to M, the number of relevant learned clauses

maintained may decrease or increase. The decrease can be explained by the

fact that a learned clause can be dominated with respect to a set of measures

M and undominated with respect to M′ , such that M ⊂ M′. For example,

if two learned clauses c and c′ are undominated with respect to M, there is a

possibility that one of them dominates the other by removing one measure. The

increase can be explained by the fact that a learned clause can be dominated

with respect to M and undominated with respect to M′. For example, con-

sider a learned clause c which dominates another learned clause c′ with respect

to M, by adding a measure m to M, such that m(c′) � m(c), then c′ is no

longer dominated by c.

We run the SAT solvers on the 300 instances taken from the last SAT-RACE

2015 and on the 300 instances taken from the last SAT competition 2016. All
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the instances are preprocessed by SatElite [44] before running the SAT solver.

The experiments are made using Intel Xeon quad-core machines with 32GB of

RAM running at 2.66 Ghz. For each instance, we used a timeout of 1 hour

of CPU time for the SAT-RACE, and 10000s for the SAT Competition. We

integrate our approach in Glucose and made a comparison between the original

solver and the one enhanced with the new deletion learned clause strategy using

dominance relationship called k-RLC-Glucose. To determine the best upper

bound size k, we run k-RLC-Glucose with k = 1, 3, 5 and 6.

5.1. Number of solved instances and CPU time

Table 1 presents results on SAT-RACE-2015. We use the source code of

Glucose 3.0 with the measure LBD (written LBD-Glucose or Glucose in what

follows). We then replace LBD by each of the other measures : SIZE-Glucose

that considers the shortest clauses as the most relevant, CV SIDS-Glucose that

maintains the learned clauses most involved in recent conflict analysis, RAND-

Glucose that randomly deletes learned clauses and finally our proposal k-RLC-

Glucose that deletes from the learned clauses database all the clauses dominated

by the k first undominated learned clauses ranked in the increasing order of their

degree of compromise. Table 1 shows the comparative experimental evaluation

of the four measures as well as Minisat 2.2. In the second column of Table 1,

we give the total number of solved instances (#Solved). We also mention, the

number of instances proven satisfiable (#SAT) and unsatisfiable (#UNSAT) in

parenthesis. The third column shows the average CPU time in seconds (total

time on solved instances divided by the number of solved instances). On the

SAT-RACE 2015, our approach k-RLC-Glucose is more efficient than the others

in terms of the number of solved instances (see also Figure 1). In fact the original

solver Glucose solves 236 instances while it is enhanced with our dominance

approach as 10 (respectively 12) more instances are solved by k-RLC-Glucose

for k = 3 (respectively k = 6). In fact, solving such additional numbers of

instances is clearly significant in practical SAT solving. The CV SIDS-Glucose

solver solves 4 more instances than Glucose 3.0. Minisat 2.2 solves only 209
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instances.

As randomization of clause deletion sometimes pay [39], we quantify the per-

formance gap between our strategy and the random deletion-based one called

here RAND-Glucose. The solver RAND-Glucose is obtained as follows: at

each conflict, the activity of the learned clause c is set to random value irand(random seed, |VF |),

where irand(random seed, |VF |) return a number between 0 and |VF | and VF

denotes the set of variables occurring in the boolean formula F . We used exactly

the random function of Glucose with the same random seed to allow repro-

ducible results. We can see as reported in the table 1 that RAND-Glucose is

the worst solver among the five solvers, it solves 174 instances, 72 (respectively

74) instances of less than our solver k-RLC-Glucose for k = 3 (respectively

k = 6). This shows the interest of our dominance relationship approach on the

instances of the SAT-RACE 2015.

Solvers #Solved (#SAT - #UNSAT) Average Time

Minisat 2.2 209 (134 - 75) 585.19 s

RAND-Glucose 174 (99 - 75) 608.82 s

SIZE-Glucose 230 (131 - 99) 533.86 s

CV SIDS-Glucose 240 (140 - 100) 622.23 s

LBD-Glucose 236(136 - 100) 481.66 s

1-RLC-Glucose 238 (138 - 100) 481.72 s

3-RLC-Glucose 246 (144 - 102) 523.46 s

5-RLC-Glucose 245 (144 - 101) 542.29 s

6-RLC-Glucose 248 (145 - 103) 532.05 s

Table 1: Comparative evaluation on SAT-RACE-2015.

Figure 1 shows the cumulated time results i.e. the number of instances (x-

axis) solved under a given amount of time in seconds (y-axis). This figure gives

for each technique the number of solved instances (#instances) in less than

t seconds. It confirms the efficiency of our dominance relationship approach.

From this figure, we can observe that k-RLC-Glucose (for the values k = 3, 6)
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is generally faster than all the other solvers, even if the average running time

of LBD-Glucose is slightly better (see Table 1). Although 3-RLC-Glucose

needs additional time to compute the dominance relationship, the quality of the

remained clauses on SAT-RACE helps to improve the time needed to solved the

instances.
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Figure 1: Evaluation on SAT-RACE-2015

Table 2 shows 6 instances of the SAT-RACE 2015 solved by our approach

best version 6-RLC-Glucose in less than 2200 seconds but not solved by LBD-

Glucose, SIZE-Glucose, nor CV SIDS-Glucose in 3600seconds. The time used

to solve those instances may also explain the increase of the average running time

of 6-RLC-Glucose. In addition we also find that there is none instance solved

by all the other solvers and not solved by 6-RLC-Glucose (as detailed later).

This shows on the one hand that the application of dominance between different

relevant measures does not degrade the performance of all the solvers but instead

takes advantage of the performance of each relevant measure, considering the

SAT-RACE 2015 dataset.

Table 3 presents results on the instances of the SAT Competition 2016. Here

LBD-Glucose and CV SIDS-Glucose solve the same number of instances. Our
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Instances LBD SIZE CVSIDS 6-RLC

jgiraldezlevy.2200.9086.08.40.8 - - - 80.57 s

jgiraldezlevy.2200.9086.08.40.149 - - - 393.51 s

jgiraldezlevy.2200.9086.08.40.2 - - - 1599.86 s

manthey DimacsSorterHalf 37 3 - - - 1763.42 s

manthey DimacsSorter 37 3 - - - 1770.69 s

hwmcc10-*-pdtvisns3p00-tseitin - - - 2146.03 s

Table 2: Instances solved by 6-RLC-Glucose and not solved by the others on SAT-RACE

2015.

solver k-RLC-Glucose remains competitive and solves more instances than the

original solver Glucose for k = 3, 6. The figure 2 presents the cumulated

time results on the instances of the SAT competition 2016. It comes out from

this second dataset that 3-RLC-Glucose is slightly faster than LBD-Glucose.

LBD-Glucose is more efficient than the other solvers. A more fine analysis of

the figure 2 shows that 3-RLC-Glucose is generally more faster on the instances

solved in less than 3000 seconds while LBD-Glucose is generally more faster

on the instances solved between 3000 seconds and 5000 seconds. This can be

explained by the fact that sometimes during the resolution step, very few learned

clauses are dominated, thereby our solver keeps too much in the learned clauses

database.

This outcome gives credit to the NO FREE Lunch theorem [45]. We also

think that the aggregated function may not be unique for all the datasets, such

that it is necessary to explore the efficient combination of the preferred measures.

RAND-Glucose solves only 121 instances, 48 instances less than 3-RLC-

Glucose.

Table 4 shows 6 instances of the SAT Competition 2016 solved by our ap-

proach best version 3-RLC-Glucose among which 5 instances are solved in

less than 5000 seconds but not solved by LBD-Glucose, SIZE-Glucose, nor

CV SIDS-Glucose. This confirms as on the instances of the SATRACE 2015
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Solvers #Solved (#SAT - #UNSAT) Average Time

Minisat 2.2 138 (65 - 73) 1194.85 s

RAND-Glucose 121 (56 - 65) 1120.99 s

SIZE-Glucose 156 (67 - 89) 1396.73 s

CV SIDS-Glucose 165 (67 - 98) 1368.99 s

LBD-Glucose 165 (68 - 97) 1142.33 s

1-RLC-Glucose 156 ( 64 - 92) 1227.62 s

3-RLC-Glucose 169 (71 - 98) 1297.36 s

5-RLC-Glucose 165 ( 68 - 97) 1352.46 s

6-RLC-Glucose 167 ( 70 - 97) 1439.21 s

Table 3: Comparative evaluation on SAT-Competition-2016.
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Figure 2: Evaluation on SAT competition 2016

that our dominance approach does not degrade the performance of all the solvers

but instead takes advantage of the performance of each relevant measure.
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Instances LBD SIZE CVSIDS 3-RLC

barman-pfile08-032.sas.ex.15 - - - 5.01 s

partial-10-19-s - - - 1248.47 s

ak128modasbg2asisc - - - 1021.06 s

par32-3-c - - - 2206.07 s

gss-24-s100 - - - 4753.82 s

eq.atree.braun.13.unsat - - - 6683.69 s

Table 4: Instances solved by 3-RLC-Glucose and not solved by the others on SAT-

Competition-2016.

5.2. Common solved instances

In Table 5, the intersection between two relevant measures gives the number

of common instances solved by each measure. For example, LBD and SIZE

solved 219 instances in common, while 235 instances are solved by LBD and

6-RLC. We can see than our approach solves the largest number of instances

in common with each of the aggregated measures. More precisely, the number

of common instances solved with another measure is lower than the number of

common instances solved with our approach.

Measures LBD SIZE CVSIDS 6-RLC

LBD 236 235

SIZE 219 230 224

CVSIDS 233 221 240 234

6-RLC 248

Table 5: Common solved Instances from SAT-RACE-2015.

The table 6 gives the result of the intersection of the results between two

relevant measures on the instances of the SAT competition 2016. For a given

relevant measure, we can see that the number of common instances solved with

another measure is less than or equal to the number of common instances solved

with our approach k-RLC-Glucose for k = 3.
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Measures LBD SIZE CVSIDS 3-RLC

LBD 165 161

SIZE 153 156 153

CVSIDS 161 151 165 161

3-RLC 169

Table 6: Common solved Instances from SAT competition 2016.

To get more details, Table 7 gives the number of instances commonly solved

by the considered relevant measures on the instances of the SAT-RACE-2015.

This table allows to see the number of common instances solved by one, two,

three or four measures. For example, there are 218 common instances solved by

the four deletion strategies, while 43 instances are not solved by none of them.

We can observe that 0, 3, 4, and 6 are the number of instances solved alone

by respectively LBD and CV SIDS, SIZE and 6-RLC. Moreover, there is no

instance solved by the three strategies (LBD, SIZE and CV SIDS) and not

solved by our approach 6-RLC.

Measures 6-RLC ¬6-RLC

CVSIDS ¬CVSIDS CVSIDS ¬CVSIDS

LBD SIZE 218 1 0 0

¬SIZE 14 2 1 0

¬ LBD SIZE 1 4 2 4

¬SIZE 1 6 3 43

Table 7: Detailed of common instances with SAT-RACE 2015.

The table 8 gives more details on the number of instances commonly solved

by the considered relevant measures on the instances of the SAT competition

2016. From this table, we observe that 150 common instances solved by the

four deletion strategies and 123 instances not solved by none of them. It is

important to note on these instances of the SAT competition 2016 no instance

is solved by the three strategies (LBD, SIZE and CV SIDS) and not solved
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by our 3-RLC approach while 6 instances are solved by 3-RLC and not solved

by none other measure.

Measures 3-RLC ¬3-RLC

CVSIDS ¬CVSIDS CVSIDS ¬CVSIDS

LBD SIZE 150 1 0 2

¬SIZE 10 0 1 1

¬ LBD SIZE 1 1 0 1

¬SIZE 0 6 3 123

Table 8: Detailed of common instances with SAT competition 2016.

5.3. Combined measures

Table 9 gives on the number of instances of the SAT-RACE 2015 solved with

our dominance approach w.r.t the measures used in the dominance relations.

From this table, we can see that the number of instances solved by using our

approach (two or three measures in the dominance) is always greater than the

number of instances solved by using each measure alone. We also note that,

the number of instances solved by using two measures (instead of three) in the

dominance relationship is always lower than the number of instances solved

(248) by using three measures.

Measures LBD SIZE CVSIDS 6-RLC-Glucose

LBD 236

SIZE 238 230

CVSIDS 245 246 240

6-RLC-Glucose 248

Table 9: Combining two measures on SAT-RACE-2015.

The results of the table 10 confirm the results of the table 9 of the SAT

RACE-2015 in the sense that the number of instances of the SAT competition

2016 solved by using two measures (160 by using SIZE and LBD measures,
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162 by using LBD and CVSIDS measures, 161 by using SIZE and CVSIDS

measures) instead of three in our dominance approach is always lower than the

number of instances solved by using three measures (169).

Measures LBD SIZE CVSIDS 3-RLC-Glucose

LBD 165

SIZE 160 156

CVSIDS 162 161 165

3-RLC-Glucose 169

Table 10: Combining two measures on SAT competition 2016.

5.4. Percentage of deleted clauses

During our experiments, we compute at each reduction step of instance res-

olution, the percentage of deleted clauses i.e the number of dominated clauses

(which are removed) over the total number of learned clauses during this step.

This allows to obtain an average percentage of deleted learned clauses per solved

instance. By taking all the solved instances, we compute for each version of

our solver the average of the average percentage of deleted learned clauses

(AverageDeleted). We give also the average of the maximum percentage of

deleted learned clauses (AverageDeletedMax) and the average of the minimum

percentage of deleted learned clauses (AveragDeletedMin). The results are pre-

sented in Table 11 (respectively Table 12) for the instances of the SAT-RACE

2015 (respectively SAT competition 2016). We can see that on the instances of

the SAT-RACE 2015, our best version 6-RLC-Glucose deletes in average 37%

of learned clauses at each reduction step, with a standard deviation of 16%.

Figures 3 and 4 plot for each solved instance of the SAT-RACE 2015 (X-

axis), the average percentage of deleted learned clauses (red curve with left-Y-

axis) against respectively the total resolution time (overall solving time) and

the average resolution time (green curve with right-Y-axis). For each solved

instance, the average resolution time is obtained by dividing its total resolution
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Solvers AverageDeleted AverageDeletedMax AverageDeletedMin

1-RLC-Glucose 0.25 0.77 0.05

3-RLC-Glucose 0.33 0.78s 0.07

5-RLC-Glucose 0.36 0.78 0.07

6-RLC-Glucose 0.37 0.79 0.07

Table 11: Average of the average (respectively maximum and minimum) percentage of deleted

learned clauses on SAT-RACE-2015.

Solvers AverageDeleted AverageDeletedMax AverageDeletedMin

1-RLC-Glucose 0.30 0.70 0.08

3-RLC-Glucose 0.34 0.71 0.08

5-RLC-Glucose 0.37 0.71 0.09

6-RLC-Glucose 0.37 0.71 0.09

Table 12: Average of the average (respectively maximum and minimum) percentage of deleted

learned clauses on SATcompetition 2016.

time by the number of reductions made before solving the instance. We look

these statistics on our best version 6-RLC-Glucose.

On the Figures 3 and 4, the (red) curve of the average percentages of deleted

learned clauses exhibits a high variation of the percentages of reduction from

0.15 to 0.95, with an average value equals to 0.37 and a standard deviation

of 0.16. It comes out from this figure that the average percentage of deleted

learned clauses is less than 50% on 217 instances among 248 solved instances.

Our current strategy which uses k (k = 6 for these statistics) undominated

learned clauses at each step is satisfactory wrt the running time, even if it

can be possible to extend this stategy to a reduction with many undominated

clauses. The curve of the average percentages of deleted learned clauses also

shows 17 instances having the average percentage of deleted learned clauses

equal to 0. These 17 instances correspond to the instances solved by the solver

without having to reduce the learned clauses database.

Figure 3 shows on the one hand, the instances whose resolution times are

small but with a high average percentage of deleted learned clauses, and on the

other hand, the instances whose resolution times are high but with a low average

26



percentage of deleted learned clauses. In contrast, on the Figure 4 where we

use the average resolution time instead of the total resolution time, we remark

that the instances with the high average percentage of deleted learned clauses

have generally the small average resolution times. However, this figure shows

some instances with the small average percentage of deleted learned clauses and

whose the average resolution times are small.

This clearly shows that the number of deleted learned clauses at each reduc-

tion step is important, but is not the only component that impacts the resolution

time. Other key components of modern CDCL SAT solver such as the restart

policies [4] and the activity-based variable selection heuristics [1] also have an

influence on the resolution time.
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Figure 3: Average percentage of deleted clauses and resolution time for each in-

stance of the SAT RACE-2015 with 6-RLC-Glucose solver .

The figures 5 and 6 respectively show the same results that those of figures

3 and 4 but on the instances of the SAT competition 2016 with our 3-RLC-

Glucose solver. These figures clearly confirm the remark know of the literature

and already made on the instances of the SAT-RACE 2015 namely that the

resolution time of a SAT instance does not only depends on the number of

deleted learned clauses at each reduction step of the learned clauses database.

However, the analysis of the different Figures 3, 4, 5 and 6 bring the follow-
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Figure 4: Average percentage of deleted clauses and average resolution time for

each instance of the SAT RACE-2015 with 6-RLC-Glucose solver.

ing knowledge: for a quickly solving, some instances need the deletion of high

number of learned clauses at each reduction step, in contrast, others instances

need the deletion of small number of learned clauses. The information is that,

we should find the strategies allowing the solver to identify alone at each reduc-

tion step both the number of learned clauses to delete and the different clauses

to delete. This perfectly fits with the ideas developed in this paper.

For the instances of the SAT competition 2016, the curve of the average

percentages of deleted learned clauses exhibits a very high variation of the per-

centages of reduction from 0.09 to 0.89, with an average value equals to 0.34

and a standard deviation of 0.18. We can observe from the figures 5 and 6

that about 85% of the instances are solved by deleting less than 50% of learned

clauses at each reduction step. Compared to the resolution of the instances of

the SAT-RACE 2015, our approach keeps more much of learned clauses at each

reduction step. However the fact that the total number of clauses that were

deleted has changed (37% of the learned clauses removed on the SAT-RACE

2015 and 34% removed on the SAT competition 2016) is not the cause of the

small improvement on the instances of the SAT competition 2016, but it is well

due to our dominance criterion. In fact, on the instances of the SAT-RACE
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2015 (respectively SAT competition 2016) changing the remove half to remove

37% or less than 37% of the learned clauses database (respectively 34% or less

than 34%) does not give a similar achievement (see the figures 7 and 8).
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Figure 5: Average percentage of deleted clauses and resolution time for each in-

stance of the SAT competition 2016 with 3-RLC-Glucose solver.
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Figure 6: Average percentage of deleted clauses and average resolution time for

each instance of the SAT competition 2016 with 3-RLC-Glucose solver.

The figure 7 gives the number of instances solved by each version of Glucose

solver integrating the deletion strategies LBD, SIZE and CV SIDS depending

on the number of learned clauses to be deleted at each cleaning step of the
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learned clauses database during the resolution process.

The goal of this experiment is to see the impact of the quantity of learned

clauses to be deleted at each cleaning step on the performance of solver.

As our proposed approach removes approximately an average 36% of learned

clauses at each cleaning step, we run each of the three solvers with the quantity

of learned clauses to be deleted set to 10%, 20%, 30% and 40% instead of 50%.

The figure 7 (respectively figure 8) shows that for each of the three deletion

strategies (LBD, SIZE and CV SIDS), even by removing less than fifty percent

of the learned clauses at each reduction, the performances of Glucose solver are

not improved on the SAT-RACE 2015 instances (respectively SAT competition

2016). This clearly shows the benefit of our dominance relationship on these

instances.
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Figure 7: Number of solved instances per percentage of deleted learned clauses on

the instances of the SAT-RACE-2015

It should be noted that if the solver Glucose keeps all the learned clauses

(no learned clauses deleted) throughout the resolution process, it solves only

203 instances on the SAT-RACE 2015 instances in 1 hour (33 instances less

than the original solver and 45 instances less than the solver integrating our

dominance approach). On the instances of the 2016 SAT competition, keeping

all the learned clauses during the resolution process, the solver glucose solves
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Figure 8: Number of solved instances per percentage of deleted learned clauses on

the instances of the SAT competition 2016

only 131 in 10000 seconds (34 instances less than the original solver and 33

instances less than the solver integrating our approach).

This confirms the need to eliminate certain learned clauses (those deemed ir-

relevant) during the resolution process, and otherwise the interest of the learned

clauses removal problem in CDCL SAT solvers.

6. Conclusion and future works

In this paper, we propose an approach that addresses the learned clauses

database management problem. We have shown that the idea of dominance

relationship between relevant measures is a nice way to take advantage of each

measure. At each reduction step of the learned clauses database, we propose to

select the top-k current undominated learned clauses (the k first undominated

Reference Learned Clauses) according to a set of relevant learned clauses mea-

sures, and to delete all the clauses dominated by at least one of the top-k current

undominated learned clauses. This approach is not hindered by the abundance

of relevant measures which has been the issue of several works. The proposed

approach avoids another non-trivial problem which is the amount of learned

clauses to be deleted at each reduction step of the learned clauses database by
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dynamically determining the number of learned clauses to delete at each clean-

ing step. A general algorithm for our approach is proposed and evaluated on

the instances of the the SAT-RACE 2015 and the SAT competition 2016. The

experimental results show that exploiting the dominance relationship improves

the performance of CDCL SAT solver on these instances. The improvements

are more significant on the instances of the SAT-RACE 2015. For the case of

SAT-Competition where our approach achieve a small improvement, we must

explore the effects of other key components of CDCL SAT solvers on our dom-

inance approach. The instances categories might also be an issue which should

be explored.

To the best of our knowledge, this is the first time that dominance relation-

ship has been used in the satisfiability domain to improve the performance of a

CDCL SAT solver. Our approach opens interesting perspectives. In fact, any

new relevant measure of learned clauses can be integrated into the dominance

relationship.
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[19] A. Soulet, C. Räıssi, M. Plantevit, B. Crémilleux, Mining dominant pat-

terns in the sky, in: ICDM, 2011, pp. 655–664.

[20] S. Bouker, R. Saidi, S. Ben Yahia, E. Mephu Nguifo, Mining undominated

association rules through interestingness measures, International Journal

on Artificial Intelligence Tools 23 (04) (2014) 1460011.

[21] J. Lonlac, E. Mephu Nguifo, Towards learned clauses database reduction

strategies based on dominance relationship, CoRR abs/1705.10898.

[22] G. Tseitin, On the complexity of derivations in the propositional calcu-

lus, in: H. Slesenko (Ed.), Structures in Constructives Mathematics and

Mathematical Logic, Part II, 1968, pp. 115–125.

34



[23] C. P. Gomes, B. Selman, Algorithm portfolios, Artif. Intell. 126 (1-2) (2001)

43–62.

[24] S. Kadioglu, Y. Malitsky, M. Sellmann, K. Tierney, ISAC - instance-specific

algorithm configuration, in: ECAI - 19th European Conference on Artificial

Intelligence, Lisbon, Portugal, August 16-20, Proceedings, 2010, pp. 751–

756.

[25] Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann, Non-model-based

algorithm portfolios for SAT, in: Theory and Applications of Satisfiability

Testing - SAT - 14th International Conference, Ann Arbor, MI, USA, June

19-22. Proceedings, 2011, pp. 369–370.

[26] M. Nikolic, F. Maric, P. Janicic, Simple algorithm portfolio for SAT, Artif.

Intell. Rev. 40 (4) (2013) 457–465.

[27] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, Y. Shoham,

A portfolio approach to algorithm selection, in: IJCAI-03, Proceedings

of the Eighteenth International Joint Conference on Artificial Intelligence,

Acapulco, Mexico, August 9-15, 2003, p. 1542.

[28] L. Xu, F. Hutter, H. H. Hoos, K. Leyton-Brown, Satzilla: Portfolio-based

algorithm selection for SAT, J. Artif. Intell. Res. 32 (2008) 565–606.

[29] L. Xu, F. Hutter, H. H. Hoos, K. Leyton-Brown, : The design and analysis

of an algorithm portfolio for SAT, in: Principles and Practice of Constraint

Programming, 13th International Conference, CP, Providence, RI, USA,

September 23-27, Proceedings, 2007, pp. 712–727.

[30] F. Hutter, L. Xu, H. H. Hoos, K. Leyton-Brown, Algorithm runtime pre-

diction: Methods & evaluation, Artif. Intell. 206 (2014) 79–111.

[31] K. Leyton-Brown, E. Nudelman, Y. Shoham, Learning the empirical hard-

ness of optimization problems: The case of combinatorial auctions, in: Prin-

ciples and Practice of Constraint Programming - CP, 8th International

35



Conference, Ithaca, NY, USA, September 9-13, 2002, Proceedings, 2002,

pp. 556–572.

[32] E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, Y. Shoham, Un-

derstanding random SAT: beyond the clauses-to-variables ratio, in: Princi-

ples and Practice of Constraint Programming - CP, 10th International Con-

ference, Toronto, Canada, September 27 - October 1, Proceedings, 2004,

pp. 438–452.
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