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Abstract
Computing genetic evolution distances among a set of taxa dominates the running time of many
phylogenetic inference methods. Most of genetic evolution distance definitions rely, even if indi-
rectly, on computing the pairwise Hamming distance among sequences or profiles. We propose
here an average-case linear-time algorithm to compute pairwise Hamming distances among a set
of taxa under a given distance threshold. This paper includes both a theoretical analysis and
extensive experimental results concerning the proposed algorithm. We further show how this
algorithm can be successfully integrated into a widely used phylogenetic inference method.
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1 Introduction

The evolutionary relationships between different species or taxa are usually inferred through
known phylogenetic analysis techniques. Some of these techniques rely on the inference of
phylogenetic trees, which can be computed from molecular sequences or from profiles built
by sequencing specific regions, e.g., housekeeping genes for a given species. Phylogenetic
trees are also used in other contexts, such as to understand the evolutionary history of gene
families, to allow phylogenetic foot-printing, to trace the origin and transmission of infectious
diseases, or to study the co-evolution of hosts and parasites [10, 20].

In most cases, the process of phylogenetic inference starts with a multiple sequence
alignment. Then tree-building methods are used. These methods rely on some distance-based
analysis of sequences or profiles [21].

Distance-based methods for phylogenetic analysis rely on a measure of genetic evolution
distance, which is often defined directly or indirectly from the fraction of mismatches at
aligned positions, with gaps either ignored or counted as mismatches. A first step of these
methods is to compute such distance between all pairs of sequences. The simplest approach
is to use the Hamming distance, also called observed p-distance, defined as the number of
positions at which two aligned sequences differ. Note that the Hamming distance between
two sequences underestimates their true evolutionary distance and, thus, a correction formula
based on some model of evolution is often used [21, 10]. Although distance-based methods
not always produce the best tree for the data, usually they also incorporate an optimality
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criterion into the distance model for getting more plausible phylogenetic reconstructions,
such as the minimum evolution, least squares criterion [19] or the clonal complexes expansion
and diversification [6].

Most of the distance-based methods are agglomerative methods. They start with each
sequence being a singleton cluster and, at each step, they join two clusters. The iterative
process stops when all sequences are part of a single cluster. A phylogenetic tree is obtained
within this process. At each step the candidate pair is selected taking into account the
distance among clusters as well as the optimality criterion chosen to adjust it.

The computation of a distance matrix (2D array containing the pairwise distances
between the elements of a set) is then a common first step for distance-based methods, such
as eBURST [7], goeBURST [8], Neighbor Joining [22] and UPGMA [23]. This particular step
dominates the running time of most methods, taking Θ(md2) time in general, d being the
number of sequences or profiles and m the length of each sequence or profile. For large-scale
datasets this running time may be quite problematic. However, depending on the underlying
model of evolution and on the optimality criterion, it may not be necessary to be aware of the
whole distance matrix. There are methods that continue to provide optimal solutions without
a complete matrix. For such methods, one may still consider a truncated distance matrix
and several heuristics, combined with final local searches through topology rearrangements,
to improve the running time [19]. The goeBURST, our use case, is an example of a method
that can work with truncated distance matrices by construction, i.e., one needs only to know
which pairs are at Hamming distance at most k > 0.

Our results We propose here an average-case O(md)-time and O(md)-space algorithm to
compute the pairs of sequences, among d sequences of length m, that are at distance at most
k > 0, when k < (m−k−1)·logσ

logmd , where σ is the size of the sequences alphabet. We support
our result with both a theoretical analysis and an experimental evaluation on synthetic and
real datasets of different data types (MLST, cgMLST, wgMLST and SNP). We further show
that our method improves goeBURST [8], a widely used phylogenetic inference method.

Structure of the paper We describe and analyse the algorithm in Section 2. The goeBURST
use case is presented in Section 3. The experimental evaluation on both synthetic and real
data is presented in Section 4.

2 Closest pairs in linear time

Let P be the set of profiles (or sequences), defined over an integer alphabet Σ, (i.e.,
Σ = {1, . . . ,mO(1)}), with d = |P |, σ = |Σ| and all profiles of equal length m. Let also
H : P ×P → {0, . . . ,m} be the function such that H(u, v) is the Hamming distance between
profiles u, v ∈ P . Given a threshold k > 0, the problem is to compute all pairs u, v ∈ P
such that H(u, v) ≤ k, and the corresponding H(u, v) value, faster than the Θ(md2) time
required to compute the complete distance matrix for d profiles of length m.

We address this problem by indexing all profiles P in a suffix array (denoted by SA)
and by computing the longest common prefix (denoted by LCP) array [15]. We rely also
on a range minimum queries (RMQ) data structure [1, 2] over the LCP array (denoted by
RMQLCP). The problem is then solved in three main steps:
1. Load and index all profiles in an SA.
2. Enumerate all candidate pairs given the maximum distance k.
3. Verify each candidate pair and check if the associated distance is no more than k.
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Table 1 Data structures used in our approach for each step.

Profile indexing Candidate pairs enumeration Pairs verification

Suffix array Binary search Naïve
LCP based clusters RMQLCP

Table 1 summarizes the data structures and strategies followed in each step. Profiles are
concatenated and indexed in an SA. Depending on the strategy to be used, we further process
the SA and build the LCP array and pre-process it for fast RMQ. This allows for computing
distances and enumerating candidate pairs faster. In what follows, we detail the above steps
and show how data structures are used to improve the overall running time.

2.1 Step 1: Profile index

Profiles are concatenated and indexed in an SA S in O(md) time and space [13, 11].
Since we only need to compute the distances between profiles that have, at most, a

dissimilarity of k, we can conceptually split each profile into k fragments of dimension
L = b m

k+1c. It is then folklore knowledge that if two profiles are within distance k, they must
share at least a fragment of length L. Our approach is based on the use of S to efficiently
identify matching fragments among profiles. This permits to quickly identify candidate pairs.

2.2 Step 2: Candidate pairs enumeration

The candidate pairs enumeration step provides the pairs of profiles that do not differ in more
than k positions, but it may include spurious pairs. Since an SA is an ordered structure, one
simple solution is to use a binary search approach. For each fragment of each profile, we can
obtain in logarithmic time O(L log n), with n = md, all the suffixes that have that fragment
as a prefix. If a given match is not aligned with the initial fragment, i.e. it does not occur
at the same position in the respective profile, then it should be discarded. Otherwise, a
candidate pair is reported. This procedure is done in O(dkL logn) = O(n logn).

Another solution relies on computing the LCP array: the longest common prefix between
each pair of consecutive elements within the SA. This information can also be computed in
O(n) time and space [12]. Since the SA is an ordered structure, for each contiguous suffixes
sisi+1si+2, with 0 ≤ i < n− 2, the common prefix between si and si+1 is greater than the
prefix of si and si+2. By construction, it is possible to get the position of each suffix in
the corresponding profile in constant time. Then, we cluster the corresponding profiles of
contiguous pairs if they have an LCP value greater or equal to L and they are aligned. This
procedure can be done in O(kd2) time in the worst case.

2.3 Step 3: Pairs verification

After getting the set of candidate pairs, a naïve solution is to verify the distance for each
pair of profiles by comparing them in linear time, i.e., O(m) time. However, if we compute
the longest common prefix between each consecutive pair of elements within the SA, we can
then perform a sequence of O(k) RMQ over the LCP array for checking if a pair of profiles is
at distance at most k. Since after a linear-time pre-processing over the LCP array, RMQ can
be answered in constant time per query [1], we obtain a faster approach. This alternative
approach takes O(k) time to verify each candidate pair instead of O(m) time.

WABI 2017
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2.4 Analysis
Algorithm 1 below details the solution based on LCP clusters and Theorem 1 shows that
this algorithm runs in linear time and linear space on average. We rely here on well known
results concerning the linear time construction of the SA [13, 11] and the LCP array [12], as
well as the RMQ pre-processing in linear time and space [2].

In what follows, LCP[i] is the length of the longest common prefix of suffixes si−1 and si,
and RMQLCP(i, j) returns the index of the smallest element in the subarray LCP[i . . . j] in
constant time. We rely also on some auxiliary subroutines; let L = b m

k+1c:
Aligned(i) Let ` = i mod m, i.e., the starting position of the suffix si within a profile.

Then this subroutine returns `/L if ` is multiple of L, and −1 otherwise.
HD(pi, pj, `) Given two profiles which share a substring of length L, starting at index `L,

this subroutine computes the minimum of k and the Hamming distance between pi and
pj . This subroutine relies on RMQLCP to find matches between pi and pj and, hence, it
runs in O(k) time since it can stop after k mismatches.

I Theorem 1. Given d profiles of length m each over an integer alphabet Σ of size σ > 1
with the letters of the profiles being independent and identically distributed random variables
uniformly distributed over Σ, and the maximum distance k < m, Algorithm 1 runs in
average-case time O(md) and space O(md) if

k <
(m− k − 1) · log σ

logmd .

Proof. Let us denote by x the string of length md obtained after concatenating together the
d profiles. The time and space required for constructing the SA and the LCP arrays for x
and the RMQ data structure over the LCP array is O(md).

Let B denote the number of blocks over x, and let L denote the block length. We set

L = b m
k+1c, B = bmdL c.

By P we denote a maximal set of indices of the LCP table for x satisfying: (i) the length
of the longest common prefix between any two suffixes starting at these indices is at least
L; (ii) both of these suffixes start at the starting position of a block; (iii) and both indices
correspond to the starting position of the ith block in their profiles. Processing all such sets
P requires time

VERi,j ·Occ

where VERi,j is the time required to process a pair i, j of elements of a set P , and Occ is the
sum of |P |2 over all such sets P . We have that VERi,j = O(k). Additionally, by the stated
assumption on the d profiles, the expected value for Occ is no more than Bd

σL
: we have B

blocks and each block can only match at most d other blocks. Hence, the algorithm requires
on average the running time

O(md+ k · Bd
σL

).

Since m ≥ k + 1 by hypothesis, we have the following:

k · Bd
σL

=
k · b md

bm/(k+1)cc · d

σb
m
k+1 c

≤
k · ( md

m/(k+1)−1 ) · d
σ

m
k+1−1 ≤ (md)2

(md)
log σ

logmd ( m
k+1−1)

= (md)2− (m−k−1) log σ
(k+1) logmd .
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Algorithm 1: Algorithm using LCP clusters.
1 Input: A set P of d profiles of length m; a threshold k > 0
2 Output: The set X of distinct pairs of profiles that are at most at distance k, i.e.,
X = {(u, v) ∈ P × P | u < v and H(u, v) ≤ k}.

3 Initialization: Let x = x[0 . . . n− 1] be the string of length n = md obtained after
concatenating together the d profiles. Construct an SA S for x, the LCP array for S
and pre-process RMQLCP. Initialize a hash table H to track verified pairs.

4 Candidate pairs enumeration:
5 X := ∅; `p = −1; Ct := ∅, for 0 ≤ t < k

6 foreach 1 ≤ i < n do
7 ` := LCP[i]
8 if ` ≥ L then
9 pi := bS[i]/mc

10 x := Aligned(i)
11 if x 6= −1 then
12 Cx := Cx ∪ {pi}
13 if `p = −1 then
14 pi−1 := bS[i− 1]/mc
15 x := Aligned(i)
16 if x 6= −1 then
17 Cx := Cx ∪ {pi−1}

18 `p := `

19 else if `p 6= −1 then
20 Pairs enumeration:
21 foreach Ct, with 0 ≤ t < k do
22 foreach (p, q) ∈ Ct × Ct such that p < q do
23 if (p, q) /∈ H then
24 H := H ∪ {(p, q)}
25 δ := HD(p, q, t)
26 if δ ≤ k then
27 X := X ∪ {(p, q)}

28 `p = −1; Ct := ∅, for 0 ≤ t < k

29 Finalize: Return the set X.

Consequently, in the case when

k <
(m− k − 1) · log σ

logmd

the algorithm requires O(md) time on average. The extra space usage is O(md). J

3 Use case

The computation of a distance matrix is a main step in distance-based methods for phylo-
genetic inference. This step dominates however the running time of most methods, taking
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Θ(md2) time, for d sequences of length m, since it must compute the distance among all
pairs. But for some methods, or when we are only interested on local phylogenies, one
does not need to know all pairwise distances for reconstructing a phylogenetic tree. The
problem addressed in this paper was motivated by the goeBURST algorithm, our use case.
goeBURST is one of such methods for which one must know only the pairs of sequences
that are at distance at most k > 0. The solution proposed here can however be extended to
other distance-based phylogenetic inference algorithms, namely those that rely directly or
indirectly on the computation of Hamming distance.

The underlying model of goeBURST is as follows: a given genotype increases in frequency
in the population as a consequence of a fitness advantage or of random genetic drift, becoming
a founder clone in the population, and this increase is accompanied by a gradual diversification
of that genotype, by mutation and recombination, forming a cluster of phylogenetic closely-
related strains. This diversification of the “founding” genotype is reflected in the appearance
of genetic profiles differing only in one housekeeping gene sequence from the founder —
genotype-single locus variants (SLVs). Further diversification of those SLVs will result in the
appearance of variations of the original genotype with more than one difference in the allelic
profile, e.g., double and triple locus variants (DLVs and TLVs).

The problem solved by goeBURST can be stated as a graphic matroid optimization
problem and, hence, it follows a classic greedy approach [8]. Given k > 0, we can define
a graph G = (V,E), where V = P and E = {(u, v) ∈ V 2 | H(u, v) ≤ k}. The main goal
of goeBURST is then to compute a minimum spanning forest for G taking into account
the distance H and a total order on links. It starts with a forest of singleton trees (each
sequence/profile is a tree). Then it constructs the optimal forest by iteratively selecting links
connecting profiles in different trees and with the higher number of SLVs. In the current
implementation it is implicitly defined a total order for links based on the distance between
sequences, on the number of SLVs, DLVs, TLVs, on the occurrence frequency of sequences,
and on the assigned sequence identifier. With this total order, the construction of the tree
consists of building a minimum spanning forest in a graph [14], where each sequence is a node
and the link weights are defined by the total order. By construction, the pairs at distance k
will be joined before the pairs at distance k + 1, with k ≥ 0.

4 Experimental evaluation

We evaluated the proposed approach on both real and synthetic data. We used real datasets
obtained through different typing schemas, namely wide-genome multi-locus sequence typing
(wgMLST) data, core-genome multi-locus sequence typing (cgMLST) data, and single-
nucleotide polymorphism (SNP) data. Table 2 summarizes the real datasets used. We
should note that wgMLST and cgMLST datasets contain sequences of integers, where each
column corresponds to a locus and different values in the same column denote different alleles.
Simulated data comprises sets of binary sequences of variable length, uniformly sampled,
allowing us to validate our theoretical findings.

We implemented both versions described above in the C programming language: one based
on binary search over the SA; and another one based on finding clusters in the LCP array.
Since allelic profiles can be either string of letters or sequences of integers, we relied on https:
//github.com/y-256/libdivsufsort and http://www.larsson.dogma.net/qsufsort.c
libraries, respectively. For RMQ over the LCP array, we adopt a fast well-known solution
that uses constant time per query and linearithmic space for pre-processing [1].

All tests were conducted on a machine running Linux, with an Intel(R) Xeon(R) CPU

https://github.com/y-256/libdivsufsort
https://github.com/y-256/libdivsufsort
http://www.larsson.dogma.net/qsufsort.c
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Figure 1 Synthetic data, with σ = 2 and k = bm/(2 logm)c according to Theorem 1. Running
time for computing pairwise distances by finding lower and upper bounds in the SA, and by processing
LCP based clusters, as function of the input size n.

E5-2630 v3 @ 2.40GHz (8 cores, cache 32KB/4096KB) and with 32GB of RAM. All binaries
where produced using GCC 5.3 with full optimization enabled.

4.1 Synthetic data

We present results with synthetic data for different values of d, m and k. All synthetic
sequences are binary sequences uniformly sampled. Results presented in this section were
averaged over ten runs and for five different sets of synthetic data.

The bound proved in Theorem 1 was verified in practice. For k satisfying the conditions
in Theorem 1, the running time of our implementation grows almost linearly with n, the
size of the input. We can observe in Fig. 1 a growth slight above linear. Since we included
the time for constructing the SA, the LCP array and the RMQ index, with the last one in
linearithmic time, that was expected.

We tested also for k above the bound in Theorem 1. For d = m = 4096 and a binary
alphabet, the bound for k given in Theorem 1 is at most 170 = bm/(2 logm)c. For k above
this bound we expect that proposed approaches are no longer competitive with the naïve
approach. As shown in Fig. 2, for k > 250 and k > 270 respectively, both limits above the
predicted bound, the running time for both computing pairwise distances by finding lower
and upper bounds in the SA, and by processing LCP based clusters becomes worse than the
running time of the naïve approach.

In Fig. 3 we have the running time as a function of the number d of profiles, for different
values of m and for k satisfying the bound given in Theorem 1. The running time for
the naïve approach grows quadratically with d, while it grows linearly for both computing
pairwise distances by finding lower and upper bounds in the SA, and by processing LCP
based clusters. Hence, for synthetic data, as described by Theorem 1, the result holds.
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Figure 2 Synthetic data, with σ = 2 and m = 4096. Running time for computing pairwise
distances by finding lower and upper bounds in the SA, and by processing LCP based clusters, as
function of the number d of profiles and for different threshold k.

Table 2 Real datasets used in the experimental evaluation. (*)Dataset provided by the Molecular
Microbiology and Infection Unit, IMM.

Dataset
Typing Profile Number of

Reference
method length distinct elements

Campylobacter jejuni wgMLST 5446 5669 (*)
Salmonella enterica wgMLST 3002 6861 [5]
Salmonella typhi SNP 22143 1534 [18]
Streptococcus pneumoniae cgMLST 235 1968 [4, 3, 17]

4.2 Real datasets

For each dataset in Table 2, we ranged the threshold k accordingly and compared the
approaches discussed in Section 2 with the naïve approach that computes the distance for all
taxa pairs. Results are provided in Table 3.

In most cases, the approach based on the LCP clusters is the fastest up to three orders of
magnitude compared to the naïve approach. As expected by Theorem 1, in the case when
real data are not uniformly random, our method works reasonably well for smaller values of
k than the ones implied by the condition. As an example, the upper bound on k for C. jejuni
would be larger than 219, but the running time for the naïve approach is already better for
k = 64. We should note however that the number of candidate pairs at distance at most k is
much higher than the expected number if data is uniformly random. This tells us that we
can design a simple hybrid algorithm that chooses a strategy (naïve or the proposed method)
depending on the nature of the input data. It seems also to point out clustering effects on
profile dissimilarities, which we may exploit to improve our results. We leave both tasks as
future work for the full version of this paper.
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Figure 3 Synthetic data, with σ = 2 and k = bm/(2 logm)c according to Theorem 1. Running
time for computing pairwise distances naïvely, by finding lower and upper bounds in the SA, and by
processing LCP based clusters, as a function of the number d of profiles.
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Table 3 Time and percentage of pairs processed for each method and dataset.

Dataset k
Naïve Binary search LCP clusters

t (s) pairs (%) t (s) pairs (%) t (s) pairs (%)

C. jejuni

8 108.59 100 0.22 0.06 0.17 0.06
16 109.30 100 0.48 0.32 0.34 0.32
32 108.60 100 3.52 5.45 2.67 5.45
64 108.60 100 231.05 99.98 162.36 99.98

S. enterica

8 89.85 100 1.04 2.37 0.95 2.37
16 87.26 100 7.16 12.69 6.73 12.69
32 85.36 100 36.29 33.22 30.76 33.22
64 84.63 100 254.45 82.44 187.15 82.44

S. typhi
89 28.83 100 16.63 91.48 12.02 91.48
178 28.32 100 46.98 99.91 32.03 99.91
890 30.04 100 113.57 100 129.14 100

S. pneumoniae

8 0.56 100 0.02 0.93 0.02 0.93
16 0.57 100 0.05 1.71 0.04 1.71
32 0.56 100 0.20 4.42 0.15 4.42
64 0.58 100 5.63 73.36 5.01 73.36

We incorporated the approach based on finding lower and upper bounds in the SA in the
implementation of goeBURST algorithm, discussed in Section 3. We did not incorporate the
approach based on the LCP clusters as the running time did not improve much as observed
above. Since running times are similar to those reported in Table 3, we discuss only the
running time for the C. jejuni. We need only to index the input once. We can then use the
index in the different stages of the algorithm and for different values of k. In the particular
case of goeBURST, we use the index twice: once for computing the number of neighbors at
a given distance, used for untying links according to the total order discussed in Section 3,
and a second time for enumerating pairs at distance below a given threshold. Note that
the goeBURST algorithm does not aim to link all nodes, but to identify clonal complexes
(or connected components) for a given threshold on the distance among profiles [8]. In the
case of C. jejuni dataset, and for k = 52, the running time is around 36 seconds, while the
naïve approach takes around 115 seconds, yielding a three-fold speedup. In this case we get
several connected components, i.e., several trees, connecting the most similar profiles. We
provide the tree for the largest component in Fig. 4, where each node represents a profile.
Note that this tree is optimal with respect to the criterion used by the goeBURST algorithm.
Comparing this tree with other inference methods is beyond the scope of this article; the
focus here is on the faster computation of an optimal tree under this model. The nodes are
colored according to one of the loci for which profiles in this cluster differ. In many studies,
the computation of trees based on pairwise distances below a given threshold, usually small
compared with the total number of loci, combined with ancillary data, such as antibiotic
resistance and host information, allows microbiologists to uncover evolution patterns and
study the mechanisms underlying the transmission of infectious diseases [9].
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