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Abstract. An absent (or forbidden) word of a word y is a word that
does not occur in y. It is then called minimal if all its proper factors occur
in y. There exist linear-time and linear-space algorithms for computing
all minimal absent words of y (Crochemore et al., 1998, Belazzougui
et al., 2013, Barton et al., 2014). Minimal absent words are used for
data compression (Crochemore et al., 2000, Ota and Morita, 2014) and
for alignment-free sequence comparison by utilizing a metric based on
minimal absent words (Chairungsee and Crochemore, 2012). They are
also used in molecular biology; for instance, three minimal absent words
of the human genome were found to play a functional role in a coding
region in Ebola virus genomes (Silva et al., 2015). In this article we
introduce a new application of minimal absent words for on-line pattern
matching. Specifically, we present an algorithm that, given a pattern x
and a text y, computes the distance between x and every window of size
|z| on y. The running time is O(o|y|), where o is the size of the alphabet.
Along the way, we show an O(o|y|)-time and O(o|z|)-space algorithm to
compute the minimal absent words of every window of size |z| on y,
together with some new combinatorial insight on minimal absent words.

1 Introduction

Pattern matching is the problem of finding a pattern in a usually much longer
text. Both pattern and text are words (or strings) drawn over some alphabet.
This problem has been studied for a long time and efficient solutions have been
proposed (see for example [1, 20,22, 13] or also [16,9]). A related problem is the
approximate pattern matching problem: it is the same problem but allowing some
errors in the matching process (see [16,9,27]). This problem depends mainly on
how errors are interpreted and thus which metric is used for the comparison.



Pattern matching algorithms are classified into on-line and off-line. With off-
line algorithms the text can be processed before searching; a survey of such
algorithms was written by Navarro et al. [26]. A more recent algorithm based
on a bidirectionnal index has been proposed by Kucherov et al. [21]. With on-
line algorithms the text cannot be processed before searching. A famous such
algorithm is bitap, one of the underlying algorithms of Unix utility agrep; it was
first invented by Domolki in 1964 [12] and it underwent several improvements
among them the last one was done by Myers [24]. A survey on on-line algorithms
for approximate pattern matching was written by Navarro [25] (see also [27]).
In this article we propose a new on-line pattern matching scheme using a met-
ric that is based on minimal absent words. This notion of negative information
has first been coined as minimal forbidden words by Béal et al. [5]. A minimal
absent word of word y is a word absent from y whose all proper factors occur in
y. A tight upper bound on the number of minimal absent words of a word y of
length n over an alphabet of size o is known to be O(on) [10,23]. Moreover it
was shown that the set of all minimal absent words of y is sufficient to uniquely
reconstruct y [10,14]. The notion has been used in data compression [11,29]
and in molecular biology [17,19,34,32,8,2,18], where authors often focus on
the computation of the shortest absent words (sometimes called unwords).
Chairungsee and Crochemore introduced the Length Weighted Index (LWI),
a metric based on the symmetric difference of minimal absent words sets [7].
The LWI was then applied by Crochemore et al. [8] to devise an O(m + n)-time
and O(m+n)-space algorithm for alignment-free comparison of two sequences of
length m and n on a constant-sized alphabet. More recently, different such indices
have been studied for sequence comparison and phylogeny reconstruction [30].
We base our new pattern matching algorithm on this LWI. To maintain the LWI
across the word y for a pattern x, we need to compute the set of minimal absent
words in a sliding window of size m = |z| of y. Several linear-time and linear-
space algorithms have been proposed to compute the set of minimal absent words
[10,6, 3,4, 15]. Ota et al. presented an on-line algorithm that requires linear time
and linear space [28]. However, to the best of our knowledge, the problem of
computing minimal absent words in a sliding window has not been addressed.
Our contributions. Here we present the first algorithm to compute minimal
absent words in a sliding window. For a window of size m and a word of length
n on an alphabet of size o, our algorithm performs O(on) insert and delete
operations on the set of minimal absent words. With a careful implementation
of the data structures, it requires O(on) time overall using O(om) space. We
apply this algorithm for on-line approximate pattern matching using the LWI
for a pattern of length m over every window of size m of the text. This yields the
first algorithm for the classical on-line exact pattern matching problem that uses
some form of negative information (minimal absent words) for the comparison.

Definitions and Notation

Let y = y[0]y[1]---y[n — 1] be a word of length n = |y| on a finite ordered
alphabet of size o = |X|. We denote by yli..j] = y[i]---y[j] the factor of y



whose occurrence starts at position ¢ and ends at position j on y, and by ¢ the
empty word, the word of length 0. The set of all possible words on X' (including
the empty word) is denoted by X*. A prefiz of y is a factor that starts at position
0 (y[0..7]) and a suffiz is a factor that ends at position n — 1 (y[i..n —1]). A
factor x of y is proper if x # y.

Let u be a non-empty word. An integer p such that 0 < p < |u| is called a

period of w if u[i] = u[i + p], for i = 0,1,..., |u| — p — 1. For every word u and
every natural number k, we define the kth power of the word u, denoted by u*,
by u® = ¢ and u* = u*~tu, for k=1,2,...,n.

Let x be a word of length m < n. We say that there exists an occurrence of
z in y when z is a factor of y. Opposingly, we say that the word z is an absent
word of y if it does not occur in y. We consider absent words of length at least
2 only. An absent word x of length m, m > 2, of y is minimal if and only if all
its proper factors occur in y. This is equivalent to saying that a minimal absent
word (MAW) of y is of the form aub, a,b € ¥, u € X*, such that au and ub are
factors of y but aub is not. We can easily see that, if x is a MAW of y, then
2 < |z| < |y| + 1. Note that |z| = |y| + 1 if and only if y = al¥! for some a € X.

Example 1. Let y = ABAACA. Its factors of lengths 1 and 2 are A, B, C, AA,
AB, AC, BA, and CA. The set of MAWSs of y is obtained by combining the afore-
mentioned factors: {BB, BC, CB, CC, AAA, AAB, BAB, BAC, CAA, CAB, CAC}.

Let U and V be two sets. We denote by UAV their symmetric difference, that
is, UAV = (U\ V) U (V\U). We consider the LWI, a distance on X*, for two
words = and y on X* [7]. It is based on the set M (z) A M (y), where M(z) is
the set of minimal absent words of z, and it is defined by:

LWIi(z,y) = > ﬁ

weM () AM (y)

2 Combinatorial results

In this section we consider a word z of fixed length m on an alphabet X of size
o and denote by M(z) its set of MAWSs. The word z essentially represents the
content of the window on word y used in the algorithm of Section 3. We first
discuss changes to be done on the set of MAWSs when appending and removing
letters on the word of interest. Then we show bounds on the number of changes
on the set of MAWs when moving forward the current window by one position.

2.1 Changes when appending one letter to the window

We denote by M(z)|a, o € X, the operation on the set of MAWs when concate-
nating the letter « to the, possibly empty, word z. The operation creates M (z«)
from M(z). We introduce some bounds on the number of insertions/deletions
for the on-line computation of the set of MAWSs. These results have already been
shown in [28] and we briefly present them for completeness.
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Fig. 1. Illustration of the three different types of MAWSs that are added when letter a
is appended to z.

We denote by s the starting position of the longest suffix of z that repeats
in z; when this suffix is empty we set s = |z|. We also denote by s, the starting
position of the longest suffix that occurs in z followed by «; when this suffix
is empty we set s, = |z|. Note that we have s < s, because the latter suffix
obviously repeats in z. This is illustrated in Figure 1.

The next two lemmas state bounds of the number of insert and delete oper-
ations performed by M (z)|a.

Lemma 1. M (z)|a deletes exactly one MAW from M (z), namely, z[sq—1..|z|—
1]«

Proof. Let w = aub, a,b € X and u € X*, be a MAW to be removed. This means
that aub is absent in z but present in za. Thus b = « and au is a suffix of z that
does not occur followed by « in z. The word ub = u« is also present in z, so u
is a suffix of z that occurs in z followed by a. Then the starting position of the
suffix occurrence of u in z is s, and w = z[sq — 1..|z| — 1]a. O

To establish an upper bound on the number of MAWs added by the operation
M(2)|a, we first divide the new MAWSs of the form aub, a,b € X and u € X*,
into three types (see also Figure 1):

1. au and ub are absent in z.

2. au is absent in z and ub is present in z.

3. au is present in z and wb is absent in z.

Lemma 2. There are at most one MAW of type 1, 0 MAWs of type 2, and
(s — 8)(0 — 1) MAWSs of type 3 added by the operation M (z)|a.

Proof. We consider a new MAW w = aub, a,b € 3 and u € X*, created by the
operation. Let w be of type 1, that is, au and ub do not occur in z. Then they are
both suffixes of za, and because they have same length, are equal. This implies
that u is both a prefix and a suffix of ub = ua. Thus the latter has period 1, w is
of the form a!*!, and v = o/®!=2. But then uo is absent in z. Therefore, al®l—3



is the longest repeated suffix of z that occurs followed by « in z. Consequently
|lw| = |z| — $a + 3.

Let w be of type 2, that is, ub occurs in z and au occurs in za but not in z.
Then au is a suffix of za and u can be written v'o. As ub occurs in z, v’ is a
suffix of z that occurs in z followed by a. Moreover, since au = au’a does not
occur in z, u’ is the longest suffix of z that occurs in z followed by «, therefore its
starting position as a suffix is s,. The letter b can be any letter of the alphabet
of z that occurs after an occurrence of w in z. Consequently there are at most o
such MAWs.

Let w be of type 3, that is, au occurs in z and ub occurs in za but not in
z. This implies that b = «, u is a suffix of z not preceded by a, and au occurs
elsewhere in z. Since no occurrence of u in z is followed by «, we have that the
starting position k of u as a suffix satisfies s < k < s,. Therefore, there are
at most s, — s possible words uw and for each of them, there are at most o — 1
possibilities for the letter a to obtain a MAW. Consequently, there are at most
(8 — 8)(0 — 1) such MAWs. O

The previous lemma shows that during one step of the computation of MAWs for
a sliding window of size m we may have to handle O(om) new MAWs. However,
the total number of insertions when computing the set of MAWSs for a word y of
length n get amortized to @(on) in an on-line computation.

Proposition 1 ([28]). Starting with the empty word, and applying n times the
operation | leads to a total number of insertions/deletions of MAWs in O(on).

Proof. The number of MAWSs of the whole word of length n is in O(on) [10]. As
stated by Lemma 1 at most one MAW can be deleted by each application of the
operation |. Thus the total number of insertions/deletions is still in O(on). O

2.2 Changes when removing the first letter of the window

We denote by M(az) — M(z), a € X, the operation on the set of MAWs
when deleting the letter o from the word az. Removing the leftmost letter of
the window is a dual question to what is done previously. We now focus on the
longest repeated prefix instead of the longest repeated suffix.

Let us denote by p the ending position of the longest repeated prefix of z and
by po the ending position of the longest prefix of z that occurs in z preceded by
a. We set them to 0 when the prefixes are empty. Note that p, < p. Similar to
Lemma 1, removing a letter from the left creates exactly one MAW.

Lemma 3. The operation M(az) — M(z) creates exactly one M AW , which is
az[0..py +1].

Similar to Section 2.1, we distinguish among three types of MAWSs to be deleted
by the operation:

1. au and ub are absent in z.

2. aw is absent in z and ub present in z.

3. ub is absent in z and au present in z.
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Fig. 2. [llustration of the three different types of MAWSs that are deleted when removing
a, the letter before z.

We note that types 1, 2, and 3 behave respectively similarly to type 1, 3, and 2
in Section 2.1; see Figure 2 for an illustration. The following result is similar to
that stated in Lemma 2.

Lemma 4. There are at most one MAW of type 1, (0 — 1)(p — po) MAWSs of
type 2, and o MAWSs of type 3 to be deleted by the operation M(az) — M(z).

2.3 Changes when sliding a window over a text

We now focus on our main problem: MAWs in a sliding window. For m < n and
for all 4, 0 < i < n —m, we consider the window y[i..i + m — 1] and define:
— s; the starting position of its longest repeated suffix,
— §; the starting position of its longest suffix that occurs followed by y[i + m],
— ss; the starting position of its longest suffix that is a power,
— p; the ending position of its longest repeated prefix,
— p; the ending position of its longest prefix that occurs preceded by y[i — 1],
— pp; the ending position of its longest prefix that is a power.
In what follows, we make use of this notation considering the case of a sliding
window. The following lemma shows that we cannot output in linear time the
set of MAWs in the sliding window at each step of the process.

Lemma 5. The upper bound of i |[M(yli..i+m —1))| is O(onm) and this
i=0
bound 1is tight.

Proof. For every factor z of length m of y, |[M(z)| is O(om). Thus the upper
bound of their sum is @(onm). Now consider y = (A"~ 'C™1)2==2 of length n
and its factors of length 2m. In each factor w of length 2m, this kind of pattern
occurs: XY™ 1 X, with {X,Y} = {A,C}. Thus {XY'X|[1 <i<m—-1} C M(w),
so |[M(w)| > m — 1. Consequently the bound is tight. One can generalize this
construction of y to obtain a tight bound for larger alphabets (Lemma 1 in [2]).

O



However, as shown below, we can bound the number of changes necessary to
maintain the set of MAWs for a sliding window. We obtain the following result.

n—m-—1
Theorem 1. The upper bound of >, |M(y[i..i+m—1])AM (y[i+1..i+m])|
i=0
is in O(on).

Proof. Let us consider the set M (y[i..i+m—1])AM (y[i..i+m]) with 0 <14 <
n —m. From Lemmas 1 and 2 we get

IM(yli..i+m—1)AM(yli..i+m])| < (5 —s;)(c—1)+ 0o+ 2.

Then,
n—m-—1 n—m—1
IM(y[i..i+m—1))AM(y[i..i4+m])| < ($i —s8;)(0—1) +no +2n.
i=0 1=0

We note that s; < s;11 < §; + 1 and we have s; < s; thus

n—m—1 n—m—1 n—m-—1
0< > Ei-s)= > Si— X si
i=0 i=0 i=0
n—m—1 B B n—m-—2 B
0< ($i—8) =8p—m-1—50+ >, (Si—sit1)<n
i=0 i=0
n—m-—1
Then > |M(y[i..i+m—1))AM (y[i..i+m])| < 2no+n. Now, we consider

i=0
the set M (y[i..i+m])AM(y[i +1..7i+ m]). From Lemmas 3 and 4 we obtain

1
a similar inequality: > |[M(y[¢..i + m])AM(y[i + 1..i + m])| < 2no + n.
i=0
Thus we obtain the desired bound by the triangle inequality. O

3 Minimal absent words in a sliding window

For a general introduction to suffix trees, see [9]. The suffix tree T of a non-
empty word w of length n is a compact trie representing all suffixes of w. The
nodes of the trie which become nodes of the suffix tree (i.e., branching nodes
and leaves) are called explicit nodes, while the other nodes are called implicit.
We use L(v) to denote the path-label of a node v, i.e., the concatenation of the
edge labels along the path from the root to v. Node v is a terminal node if and
only if L(v) = w[i..n — 1], 0 < ¢ < n; here v is also labelled with index i.
The suffiz link of a node v with path-label L(v) = as is a pointer to the node
path-labelled s, where a € X' is a single letter and s is a word. The suffix link
of v exists if v is a non-root internal node of 7. Our algorithm relies on Senft’s
on-line construction algorithm of the suffix tree for a sliding window [31] that is
itself based on Ukkonen’s on-line construction algorithm of the suffix tree [33].



3.1 An overview of Senft’s algorithm

The algorithm of Ukkonen constructs the suffix tree on-line in O(n) time for
a word of length n on a constant-sized alphabet by processing the word from
left to right. To adapt it for a sliding window with amortized constant time per
one window shift, two additional problems need to be resolved: (i) deleting the
leftmost letter of a window; and (ii) maintaining edge labels under window shifts.

Deleting the leftmost letter. Consider the longest repeated prefix of the
current window. When the leftmost letter is deleted, all prefixes that are longer
than this prefix need to be removed from the tree but the longest repeated prefix
and all shorter prefixes will remain in the tree. To remove these prefixes we delete
the leaf corresponding to the whole window and its incoming edge as follows:

— If the longest repeated prefix corresponds to an explicit node, this node is
the parent of the leaf to be deleted. If this node has only one child remaining,
we delete the node and merge the two edges. Otherwise, we do nothing.

— If the longest repeated prefix corresponds to an implicit node, it is equal to
the longest repeated suffix. We create a new leaf in the place of the one we
have deleted. We label it with the starting position of what was the longest
repeated suffix and its incoming edge is labelled accordingly.

Maintaining Edge Labels. Assume by induction that all edge labels are cor-
rectly positioned relative to the current window. For the next m shifts of the
window, we still maintain the same relative positioning of edge labels. After the
m shifts, edge labels are recomputed by a bottom-up traversal of the tree. Since
m shifts create at most 2m nodes, the amortized time spent on one shift is O(1).

3.2 Our algorithm

Consider a word y of length n on an alphabet X' of size o. Our goal is to maintain
the set of MAWSs for a sliding window of size m. That is, for all successive
i €[0,...,n —m], we want to compute My, (i) = M (y[¢..i +m — 1]).

For a word z, by X'(z) we denote the alphabet of z and by V(z) the set of
explicit nodes in the suffix tree of z. Consider a mapping f : M(z) — X(z)xV(z)
defined by f(aub) = (a,vy), where a € X and vy, is either the explicit node
corresponding to the factor ub or the immediate explicit descendant node if this
node is implicit.

Lemma 6. Mapping f is an injection.

Proof. Let w,w’ € M(z), w # w', w = aub and v’ = o’v'V/, with a,b,a’, b’ €
X(z) and u,u’ € X(z)*.

Suppose that f(w) = f(w’), then @ = @’ and v, = vyp. Thus ub and v’
are distinct prefixes of the factor corresponding to v,;, consequently one is prefix
of the other, without loss of generality ub is prefix of w’'b’. Then aub is a prefix of
au'l’, this is impossible as they are both MAWSs of z. Thus two distinct elements
of M(z) cannot share the same image by f, so f is an injection. ad



Lemma 6 allows us to represent all MAWSs by storing a set of letters in each
explicit node of the tree. We will call this set the maw-set. Moreover, a letter a
in the maw-set will be tagged if and only if u corresponds to an implicit node
in the tree. Observe that a can become tagged only when u is a repeated suffix
of y. This is because factors au and ub define distinct occurrences of u, and the
occurrence of au must be a suffix, otherwise v would be followed by two distinct
letters and would then be an explicit node. Besides maw-sets, we will also need
to store at each explicit node another set of letters: the set of all letters preceding
the occurrences of the factor corresponding to the node.

By induction, assume we are at position 4, the suffix tree T,,(¢) for y[i..i +
m — 1] is built and the set of MAWSs M,,, (i) has been computed. We now explain
how to update T,,,(¢) and M,, (i) to obtain T,,(i + 1) and M,,(i + 1). The tree
is updated based on Senft’s algorithm, by first adding a letter to the right of
the current window and then deleting the leftmost letter. The set of MAWSs is
updated using Lemmas 1, 2 and 3, 4 respectively. The algorithm will maintain
positions s;, p;, S;, Di, $Si, pp; as defined in Section 2.3. We store the leaf nodes
in a list so that the last created leaf and the “oldest” leaf currently in the tree
can be accessed in constant time.

Adding a letter to the right. We follow Ukkonen’s algorithm for updating the
suffix tree. Recall that Ukkonen’s algorithm proceeds by updating the active node
in the tree. At the beginning of each iteration, the active node corresponds to the
longest repeated suffix, i.e. to factor y[s;..i +m — 1]. The node corresponding
to the longest repeated prefix is called the head node.

The algorithm starts from the active node and updates it following the suffix
links until reaching a node with an outgoing edge starting with y[i + m] — this
node corresponds to the suffix starting at §;. At the same time, we compute
MAWS of type 3 that are created. For each s; < j < §;, we perform the following.

— If the active node is implicit we make it explicit. We set its set of preceding
letters equal to its child’s set. We move the untagged letters of the maw-set
of its child to the maw-set of the active node. We untag the tagged letters
of the maw-set of its child. If the last node created at this window shift does
not have a suffix link, we add a suffix link from this node to the active node.

We add the letter corresponding to this suffix link to the set of preceding

letters of the active node.

— We create a leaf labelled j, with y[j — 1] in its set of preceding letters. We

create an edge from the active node to this leaf with the label y[i + m).

— For each letter a # y[j — 1] in the set of preceding letters of the active node,
ay[si+7..i+m] € My11(i)\Mp,(¢) (type 3 in Lemma 2), therefore we add

a in the maw-set of the leaf.

The current active node corresponds to the factor y[s;..7 +m — 1]. According
to Lemma 1, there is exactly one MAW to be deleted which is y[$; — 1..7 + m].
This MAW is stored in the child of the active node by following the edge starting
with y[i + m]; we remove y[$; — 1] (tagged or not) from its maw-set.



Then we update the active node by following the edge starting with y[i +
m]; now it corresponds to the factor y[3;..i + m]. If the head node was also
corresponding to the factor y[s;..i + m — 1], we move it down with the active
node; we have p; 11 = p; + 1, otherwise we have p;11 = p;. If the active node is
explicit, we update its set of preceding letters by adding y[3; — 1].

Then, for each letter b occurring after an occurrence of y[3; . .i+m] in y[i..i+
m—1], y[s; —1..i+m]b € Mp,41(i)\ My, (¢) (type 2 in Lemma 2). These MAWs
are stored in their corresponding child of the active node. If the active node is
implicit, there is only one of them and we tag the letter.

By Lemma 2, if ss; = §; — 1, then y[i + m|y[s; — 1..i+ m] is the new MAW
of type 1. We store it in the maw-set of the child of the active node by following
the edge starting with y[i + m].

Deleting the leftmost letter. We note that the longest repeated prefix of
yli..i+m] is y[i..piv1], and its longest repeated suffix is y[§; ..7 + m]. At the
beginning of this step they correspond respectively to the head node and the
active node. Consider the parent of the oldest leaf of the tree, similarly as in
Senft’s algorithm two cases are distinguished.

— If the head node is an explicit node, then it is the parent of the oldest leaf.
We remove the leaf and its incoming edge. If the head node has only one
remaining child, we delete the node and merge the two edges; the maw-set
associated to the node is added to the leaf.

— Otherwise, the head node is on the edge leading to the oldest leaf. We replace
the leaf with a new one labelled by §;, with y[§; — 1] as the only preceding
letter, and the edge is relabelled by y[5; — 1]. We add y[3; — 1] to the set of
preceding letters of the parent of the leaf.

The MAWs associated to the leaf we have deleted were those of type 3 (Lemma 4).
We now update the tree and compute the other MAWSs to remove and add.

We visit the oldest leaf in the tree and empty its set of preceding letters.
Then we move up in the tree following back the edges until we have covered
Pi+1 — ¢ letters. We move the head node to this node: it corresponds to the
factor y[i + 1..p;11]. If the active node was equal to the head node, we move
the active node to this node; we have s;11 = 5; — 1, otherwise we have s;11 = 5;.
Each of the explicit nodes visited on the path from the oldest leaf to the head
node corresponds to a factor y[i+1..j], with p;4+1 > j > p;+1. For each of them,
we remove y[i] from their set of preceding letters. For each of their children, we
remove letter y[i] (tagged or not) from their maw-set (type 2 Lemma 4).

There is at most one MAW of type 1 that has to be deleted (Lemma 4).
It exists if and only if y[i] = y[¢ + 1] and pp;y1 = Pi+1 + 1, in which case we
remove it from the maw-set of the child of the head node by following the edge
starting with y[i]. According to Lemma 3, removing the leftmost letter creates
one MAW, which is y[ily[i + 1..p;+1 + 1], thus we add y[i] to the maw-set of
the child of the head node by following the edge starting with y[p;11 + 1]. If the
head node is implicit and thus equal to the active node we tag the letter yli].



Finally if the head node is above the parent of the oldest leaf of the tree, we
move it down to this node. If the active node is implicit and on the edge leading
to the oldest leaf of tree we set the head node equal to the active node.

Complexity. The algorithm extends Senft’s algorithm for the construction of
the suffix tree in a sliding window. For both addition and deletion of a letter,
the number of operations is O(o($; — s;)) and O(o(p;+1 — Pi+1))- Similar to the
proof of Theorem 1, we obtain that the total number of operations is O(on).
We use O(om) space to store the suffix tree for the factor inside the window.
The o factor is to store an array of size o at each explicit node for constant-time
child queries. We also use up to 4m arrays of size o each to store the two sets of
letters — the suffix tree has no more than 2m explicit nodes. We also store the
word itself over two windows. Thus the total space complexity is bounded by
O(om). We thus obtain the following result.

Theorem 2. Given a word of length n on an alphabet of size o, our algorithm
computes the set of minimal absent words in a sliding window of size m in O(on)
time and O(om) space.

4 Applications to on-line pattern matching

As a consequence of Theorem 2 we obtain the following result.

Theorem 3. Given a word x of length m on an alphabet X of size o, one can
find on-line all occurrences of x in a word y of length n > m on alphabet X
in O(on) time and O(om) space. Within the same complexities, one can also
compute on-line IWI(z,y[i..i +m —1]), for all0 <i<n—m.

Proof. As a pre-processing step, we build the suffix tree of  and compute the
MAWSs of x. At the same time, by Lemma 6, we represent all MAWSs of = by
storing a set of letters in each explicit node of the tree. This can be done in
O(om) time and space [10]. We then apply Theorem 2 to build the suffix tree
for a sliding window of size m over y on top of the suffix tree of z. This way
when a MAW is created or deleted we can update LWI in O(1) time as we can
check if it is a MAW of = or not. For the first part, note that two words = and
z are equal if and only if LWI(x, z) = 0 [10, 14]. We thus obtain the result. O
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