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Multi-phase structural optimization of multi-layered
composites and viscoelastic materials

G. Delgado∗, G. Allaire†, M. Hamdaoui‡

Abstract— This work is devoted to the application of the level-set method for topology optimization to multi-phase design of
multi-layered composites and viscoelastic structures. In the case of composite laminates, we study their optimal design by allow-
ing a variable stacking sequence and in-plane shape of each ply. In order to optimize both variables we rely on a decomposition
technique which aggregates the constraints into one unique constraint margin function. Thanks to this approach, a rigorous
equivalent bi-level optimization problem is established. On the other hand, we consider the optimal design of viscoelastic vibra-
tion damping treatments. We prove a general result describing the complex frequencies of the underlying non-linear eigenvalue
problem. In both cases every layer of the structure is represented as a bi-material structure where a level set method is used to
characterize the interfaces meanwhile the shape evolution is driven by a Hadamard method for boundary variations using the
shape gradient. Two numerical test-cases are exhibited: In the case of multi-layered laminates, we minimize the weight of the
structure subjected to a compliance and a first buckling load constraint, meanwhile for viscoelastic treatments, we maximize the
the structure capacity to dissipate energy measured via the loss factor.

1 Introduction

Structural optimization usually looks for the lightest structure
which sustains the forces and environmental conditions that for
instance an aircraft or a car will typically find during opera-
tion. Classically, this optimization process has been done by
the engineer expertise. However, the increment of the size of
the design space does not allow to find the best design without
automatizing the process. As a response to this challenge, sev-
eral techniques for size, shape and topology optimization have
successfully been developed and applied to structural design
[3, 8, 13, 20, 24].

During the last years, a special type of material has become
quite popular in automotive and aerospace industries: multi-
layered composites. These materials benefit from very at-

tractive features such as low weight, high fatigue resistance
and good endurance against corrosion and other harsh envi-
ronmental conditions. The properties of multi-layered com-
posite structures strongly depend on the shape, the orientation
of the reinforcement and the stacking sequence of the lami-
nate. Indeed the directional nature of the fibers in a fiber-
reinforced laminate introduces directional dependence of the
strength, thermal and electrical conductivity. Meanwhile the
stacking sequence has a strong influence on the bending be-
havior of the laminate.

In view of the increasing use of composite materials within in-
dustry, their optimal design has drawn great attention of the
scientific community. We refer e.g. to Gürdal, Haftka and co-
workers [1, 12, 13] but also to [14, 18, 19]. Actually, com-
posite materials possess a large number of design possibilities
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which makes their optimization a complex problem. A typical
composite laminate may be characterized by design variables
which are continuous (geometry, size of the structure, material
distribution in each ply) or discrete (orientation of the fibers,
lay-up or stacking sequence). Additionally, when designing
composite structural components, one must take into account
constraints on the structural performance (accelerations, buck-
ling factors, displacement, material failure criteria, etc.) and
equally constraints on the global and local manufacturing rules
imposed during the composite manufacturing process. These
constraints are specific to the type of technology used and in-
dustrial policies (symmetric and balanced laminates, ply drops
and overlaps, etc.).

Structures incorporating viscoelastic materials for structural
damping have also attracted a lot of interest of the engineer-
ing and scientific communities. Viscoelastic damping material
behavior occurs in a wide variety of materials and can be char-
acterized by liquid-like elastic behavior. Materials that expe-
rience viscoelastic behavior include acrylics, rubber, and ad-
hesives. The characteristics of viscoelastic materials depend
on temperature and excitation frequency. Structural damping
reduces both impact-generated and steady-state noises at their
source. It dissipates vibrational energy in the structure before
it can build up and radiate as sound. A damping treatment con-
sists of any material (or combination of materials) applied to
a component to increase its ability to dissipate mechanical en-
ergy. Two categories of treatment for structural damping ex-
ist: Unconstrained layer damping (UCLD), where the material
is simply attached with a strong bonding agent to the surface
of a structure and energy is dissipated as a result of exten-
sion and compression of the damping material under flexural
stress from the base structure; and Constrained-layer damp-
ing (CLD), where a “sandwich” is formed by laminating the
base layer to the damping layer and adding a third constrain-
ing layer. In the latter case energy dissipation is achieved by
shearing a viscoelastic polymer between a base structure and a
constraining layer.

Topology optimization of viscoelastic UCLD and CLD have
been performed by many authors in the literature using dif-
ferent methods. Zheng et al. [30] used the Solid Isotropic
Material with Penalization (SIMP) method with the Method of
Moving Asymptote (MMA) to perform topology optimization
of a CLD cantilever plate treated with DYAD606 where a sum
of modal loss factors is maximized. Zheng et al. [31] used
the same methodology to perform topology optimization of
CLD with partial coverage, showing interesting performances
of the optimized structure in terms of damping and mass sav-
ings. Kim et al. [17] used the rational approximation for ma-
terial properties (RAMP) with the optimality criteria method
(OC) to perform topology optimization of UCLD shell struc-
tures to maximize modal loss factors. El-Sabbagh et al. [11]
used and the method presented in [7] along with the MMA
method to perform optimization of periodic and non-periodic
plates. Zhanpeng et al. [29] used evolutionary structural opti-

mization (ESO) to minimize viscoelastic CLD plate response.
James et al. [15] used a time dependent adjoint method along
with the MMA method to perform topology optimization of
viscoelastically damped beams for minimum mass under time
dependent loadings. Yun et al. [28] performed multimaterial
topology optimization to maximize energy dissipation of vis-
coelastically damped structures subjected to unsteady loads us-
ing SIMP and MMA. Ansari et al. [6] used a level-set method
to perform topology optimization of viscoelastic UCLD plate.

The present article addresses the structural optimization of
composite laminate and viscoelastic treatments by means of the
level-set method for topology optimization. For that purpose
we rely on the level-set approach for multi-phase optimization
detailed in [4]. First introduced in [21], the level-set method
has the advantage of tracking the interfaces on a fixed mesh,
easily managing topological changes without any need of re-
meshing. Allied to the Hadamard method of shape differenti-
ation, the level-set approach is an efficient shape and topology
optimization algorithm [2, 26], which gives a better descrip-
tion and control of the geometrical properties of the interface,
avoiding typical drawbacks such as intermediate density pe-
nalization and possible spurious physical behavior during the
optimization process.

In the case of composite laminate structures, we present the
mathematical model and numerical analysis already exposed
in [5]. Within this work, each ply was made up of two phases
(one of them being void) and the design variables where the
position of the interface as well as the fiber orientation and the
lay-up sequence of the laminate.

2 Setting of the problem

2.1 Multi-layered composites

Physical modeling

Let L be a symmetric laminated composite structure composed
of the superposition of 2N anisotropic layers, each one of con-
stant thickness ε > 0 and characterized by a shape Ωi ⊂ Ω,
where Ω is a regular sub-domain of R2 (typically a rectangle).
We denote by O the collection of shapes

O = (Ωi)i=−N,...,−1,+1,...,+N .(1)

Since we suppose L symmetric, i.e., Ω−i = Ωi, we con-
sider only N layers, so from now on we rather write O =
(Ωi)i=1,...,N . The index i grows from the inside to the outside
of the laminated composite structure (see Figure 1).

Each layer is made of an orthotropic material, i.e., an
anisotropic material where there are three mutually perpendic-
ular planes of symmetry in material properties. In the case of
an unidirectional reinforced composite, the material properties,
which are that of an equivalent homogeneous orthotropic con-
tinuum, are thus parametrized by an angle of rotation, corre-
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sponding to the orientation (at the microscopic level) of the
fibers with respect to the canonical axis.

Ω2
Ω3

Ω4

Ω5

ε
Ω

Ω1
Π = 0

Figure 1: Half-part of a multi-shape composite design with
plane of symmetry Π = 0. Each ply has its own shape Ωi ⊂ Ω.

Each layer is a non-homogeneous two-phase material, where
each “hole" is filled with another “weak" material with differ-
ent physical properties (weight, electric or heat conductivity,
etc.). We will denote this weak material as A0.

Let χi be the characteristic function of the i-layer. Accord-
ing to the classical laminate theory for plates, the composite
structure L is characterized by the superposition of the elastic
properties of each layer, namely the extensional stiffness tensor
A, which reads

2ε

N∑
i=1

(
χi(x)Ai + (1− χi(x))A0

)
,(2)

whereAi is the extensional stiffness of the i-layer (a symmetric
fourth-order tensor), and the bending stiffness tensor D, which
reads

2ε3

3

N∑
i=1

{(
i3 − (i− 1)3

)(
χiAi + (1− χi)A0

)}
,(3)

The boundary of Ω is decomposed into two disjoints subsets
∂Ω = ΓN ∪ ΓD, ΓN ∩ ΓD = ∅. On ΓN a in-plane surface
load is applied, g ∈ L2(ΓN ;R2), and on ΓD the in-plane and
vertical displacements are fixed to zero. Define the spaces

H1
D(Ω;R2) =

{
v ∈ H1(Ω;R2) such that v = 0 on ΓD

}
H2
D(Ω) =

{
η ∈ H2(Ω) such that η = ∇η · n = 0 on ΓD

}
Our mechanical model is the linearized buckling problem for
the two-dimensional von Kármán plate model [9, 22]. The
unknowns are the in-plane displacement u ∈ H1

D(Ω;R2),
the vertical displacement w ∈ H2

D(Ω), w 6= 0, and the so-
called “buckling load factor" or “buckling critical reserve fac-

tor" λ ∈ R. They satisfy
∇2 : (D∇2w) = λ(Ae(u)) : ∇2w in Ω,

w = 0,∇w · n = 0 on ΓD,
(D∇2w)nn = 0 on ΓN ,

∇ · (D∇2w) · n+ ∂
∂τ (D∇2w)nτ = λ2Nεg · ∇w on ΓN ,

(4)
and  −div(Ae(u)) = 0 in Ω,

u = 0 on ΓD,
Ae(u) · n = 2Nεg, on ΓN ,

(5)

where e(u) = ∇u+(∇u)T

2 is the classical linearized strain ten-
sor, (n, τ) is the orthonormal local basis of normal and tangent
vectors on ∂Ω.

We denote by λ1 the smallest positive eigenvalue of (4) which
can be expressed through the Rayleigh quotient

1

λ1
= max
w∈H2

D(Ω)\{0}
max

(
0 , −

∫
Ω
Ae(u) · ∇w · ∇w dx∫
Ω
D∇2w : ∇2w dx

)
.

(6)
This is the only eigenvalue with a physical meaning since its
inverse is the buckling load factor which is an indicator of the
degree of safety against this particular mode of failure [13].
The computed vertical displacement eigenfunction w1 is re-
ferred here as the “buckling mode".

Stacking sequence

Even though the fiber orientation of each orthotropic laminate
might take any possible rotation angle, in real applications due
to manufacturing constraints, it only takes discrete values [12].
We will consider four values, namely: 0◦, 90◦, 45◦,−45◦. We
denote by C0◦ , C90◦ , C45◦ , C−45◦ their respective in-plane re-
duced stiffness tensors. We assume that the fiber orientation is
constant in each ply.

Figure 2: Fiber orientation of 0◦, 90◦, 45◦,−45◦.

DEFINITION 1 We define the stacking sequence as the set of
ply orientations and the way they are arranged in the normal
direction of the composite laminate (see Figure 1). We rep-
resent it through a binary matrix ξ = (ξij) ∈ {0, 1}, where
i = 1, ..., N , j = 1, 2, 3, 4, and

ξij =

{
1, if the layer in position i has fiber orientation j,
0, 1 if not.

(7)
We identify fiber orientations 1, 2, 3, 4 to the angles
0◦, 90◦, 45◦,−45◦, respectively.
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From an engineering point of view, when a composite laminate
is designed, some additional composite design rules must be
respected. Following the typical industrial approach we con-
sider the following rules:

• (R1) Continuity rule, no more than 4 successive plies
with the same angle.

• (R2) Disorientation rule, maximum gap between two ad-
jacent (superposed) plies is 45◦.

• (R3) Balanced laminate with respect to the principal di-
rection 0o, i.e. same number of plies at 45◦ and −45◦.

• (R4) Minimum proportion of each fiber orientation (typ-
ically 8%). We note this proportion as pj , j = 1, 2, 3, 4.

• (R5) Symmetric laminate. This ensures to avoid the cou-
pling between in-plane traction and bending of the plate.

We will denote as Yad the space of admissible values of ξ re-
specting the aforementioned constraints and for which one and
only one orientation is possible in each ply.

Optimization problem

We look for a multi-layered composite plate with optimal
stacking sequence and optimal ply shapes. Typically the op-
timization problem will be set as a mass minimization problem
subject to a set of manufacturing constraints, local failure cri-
teria, in-plane stiffness and avoidance of buckling.

From a mathematical point of view, our problem can be cast as
a mixed optimization problem, namely{

min
O∈Uad,ξ∈Yad

J(O)

such that G(O, ξ) ≤ 0,
(8)

where Uad denotes the space of admissible shapes. Problem
(8) is called mixed because O is a continuous variable while ξ
is a discrete one. The objective function J(O) is the mass of
the structure and does not depend on the stacking sequence ξ.
The functionG : (Uad×Yad)→ Rm is a regular vector-valued
constraint function with m components. Typically G is a me-
chanical constraint on the stiffness of the plate. Notably, we
focus our attention on two kinds of stiffness measures, namely
the compliance and the buckling avoidance through the load
factor or first positive eigenvalue of (4) λ−1

1 ≤ 1.

2.2 Viscoelastic structures

Physical modeling

Viscoelastic damping materials follow a liquid-like elastic be-
havior whose characteristics depend on the excitation fre-
quency. For these materials a linear elastic constitutive re-
lationship using Hooke’s law is not an accurate representa-
tion. Instead, the complex modulus is extensively used to

describe the dynamic characteristics of viscoelastic materials.
The stress-strain relationship of a viscoelastic damping mate-
rial subjected to steady-state oscillatory conditions can be rep-
resented by the structural damping model considering the com-
plex (or dynamic) modulus A as follows:

σ̂(ω) = A(ω)ê(ω),(9)

where ω a complex pulsation and σ̂ and ê are the Laplace trans-
forms of stress and linearized strain, respectively. The real
part of A represents the purely elastic behavior of the mate-
rial meanwhile the imaginary part of A represents the purely
viscous behavior.

Now let Ω ⊂ Rd (d = 2 or 3) be a bounded open set occu-
pied by a viscoelastic material with complex Hooke’s law A
and density ρ > 0. The boundary of Ω is made of two disjoint
parts

∂Ω = ΓN ∪ ΓD,

with Dirichlet boundary conditions on ΓD, and Neumann
boundary conditions on ΓN . The two boundary parts ΓN and
ΓD are allowed to vary in the optimization process, although
is possible to fix some portion of it. We denote by ω ∈ C the
complex pulsation and by u ∈ H1

D(Ω;Cd) the associated mode
(for simplicity we drop the Laplace transformation notation û),
i.e. the corresponding displacement field in Ω with

H1
D(Ω;Cd) =

{
v ∈ H1(Ω;Cd) such that v = 0 on ΓD

}
The pair (ω, u) is solution of the non-linear eigenvalue problem
of the linearized elasticity problem

 −div(A(ω)e(u)) = ω2ρ u in Ω,
u = 0 on ΓD,

A(ω)e(u) · n = 0 on ΓN .
(10)

We remark that the above eigenvalue problem is non-linear
since A depends on ω.

REMARK 2 From now on we will denote as v̄ the conjugate
transpose of the vector v.

Non-linear eigenvalue problem

Problem (10) can be cast as a generalized eigenvalue problem

T (ω)u = 0(11)

where T (ω) is a linear operator depending (non-linearly) on a
parameter ω. A solution u 6= 0 will exist only for some partic-
ular values of ω (also called eigenvalues).

Herein we cite two results describing the existence and char-
acterization of the solutions of (10). The first one stands that
when the Hooke law A(ω) has a particular structure, the solu-
tions of (10) coincide with the eigenvalues of a compact non-
selfadjoint operator [10]. The second one corresponds to a
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standard result on analytical perturbations of compact opera-
tors for local solutions of (11) in a more general framework
(consult for instance [16], chapter VII, Th. 1.9).

PROPOSITION 3 Suppose A with a polynomial or rational
structure w.r.t. ω so that for some N ∈ N with N > 2, the
variational formulation of (10) reads:

N−1∑
k=1

ωk
∫

Ω

Cke(u) : e(v̄) dx = ωN
∫

Ω

u · v̄ dx(12)

∀v ∈ H1
D(Ω;C2), where for each k

Ck = zkCk,(13)

zk ∈ C, z0 6= 0 and Ck coercive (i.e. ∃αk > 0 : Ckξξ̄ ≥
αk|ξ|2 ∀ξ ∈ Cd). Let the operators T, S : (a1, ..., aN ) ∈
H1
D(Ω;C2)N → H1

D(Ω;C2)N be the solutions of the varia-
tional systems described in [10]. Then:

1. The operator Q = S−1 ◦ T admits a countable infinite
family of eigenvalues and eigenvectors (ωk, uk)k≥1 ∈
C×H1

D(Ω;C2), with |ωk| ≤ |ωk+1|, where each eigen-
value has finite multiplicity and |ωk| → ∞.

2. The pairs (ωk, uk)k≥1 are the unique solutions of (12) in
the following sense: if (ω, u) ∈ C ×H1

D(Ω;C2) is any
solution of (12), then there exists at least one k ≥ 1 such
that ω = ωk and u is a linear combination for all um for
which ωm = ω.

PROPOSITION 4 Let S(ω) be a family of compact operators
(for each ω fixed) and holomorphic with respect to ω ∈ D ⊂ C
bounded. Define ω as a singular point if 1 is an eigenvalue
of S(ω). Then either all ω ∈ D are singular points or there
are only a finite number of singular points in each compact
subset of D. In our case the result applies for (11) by taking

S(ω) =
(
T (ω)
ω2 + Id

)−1

.

Optimization problem

Supposing that (10) admits a countable infinite family of solu-
tions (ωk, uk)k≥1 in C×H1(Ω;C)d, with the eigenfunctions,
or modes, normalized by imposing that

∫
Ω
ρ|uk|2dx = 1, the

objective function η(Ω) to be maximized is the modal loss fac-
tor (capacity to dissipate energy) of the structure for its first
eigenvalue:

η(Ω) =
=(ω2

1)

<(ω2
1)
.(14)

Since the eigenvalues of (10) can not be naturally ordered in
C, ω1 is computed as the closest (ωk)k≥1 to the the smallest
positive eigenvalue ω0

1 solution of the real self-adjoint problem

−div(A(0)e(u)) = ω2ρ u in Ω.(15)

3 Shape optimization

3.1 Shape sensitivity analysis

We briefly recall the definition and main results about shape
derivation in dimension d = 2. Shape differentiation is a clas-
sical topic that goes back to Hadamard [3, 24]. Let the over-
all domain Ω ⊂ R2 be fixed and bounded. Let Ω1 ⊂ Ω be
a smooth open subset which is variable. Indeed, we consider
variations of the type(

Id+ θ
)
(Ω1) := {x+ θ(x) for x ∈ Ω1} ,

with θ ∈ W 1,∞(Ω;R2) such that ‖θ‖W 1,∞(Ω;R2) < 1 and tan-
gential on ∂Ω (i.e., θ ·n = 0 on ∂Ω ; this last condition ensures
that Ω = (Id + θ)Ω). It is well known that, for sufficiently
small θ, (Id+ θ) is a diffeomorphism in Ω.

DEFINITION 5 The shape derivative of a function J(Ω1) is
defined as the Fréchet derivative in W 1,∞(Ω;R2) at 0 of the
application θ → J

((
Id+ θ

)
Ω1

)
, i.e.

J
((
Id+ θ

)
Ω1

)
= J(Ω1) + J ′(Ω1)(θ) + o(θ),

where limθ→0
|o(θ)|
‖θ‖W1,∞

= 0 and J ′(Ω1) is a continuous lin-
ear form on W 1,∞(Ω;R2).

3.2 Shape representation by the level-set method
and multi-phase design

Level set method for topology optimization

The level-set method is a technique for capturing interfaces
which are implicitly defined via the zero level-set of an aux-
iliary function. Over the last years, this method has been suc-
cessfully applied to topology optimization problems. Define
the working domain Ω ⊂ Rd (d = 2, 3) bounded and the ad-
missible shapes Ω1 ⊂ Ω and Ω\Ω1. Then, the boundary of Ω1

is described by means of a level set function ψ such that ψ(x) = 0 if x ∈ ∂Ω1,
ψ(x) < 0 if x ∈ Ω\Ω1,
ψ(x) > 0 if x ∈ Ω1.

(16)

Under the action of a normal vector field V (t, x)n(x), the
shape Ω1 evolves according to the Hamilton-Jacobi equation

∂ψ

∂t
(t, x) + V (t, x)|∇ψ(t, x)| = 0,(17)

∀t ∈ R+, ∀x ∈ Ω. The choice of the normal velocity V is
based on the notion of shape derivative. Generally speaking,
the shape derivative of a functional J(Ω1) reads

J ′(Ω1)(θ) =

∫
∂Ω1

Tθ · nds,(18)

where the integrand T(x) depends on the solutions of either
(4)-(5) or (10). Note that in the case of multi-layered compos-
ite each ply shape Ωi (i = 1, ..., N ) can move with its own
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velocity. Since only the normal component of θ plays a role in
(18), a descent direction θ for J satisfies

θ = V n and J ′(Ω1)(θ) =

∫
∂Ω1

TV ds ≤ 0.(19)

To ensure the decrease of J , the simplest choice is V = −T.
However, T is a priori defined only on the interfaces Ω1 while
V must be defined in the entire domain Ω. If such an extension
is not obvious or if we want to regularize the velocity fields,
there is an alternative choice based on a different underlying
scalar product (see e.g. [2]).

Multi-phase design

Given the above level-set framework, we consider multi-
layered composites and viscoelastic damping treatments as
multi-phase structures where the level set function ψ (or each
ψi in the multi-layered case) represents the interface between
two material phases occupying the sub-domains Ω1 ⊂ Ω and
Ω\Ω1. As it was studied in [4], this interface can be sharp,
in which case the elastic properties (denoted generically as A
with A0 and A1 the respective values in each sub-domain) are
defined piecewise as

A = A0 + χ(A1 −A0),(20)

with χ = H(ψ) and H the Heaviside function, or smooth

A = A0 + h(dΩ1
)(A1 −A0),(21)

where h is a smooth approximation of the Heaviside function
and dΩ1

the signed distance function associated to Ω1
dΩ1

(x) = 0 if x ∈ ∂Ω1,
dΩ1(x) = − min

xI∈∂Ω1

|x− xI | if x ∈ Ω\Ω1,

dΩ1(x) = min
xI∈∂Ω1

|x− xI | if x ∈ Ω1.
(22)

For the ensuing analysis the latter multi-phase formulation is
applied.

REMARK 6 In the case of viscoelastic structures, the global
material density is defined as

ρ = ρ0 + h(dΩ1
)(ρ1 − ρ0),

where the densities ρ0 and ρ1 characterize Ω\Ω1 and Ω1 re-
spectively.

3.3 Shape derivatives

We only give the shape derivative formulas for the following
criteria: Compliance, the inverse of the buckling load factor λ1

(Section 2.1 ), and ω1 (Section 2.2). For further details refer to
[5], [4] and [10].

Multi-layered composites

PROPOSITION 7 Let (λ1, w1) and u be the solutions of (4)
and (5) respectively. Define the plane compliance as

E =

∫
Ω

Ae(u) : e(u)dx

and the adjoint state p ∈ H1
D(Ω;R2) as the solution of∫

Ω

Ae(p) : e(v)dx = λ1

∫
Ω

B(v;w1, w1)dx(23)

∀v ∈ H1
D(Ω;R2), where

B(v;w1, w1) =

∫
Ω

(Ae(v) · ∇w1) · ∇w1dx.

Moreover, assume λ1 is a simple eigenvalue of problem (4)
and let the buckling mode w1 ∈ H2

D(Ω) be normalized as∫
Ω
B(u;w1, w1)dx = −1. Then λ1 is shape differentiable and

λ′1(Ω1)(θ) =
∫
∂Ω1

(
[[D]]∇2w1 : ∇2w1

+λ1([[A]]e(u) · ∇w1) · ∇w1− [[A]]e(u) : e(p)

)
θ · nds,

(24)

E ′(Ω1)(θ) =

∫
∂Ω1

[[A]]e(u) : e(u)dx(25)

where [[·]] = ·1 − ·0 denotes the jump through ∂Ω1.

Viscoelastic structures

PROPOSITION 8 Let (ω1, u1) the solutions of (10). Define
p1 ∈ H1

D(Ω;C2) as the adjoint eigenvector solution of∫
Ω

AH(ω1)e(p) : e(v̄)dx = ω2ρ

∫
Ω

p · v̄dx(26)

∀v ∈ H1
D(Ω;C2), with ω2 = ω2

1 ,AH = Ā the conjugate trans-
pose tensor of A and

∫
Ω
ρ|p1|2 = 1. Moreover assume that ω1

is a simple eigenvalue of (10). Then ω1 is shape differentiable
and

ω′1(Ω1)(θ) =

∫
∂Ω1

θ · n
(
ω2

1 [[ρ]]u1 · p1 − [[A]](ω1)e(u1) : e(p1)
)
ds∫

Ω

(
2ω1ρ u1 · p1 − ∂ωA(ω1)e(u1) : e(p1)

)
dx

(27)
where [[·]] = ·1 − ·0 denotes the jump through ∂Ω1.

4 Numerical results

4.1 Multi-layered composites

Test case: The goal of this test case is to design the lightest
composite fuselage skin panel, subject to a shear load, as illus-
trated in Figure 3. Of particular interest is the study of the in-
fluence of the orthotropic plies oriented at 45◦ and −45◦ in the
prevention of buckling. The objective function is the mass of
structure constrained by different stiffness measures including



Multi-phase structural optimization of multi-layered composites and viscoelastic materials 7

compliance and buckling load λ−1
1 . Due to the small curvature

of the cylindrical panel section, an approximate plate model is
used. The panel domain is a rectangle Ω = 2m × 1m, mod-
eled as a multi-layered plate. The elastic properties of the main
phase of each layer are described through one of the following
tensors: C0◦ , C90◦ , C45◦ , C−45◦ which correspond to rotations
of the orthotropic material C given by an carbon fiber/epoxy
matrix.

ΓD
Ω

g

x1

x2

Figure 3: Approximate flat model due to the small curvature of
the cylindrical panel section.

Optimization algorithm: The optimization algorithm for
solving (8) can be summarized as two nested loops:

1. An outer loop for the shape variable O that solves (8) for
a fixed stacking sequence ξ via a descent direction method,
which is based on a shape sensitivity analysis coupled to a level
set method described in Section 3.2.

2. An inner loop for the variable ξ where the constraint margin
functionM(O) := minξ∈Yad

G(O, ξ) is evaluated by solving
the integer programming problem via an outer approximation
method [5].

Results

The optimal stacking sequence corresponds to the values:
[45◦, 90◦,−45◦,−45◦, 0◦, 0◦, 45◦, 0◦].

Figure 4: Evolution of the total material density of the com-
posite laminate.

4.2 Viscoelastic structures

Test case: Let D = Ω × [0, ε] ⊂ R3 be a plate in plane
stress, with thickness ε = 5mm and Ω = 2m × 1m, com-
posed of the superposition of a fixed rectangular membrane of
aluminum and an isotropic damping viscoelastic material 3M
ISD112 [27]. We remark that the choice of material proper-
ties matches with the rational structure of A(ω) mentioned in
Proposition 3. The cantilever Ω is fixed on the left at ΓD and
free on ∂Ω\ΓD. The objective will be to maximize the loss
factor η.

Solving the discrete non-linear eigenvalue problem: De-
note as

Th(ω) · x = 0(28)

the matrix representation of the FEM or discrete weak formula-
tion of (10). Among the various methods to solve (28) (consult
for instance [23]), we chose one of the simplest ones that con-
sists in applying the Newton’s method to the extended system:

Fz(ω, x) =

(
Th(ω) · x
z̄ · x− 1

)
= 0.(29)

The second equation represents a normalization condition with
‖z‖ = 1 and z̄ · x∗ 6= 0, where x∗ is the exact eigenvector
of (28). We chose as initialization of the aforementioned algo-
rithm (ω0

1 , u
0
1) solution of (15) and z = u0

1.

Results

Figure 5: Evolution of the composite structure made of the
superposition of aluminum (grey) and a viscoelastic material
(black).
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Figure 6: Evolution of the loss factor η during the optimization.
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