

AUTOMATED 3D LYMHOMA LESION SEGMENTAITON USING PET/CT CHARACTERISTICS

Eloïse Grossiord¹, Hugues Talbot¹, Nicolas Passat², Michel Meignan³, Laurent Najman¹, Michel

*Meignan*²

¹ Université Paris-Est, ESIEE-Paris, LIGM, CNRS, France 2 Université de Reims Champagne-Ardenne, CReSTIC, France The Lymphoma Academic Research Organisation (LYSARC), Lyon, France

contact: eloise.grossiord@esiee.fr

CONTEXT

- ¹⁸F-FDG PET is essential in lymphoma imaging for **detecting lesions** and quantifying their metabolic activity.
- Due to the spatial and spectral properties of PET images, most segmentation methods rely on intensity-based strategies, mainly local fixed or adaptive thresholdings, and usually require user interaction.
- This process can be laborious and user-dependent for lymphomas where lesions are **numerous** and located in **multiple sites** of the body.
- Recent methods also propose to integrate anatomical priors to improve the segmentation process.

OBJECTIVE

In this work, we use hierarchical approaches embedding multi-modality descriptors for automated PET lesion segmentation of the whole body.

MATERIAL

- 43 multi-centric **PET/CT images** of patients treated for **lymphoma**
- Tumour and Organ segmentations performed on PET by expert (threshold at 41% of SUV_{max} in manually placed VOIs) were considered as Tumour ground-truth and Organ ground-truth.

METHODS

1. Hierarchical representation : component-tree \mathcal{T}

We use the **component-tree** \mathcal{T} as a relevant data structure to model PET images. This representation models all the connected components (i.e., maximally **connected regions**) of the image *I* obtained from its successive level sets.

- Each node corresponds to a connected PET regions, and each edge represent the inclusion relationship between them.
- T is a *lossless* image representation.
- Processing I via $\mathcal T$ is a low-cost operation.

RESULTS

Given the small size of the considered database, we evaluate the random forest (RF) model using a leave-one patient-out (LOPO) crossvalidation strategy. The number of trees to train the RF was set to 10³.

We evaluate our methodology by validating

- Node classification results from RF
- Volumic results from the reconstructed tumour regions, compared to ground-truth segmentation

RF validation

Table: Confusion matrix of nodes after RF classification

		Predicted Class		
	Class	T	O	NR
Actual Class	T	10 568	1 008	4754
	O	875	12 222	2 4 3 5
	NR	3 6 5 6	1856	38 840

- Multi-class overall accuracy of 0.81
- Class Tumour vs all:
 - Mean sensitivity and specificity of 0.65 and 0.92 respectively
 - Overall accuracy of 0.85

2. PET/CT characterization and tag of regions

1. Each node is characterized with a set of 88 features computed on PET/CT data:

- Intensity and histogrambased attributes
- Textural features
- Spatial information (position and distance to hyperfixating organs)

Shape descriptors

2. Identification of class nodes (0 : Non-relevant / 1: Tumour / 2: Organ), based on ground-truth segmentations, and used for the supervised learning step.

3. Machine-learning with Random Forest Classifier

Our segmentation consists of keeping in the model the regions with the highest tumour membership probabilities, for each patient.

Tumour Segmentation Results

- Our segmentation method shows promising performances:
 - It locates 92% of all the manually delineated tumours for all the patients.
 - Mean sensitivity and specificity of 0.74 and 0.99 respectively.
- Overall tumoral volume overestimation of 35% in average.
- Few remaining hyperfixating organs.

Figure: MIP of PET image (maximum intensity projection) surimposed with ground-truth (in green, on the left) and segmentation result (in blue, on the right).

CONCLUSIONS AND PERSPECTIVES

- Hierarchical approaches involving machine-learning and multi-modality descriptors can automatically and efficiently segment lymphoma lesions in 3D over the whole body: detection of 92% of all lesions.
 - Volume overestimation: overestimated tumors + hyperfixating organs.
- The model can be improved considering a learning procedure on a larger database and features selection.
- Beforehand elimination of organs with an anatomical atlas.
- Taking advantage of the hierarchical structure of \mathcal{T} : injection of treerelated structural information and considering sub-branches as unitary structures.