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CONTEXT OBJECTIVE

« BF-FDG PET is essential in lymphoma imaging for detecting lesions and * |n this work, we use hierarchical approaches embedding
quantifying their metabolic activity. multi-modality descriptors for automated PET lesion

Due to the spatial and spectral properties of PET images, most segmentation of the whole body.

segmentation methods rely on intensity-based strategies, mainly local
fixed or adaptive thresholdings, and usually require user interaction. MATERIAL

This process can be laborious and user-dependent for lymphomas where
lesions are numerous and located in multiple sites of the body. * 43 multi-centric PET/CT images of patients treated for lymphoma

Recent methods also propose to integrate anatomical priors to improve * Tumour and Organ segmentations performed on PET by expert
the segmentation process. (threshold at 41% of SUV ., in manually placed VOIs) were

considered as Tumour ground-truth and Organ ground-truth.

Given the small size of the considered database, we evaluate the

1. Hierarchical representation : component-tree T random forest (RF) model using a leave-one patient-out (LOPO) cross-
validation strategy. The number of trees to train the RF was set to 10°.

We use the component-tree 7 as a relevant data structure to model PET images. We evaluate our methodology by validating

This representation models all the connected components (i.e., maximally « Node classification results from RF
connected regions) of the image J obtained from its successive level sets. » Volumic results from the reconstructed tumour regions, compared to
A ground-truth segmentation
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Tumour Segmentation Results

________________________________________________________________________________________________________________________________________________________________________________________________________

-+ Our segmentation method shows promising performances : |

| * It locates 92% of all the manually delineated tumours for all the
patients. :

| * Mean sensitivity and specificity of 0.74 and 0.99 respectively.

+ Overall tumoral volume overestimation of 35% in average.

« Few remaining hyperfixating organs.

* Intensity and histogram-
based attributes
» Shape descriptors
— « Textural features
» Spatial information
- (position and distance to
hyperfixating organs) |

2. ldentification of class nodes (0 : Non-relevant / 1: Tumour / 2: Organ), based on
ground-truth segmentations, and used for the supervised learning step.

Figure : MIP of PET image (maximum intensity projection) surimposed with
ground-truth (in green, on the left) and segmentation result (in blue,on the right).
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Beforehand elimination of organs with an anatomical atlas.
Taking advantage of the hierarchical structure of T : injection of tree-
Our segmentation consists of keeping in the model the regions with the highest related structural information and considering sub-branches as unitary

tumour membership probabilities, for each patient. structures.




