Multicriteria 3D PET image segmentation - Archive ouverte HAL Access content directly
Conference Papers Year : 2016

Multicriteria 3D PET image segmentation

(1, 2) , (3, 4) , (1) , (2) , (5) , (3) , (3) , (1) , (1, 6) , (1)
1
2
3
4
5
6
Camille Kurtz
Hugues Talbot

Abstract

The analysis of images acquired with Positron Emission Tomography (PET) is challenging. In particular, there is no consensus on the best criterion to quantify the metabolic activity for lesion detection and segmentation purposes. Based on this consideration, we propose a versatile knowledge-based segmen-tation methodology for 3D PET imaging. In contrast to previous methods, an arbitrary number of quantitative criteria can be involved and the experts behaviour learned and reproduced in order to guide the segmentation process. The classification part of the scheme relies on example-based learning strategies, allowing interactive example definition and more generally incremental refinement. The image processing part relies on hierarchical segmentation, allowing vectorial attribute handling. Preliminary results on synthetic and real images confirm the relevance of this methodology, both as a segmentation approach and as an experimental framework for criteria evaluation.
Fichier principal
Vignette du fichier
Alvarez Padilla IPTA 2015_VFinal.pdf (352.86 Ko) Télécharger le fichier
Vignette du fichier
Alvarez Padilla IPTA 2015 Slides.pdf (2.86 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01616446 , version 1 (16-10-2017)

Identifiers

Cite

Francisco Javier Alvarez Padilla, Eloïse Grossiord, Barbara Romaniuk, Benoît Naegel, Camille Kurtz, et al.. Multicriteria 3D PET image segmentation. Image Processing Theory, Tools and Applications (IPTA), 2015, Orléans, France. pp.346-351, ⟨10.1109/IPTA.2015.7367162⟩. ⟨hal-01616446⟩
301 View
152 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More