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(2) Univ. Paris-Est Marne-la-Vallée, LIGM, UMR CNRS 8049, 5 Bd. Descartes, 77454 Marne la Vallée Cédex 2, France

(3) CNAM, Laboratoire CEDRIC, 292 rue Saint-Martin, 75141 Paris Cédex 3, France.

ABSTRACT

This paper concerns time synchronization of MIMO systems.
The current most powerful receiver is a generalized likelihood
ratio test (GLRT) receiver, and assumes unknown, stationary,
circular, and spatially colored Gaussian noise. However, this
receiver is more complex than its non-GLRT counterparts,
which, unfortunately, do not perform as well in most cases.
As the complexity is an important issue for practical imple-
mentations and may be prohibitive for a large number of an-
tennas, the purpose of this paper is to propose several ways of
decreasing the complexity of the GLRT receiver while keep-
ing its performance. Simplifications of the GLRT receiver and
optimization of parameters, jointly with new low-complexity
receivers, are introduced. The performance of the new re-
ceivers is analyzed and compared with that of the GLRT re-
ceiver, enlightening the practical interest of these receivers.

Index Terms— Time Synchronization, MIMO, Single
Carrier, GLRT, Interference.

1. INTRODUCTION
Time and frequency synchronization of MIMO systems have
been strongly studied in the last fifteen years. Both coarse
and fine time synchronization jointly with frequency off-
set estimation and compensation have been deeply analyzed
and many techniques have been proposed either for time-
frequency synchronization [1, 2] or time synchronization
only [3–7]. Nevertheless, most of these techniques assume
an absence of interference. The scarce papers of the liter-
ature dealing with MIMO synchronization in the presence
of interference correspond to [1, 5–7]. However, [1] and [5]
only consider the problem of MIMO synchronization in the
presence of multi-users interference (MUI), and [6] seems to
be the only paper dealing with MIMO synchronization in the
presence of interference of any kind, such as hostile jammers.
In [6], several receivers are proposed for time synchronization
for both flat fading and frequency selective fading channels.
But for complexity reasons, only those developed for flat fad-
ing channels seem to be realistic for practical situations. Note
however that these receivers may also be used for frequency
selective channels, considering the secondary propagation

multi-paths as interference. In [6], two receivers for flat
fading channels, robust to interferences, are derived from
an MMSE and a GLRT approach respectively. The GLRT
receiver, called GLRT2 receiver in the following, assumes
unknown, stationary, Gaussian, spatially colored and tempo-
rally white total noise, contrary to the GLRT1 receiver which
assumes stationary, Gaussian and spatially white noise. The
GLRT2 receiver has been shown in [6] to perform better than
the others in the presence of interference for non-orthogonal
synchronization sequences. Nevertheless, the GLRT2 re-
ceiver may be very costly to implement, for a large number of
antennas in particular, since for a (M ×N) MIMO system, it
requires both an (N ×N) matrix inversion and an (N ×N)
or (M ×M) determinant computation at each tested sample
position. An alternative to the GLRT2 receiver is the MMSE
receiver proposed in [6]. However, the MMSE receiver is
shown in this paper to be very sensitive to training sequence
correlation, which may limit its practical use in this context.

As complexity is an important issue for practical imple-
mentations, we propose several ways to decrease the com-
plexity of the GLRT2 receiver while retaining its perfor-
mance. The first way concerns MIMO systems with M = 2
transmit antennas and consists in computing explicitly the
determinant appearing in the GLRT2 receiver formulation, al-
lowing in particular a direct comparison with both the MMSE
test proposed in [6] and SIMO receivers. As the direct com-
putation of the determinant is complicated for M > 2, a
second proposition to decrease receiver complexity consists
in introducing two new low-complexity MIMO receivers
which are robust to interference. These two new receivers,
called E0-GLRT3 and E1-GLRT3, correspond to two esti-
mates of the GLRT receiver in known, stationary, Gaussian,
spatially correlated and temporally white total noise, called
GLRT3 receiver. For stationary interference, a third way to
decrease the receiver complexity is to compute and inverse at
a lower rate the data correlation matrix appearing in the re-
ceiver expressions by computing it on an observation interval
greater than the synchronization sequence length. Finally, a
fourth way to decrease the receiver complexity is to optimize
the number of transmit antennas used for synchronization for
a given value of the number of receive antennas and for given



kinds of propagation channels. Note that such a problem has
been preliminarily investigated in [4] in the DS-CDMA con-
text and in [8] for precoded synchronization schemes. The
performance of the proposed optimization schemes and asso-
ciated receivers, jointly with their complexity, are analyzed
in this paper and compared with that of the GLRT2 receiver,
enlightening the practical interest of the former.

2. MODEL AND PROBLEM FORMULATION

2.1. Hypotheses

We consider a (M×N) MIMO radiocommunication link with
M and N narrow-band antennas at transmission and recep-
tion respectively, and denote by s(k) the (M × 1) synchro-
nization sequence vector at time k. Assuming a flat fading
propagation channel and perfect (symbol-level) time and fre-
quency synchronization, the vector, x(k) of the complex en-
velopes of the signals at the output of the N receive antennas
at time k can be written as

x(k) = Hs(k) + v(k) (1)

Here, H is the (N ×M) channel matrix and v(k) the sam-
pled total noise vector, which contains the potential contri-
bution of MUI interferences, jammers and background noise
and which is assumed to be uncorrelated with all the sig-
nals s(k). We assume that the v(k) are zero-mean, station-
ary, i.i.d, temporally white, circular, Gaussian samples with
covariance matrix R = E[v(k)v(k)H ], where H stands for
conjugate transpose. Denoting by X and V the (N ×K) ob-
servation and total noise matrices X = [x(1), . . . ,x(K)] and
V = [v(1), . . . ,v(K)], and by S the (M ×K) synchroniza-
tion sequence matrix S = [s(1), . . . , s(K)], we obtain

X = HS+V (2)

Note that the flat fading assumption is required to develop re-
ceivers with a limited complexity but is not required in prac-
tice where the considered receivers may be used even for fre-
quency selective fading channels, considering multiple paths
as interferences.

2.2. Problem formulation

The problem of time synchronisation of a MIMO link may be
viewed as a detection problem with two hypotheses [6]. The
first hypothesis (H1) is that the signal matrix S is perfectly
aligned in time with the observation matrix X, and corre-
sponds to model (2). The second hypothesis (H0) is that there
is no signal in the observation matrix X, and corresponds to
model (3) given by

X = V (3)
The problem of synchronization then consists in elaborating
a statistical test, function of the observations X, and in com-
paring the value of this test to a threshold. If the threshold
is exceeded, detection is considered. The performance of a
synchronization test statistic is characterized by the proba-
bility of a correct detection under H1 (PD) for a given false

alarm probability (PFA), corresponding to the probability of
exceeding the threshold under H0. Note that in practice, X
contains the K last received observation samples and is up-
dated at each sample until the main detection.

3. RECEIVERS IN THE LITERATURE

In this section, we briefly recall the GLRT2 and MMSE re-
ceivers introduced in [6].

3.1. GLRT2 receiver

According to the Neyman-Pearson theory of detection, the
optimal statistical test for the detection of matrix S from
matrix X is the likelihood ratio test (LRT), which consists in
comparing the functionLRT , pH1

(X|S,H,R)/pH0
(X|R)

to a threshold, where pHi
(X| . . .) (i = 0, 1) is the conditional

probability density of X under Hi. The expression of the LRT
then takes the form

LRT =

∏K
k=1 pH1

(v(k) | s(k),H,R)∏K
k=1 pH0(v(k) |R)

. (4)

For our model, we have pH1
(v(k)|s(k),H,R) =

1
πN det(R)

e−(x(k)−Hs(k))HR−1(x(k)−Hs(k)), and

pH0
(v(k)|R) = 1

πN det(R)
e−x(k)

HR−1x(k) where det(R)

means determinant of R. As, in practice, R and H are un-
known, they have to be replaced in (4) by their maximum
likelihood (ML) estimates under each of the two hypotheses
H1 and H0 (for R), giving rise to the GLRT2 statistic. In
these conditions, it has been shown in [6] that a sufficient
statistic for the GLRT2 is given by

GLRT2 = det[IK − P̂sP̂x]
−K (5)

where P̂s and P̂x are (K×K) matrices corresponding to the
projection operators onto the row spaces spanned by S and
X respectively, defined by P̂s , SH(SSH)−1S and P̂x ,
XH(XXH)−1X. Defining the matrices Rss , SSH/K,
R̂xx , XXH/K and R̂xs , XSH/K and using the prop-
erties of the determinant, it is straighforward to show that (5)
can also be written as

GLRT2 =det[IN − R̂−1xx R̂xsR
−1
ss R̂

H
xs]
−K

=det[IM −R−1ss R̂
H
xsR̂

−1
xx R̂xs]

−K (6)

Expression (6), not presented in [6], requires that Rss is in-
vertible, which is assumed in the following. This is only pos-
sible if M ≤ K, which is then assumed in the following. Un-
der these assumptions, expressions (5), (6) show that, at each
tested sample position, the GLRT2 receiver requires the com-
putation of at least an (N×N) matrix inversion, R̂−1xx , and the
determinant of a (P × P ) matrix where P = Inf(K,N,M),
which may be prohibitive for a large K and a large number of
antennas.

In the particular case of a SIMO system (M = 1), R̂xs

reduces to the vector r̂xs1 , Rss reduces to the scalar rs1 and



we deduce from (6) that a sufficient statistic for the GLRT2 is
given by

GLRT2SIMO =
r̂Hxs1R̂

−1
xx r̂xs1
rs1

. (7)
3.2. MMSE receiver

MMSE time synchronization consists in finding the sample
position which minimizes the least square (LS) error, ε̂, be-
tween the known sampled vectors s(k) and their LS estima-
tion from a spatial filtering of the data x(k)(1 ≤ k ≤ K).
After elementary computations, we obtain a sufficient statis-
tic for the MMSE receiver, given by [6]

MMSE ,
Tr(R̂H

xsR̂
−1
xx R̂xs)

Tr(Rss)
=

∑M
i=1 r̂

H
xsiR̂

−1
xx r̂xsi∑M

m=1 rsm
(8)

where Tr() means Trace, r̂xsi corresponds to the column i of
R̂xs and rsm is the term (m,m) of Rss. Comparing (8) to (7),
we deduce that, to within a constant, the MMSE receiver cor-
responds to the weighted sum of M SIMO receivers, each of
them associated with a particular transmit antenna. The com-
putation of the MMSE receiver requires a (N × N) matrix
inversion at each tested sample position but no determinant
computation, which is less complex than the GLRT2 compu-
tation. For SIMO links (M = 1), the MMSE and GLRT2 re-
ceivers coincide, but this is a priori no longer true for M > 1
as will be shown in the next section.

4. DIRECT EXPRESSION OF GLRT2 FOR M=2

For M = 2, the determinant (6) can be easily computed and
the result allows a direct comparison with the MMSE receiver
(8). After straightforward computations of (6) for M = 2, we
obtain an alternative sufficient statistic for the GLRT2 as

GLRT2 = ĥH1 R̂−1xx r̂xs1 − (ĥH1 R̂−1xx r̂xs1)(ĥ
H
2 R̂−1xx r̂xs2)

+ ĥH2 R̂−1xx r̂xs2 + (ĥH1 R̂−1xx r̂xs2)(ĥ
H
2 R̂−1xx r̂xs1) (9)

where Ĥ = [ĥ1, ĥ2] is the ML estimate of H under H1, given
by Ĥ = R̂xsR

−1
ss . For orthogonal sequences, we deduce

that ĥi = r−1si r̂xsi(1 ≤ i ≤ 2), and comparing (9) with
(8) for M = 2, we deduce that for MIMO links (M > 1),
the MMSE receiver no longer corresponds to the GLRT2 re-
ceiver, even for orthogonal synchronization sequences having
the same power, which was not obvious a priori.

5. NEW LOW-COMPLEXITY RECEIVERS

The direct computation of the determinant (6) is not so
straigthforward for M > 2 while the MMSE receiver (8) has
been shown in [6] to become sub-optimal for non-orthogonal
synchronization sequences. In this context, a second way
to decrease the complexity of the GLRT2 receiver for arbi-
trary values of M while trying to keep its performance is to
develop alternative receivers. To this aim, it seems natural
to think that non-GLRT receivers corresponding to good es-
timates of the GLRT receiver in known total noise, called
GLRT3 receiver, have good chances of approaching the per-
formance of the GLRT2 receiver. For this reason, in this

section, we introduce the GLRT3 receiver and propose two
new low-complexity receivers corresponding to two different
estimates of this receiver.

5.1. GLRT3 receiver

The GLRT3 receiver is obtained by considering expression
(4) assuming an unknown channel matrix H and a zero-mean,
i.i.d stationary, circular, Gaussian total noise whose covari-
ance matrix, R, is assumed to be known. Replacing in (4) H
by its ML estimate Ĥ = R̂xsR̂

−1
ss , valid for any M , gener-

ates the GLRT3 receiver. It is straightforward to show that a
sufficient statistic for the GLRT3 receiver is given by

GLRT3 = Tr
[
R−1ss R̂H

xs R
−1 R̂xs

]
. (10)

The GLRT3 receiver does not require any determinant com-
putation, but unfortunately it cannot be used in practice since
R is unknown. It can however be estimated by replacing R
by an estimate, which is done in the following sections.

5.2. Estimated GLRT3 receiver under H0

A first possibility to build from (10) a low-complexity re-
ceiver useful in practice is to replace in (10) the matrix R
by its ML estimate under H0, R̂0. It is easy to show that
R̂0 = R̂xx, which gives rise to the estimated GLRT3 receiver
under H0 (E0-GLRT3), defined by

E0-GLRT3 = Tr
[
R−1ss R̂H

xs R̂
−1
xx R̂xs

]
. (11)

For orthogonal sequences and to within a constant, (11) cor-
responds to (8). In this case, the MMSE receiver can be inter-
preted as an estimate of the GLRT3 receiver under H0. Oth-
erwise, the MMSE receiver has no link with E0-GLRT3.

5.3. Estimated GLRT3 receiver under H1

A second possibility to build from (10) a low-complexity re-
ceiver useful in practice is to replace in (10) the matrix R
by its ML estimate under H1, R̂1. It is easy to show that
R̂1 is defined by R̂1 = R̂xx − R̂xsR

−1
ss R̂

H
xs. In R̂1 the es-

timated contributions of the transmitted synchronization se-
quences have been removed from R̂xx. This gives rise to the
estimated GLRT3 receiver under H1 (E1-GLRT3), defined by

E1-GLRT3 = Tr
[
R−1ss R̂H

xs R̂
−1
1 R̂xs

]
. (12)

5.4. Performance of the estimated GLRT3 receivers

To compare the performance of E0-GLRT3 and E1-GLRT3
with that of GLRT2, we consider a (M×N) MIMO link with
omnidirectional transmitting and receiving antennas. The co-
efficients Hi,j (1 ≤ i ≤ N), (1 ≤ j ≤ M) of H are as-
sumed to be zero-mean i.i.d circular Gaussian variables such
that E[|Hi,j |2] = 1, which modelizes a Rayleigh flat fad-
ing model with a maximal diversity. The total noise is as-
sumed to be composed of one single antenna interference and
a background noise and is such that v(k) = jI(k)hI + n(k).



Fig. 1. PND as a function of SNR, K = 32, (M,N) = (4, 2)

Here, n(k) is the sampled background noise vector, assumed
to be zero-mean, stationary, Gaussian, SO circular, spatially
white with a mean power per received antenna equal to η2
and hI the channel vector of the interference such that the
components hI [i] (1 ≤ i ≤ N) are zero-mean i.i.d circular
Gaussian variables verifying E[|hI [i]|2] = 1. jI(k) are the
complex samples of the interference, assumed to be QPSK
and such that πI , E[|jI(k)|2] is the input mean power of
the interference per antenna. Each synchronization sequence
is composed of K QPSK samples. The synchronization se-
quences have the same power (rsi , rs, 1 ≤ i ≤M) and are
normalized such that the signal to thermal noise ratio per re-
ceive antenna, defined by SNR,Mrs/η2, may be arbitrarily
chosen. The interference to noise ratio per receive antenna,
defined by INR, πI/η2, is chosen such that INR/SNR = 15
dB. The false alarm rate is PFA = 10−3 and the figures are
built from 105 independent realizations.

Under these assumptions, Figures 1 and 2 show, for K =
32, for (M,N) = (4, 2), (4, 4) respectively and for orthogo-
nal and non-orthogonal synchronization sequences, the vari-
ations of the non-detection probability (PND = 1 − PD) as a
function of the SNR per receive antenna at the output of the
GLRT2, MMSE, E0-GLRT3 and E1-GLRT3 receivers. For
non-orthogonal sequences, we repeat the same symbols in the
beginning of the synchronization sequence for all antennas,
such that |(ρs)m,n| , |(Rss)m,n|/[rsnrsm]1/2 is comprised
between 0.6 and 0.9 (1 ≤ m,n ≤ M ;m 6= n). Figure 1 and
2 show an increasing performance of all the receivers with
both the SNR and N , despite the presence of a strong inter-
ference, and decreasing performance of all the receivers with
the correlation of the synchronization sequences. Moreover,
these figures show very similar performances of E1-GLRT3
and GLRT2 and quite similar performance of E0-GLRT3 and
GLRT2 whatever (M,N), SNR and the correlation of the se-
quences. These results enlighten the practical interest of E0-
GLRT3 and E1-GLRT3 for any correlation between the se-
quence. Figures 1 and 2 show, for non-orthogonal sequences
and SNR > 0 dB, a degradation of the MMSE receiver with
respect to the others, which is even more pronounced whenM
is large compared with N . This illustrates the sub-optimality
of this receiver for non-orthogonal sequences.

6. COMPUTATION RATE DECREASE OF R̂xx

At each tested sample position, the use of GLRT2, MMSE,
E0-GLRT3 and E1-GLRT3 requires the computation of both

Fig. 2. PND as a function of SNR, K = 32, (M,N) = (4, 4)

the (N ×N) R̂xx matrix over K observation samples, and a
(N × N) matrix inversion, which may become very costly
for high values of N . In this context, a third way of de-
creasing the complexity of GLRT2 and E0-GLRT3 is to de-
crease the computation rate of R̂xx and its inverse by a fac-
tor β > 1. The principle is to build an (N × K ′) obser-
vation matrix X′ = [x(1), . . . ,x(K ′)] from K ′ observation
samples such that K ′ > K and, for the β = K ′ − K + 1
tested sample positions l (1 ≤ l ≤ β), to replace in GLRT2
and E0-GLRT3 the R̂xx matrix by the R̂′xx matrix defined by
R̂′xx = X′X′H/K ′. Note that K ′ −K samples are now data
samples instead of synchronization samples. As the data sam-
ples associated with different antennas are uncorrelated, this
strategy to decrease the complexity of GLRT2 and E0-GLRT3
is only valid for orthogonal synchronization sequences. Fur-
ther, this strategy requires constant values of H and R over
K ′ samples, which may limit the value of K ′. However, it al-
lows to compute and to inverse only one (N ×N) matrix per
set of β tested sample positions, hence a gain of β in the ma-
trix inversion, while the matrix computation cost for the set
of β positions remains the same. Note that this strategy can-
not be applied to E1-GLRT3 since the computation of R̂1 re-
quires an update of R̂xs at each time sample. Under the same
assumptions as Figure 1, Figure 3 shows, for (M,N) = (4, 4)
and (2, 8),K ′/K = 2 and 10, the variations of PND as a func-
tion of the SNR per receive antenna at the output of GLRT2,
GLRT2-CRD and E0-GLRT3-CRD, where R-CRD means re-
ceiver R with a computation rate decrease. Note an increasing
performance degradation of GLRT2-CRD and E0- GLRT3-
CRD with respect to GLRT2 (equivalent in this case to E0-
GLRT3) asK ′/K increases, while remaining lower than 1dB
for K ′/K = 2, which enlightens the interest of GLRT2-CRD
and E0-GLRT3-CRD. Note also a better performance of E0-
GLRT3-CRD with respect to GLRT2-CRD for K ′/K = 10,
showing a better robustness of the former.

7. OPTIMIZATION OF M

As the complexity of all the previous receivers increases with
the number of transmit antennas M , it is important in prac-
tice to wonder whether this parameter can be optimized for
synchronization purposes. To this aim, let us note that, for
a given value of N and at least for high SNR, increasing M
while transmitting the same global power, should increase the
spatial diversity order of the MIMO system for fading chan-
nels. However, increasing M also increases the number of



Fig. 3. CRD receivers, (M,N)= (4, 4),(2, 8), K′/K=2 and 10.

transmitted sequences and thus the amount of interference at
reception. A compromise between diversity and interferences
should then be found. To get new insights into this compro-
mise, Figure 4 shows, for INR/SNR = 15 dB, Rayleigh fading
channels, orthogonal sequences of K = 32 QPSK samples,
N = 2 and different values of M , the variations of PND as
a function of the SNR per receive antenna at the output of
GLRT2. Similar results are obtained for E0-GLRT3 and E1-
GLRT3. At low SNR, the SIMO scheme is optimal for syn-
chronization, proving in this case that the dominant limitation
parameter are the interferences. On the contrary at high SNR,
we note the sub-optimality of the SIMO scheme due to fading
and increasing performance withM as long asM ≤ 4, due to
an increase of the system diversity order up to 8, a value for
which the fading has practically disappeared. For M > 4, i.e.
above a system diversity order of 8, the increase in the diver-
sity gain is weak while the interference level increases, hence
the non-increasing or even decreasing performance with in-
creasing M . Similar results are obtained for N > 2.

8. COMPLEXITY ANALYSIS

To get more insights into the relative complexity of the con-
sidered receivers, Figure 5 shows, for K = 32, K ′/K = 10,
M = 2 and M = 8, the number of complex operations re-
quired by GLRT2, GLRT2-CRD, E0-GLRT2 and E0-GLRT3-
CRD as a function of N . Note the increasing polynomial
complexity withM andN of all the receivers and the great in-
terest of optimizing M for both performance and complexity
reasons. Note the lower complexities of receivers with CRD
and the lowest complexity of E0-GLRT3-CRD. Note finally
the lower complexity of E0-GLRT3 with respect to GLRT2
as M increases.

9. CONCLUSION
In this paper, new insights into the time synchronization of
(M ×N) MIMO systems, corrupted by interferences of any

Fig. 4. Optimal number of transmit antennas for N = 2.

Fig. 5. Number of operations as a function of N , K′ = 10K = 320.

kind, have been given, and several schemes aiming at reduc-
ing the complexity of GLRT2 presented in [6] have been pro-
posed. Alternative expressions of GLRT2 have been intro-
duced and the determinant computation has been done explic-
itly for M = 2, allowing a direct comparison of GLRT2 with
MMSE. Two new low-complexity receivers, E0-GLRT3 and
E1-GLRT3, have been introduced, and have been shown to
have a performance very close to that of GLRT2 for any cor-
relation between sequences. A powerful procedure of com-
putation rate reduction of the data correlation matrix has been
proposed for orthogonal sequences. The problem of optimiza-
tion of M for time synchronization has been investigated for
Rayleigh channels, showing, for high SNR, increasing perfor-
mance withM as long asMN does not become much greater
than 8. Finally, a complexity analysis confirms the practical
interest of the proposals presented in this paper. All these re-
sults are useful for optimizing the choice and implementation
of the receiver for time synchronization in practical systems.
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