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ABSTRACT

This paper addresses the detection of a single signal in a multipath
propagation channel using a sensors array in the case where the
number of sensors M and the number of observations N are large
and of the same order of magnitude and where the number of paths
P is much smaller than M and N . In contrast with the single path
context, the GLRT test cannot be implemented, and we evaluate the
behaviour of tests based on the largest eigenvalues of the empirical
spatio-temporal covariance matrix. Using a technical result showing
that the largest singular values of low rank deterministic pertubation
of certain Gaussian block-Hankel large random matrices behave
as if the entries of the latter random matrices were independent
identically distributed, we obtain a clear understanding of the
advantages of the use of the spatial-temporal covariance matrix.

I. INTRODUCTION

The multi-antenna detection of low rank non observable narrow
band signals corrupted by an additive spatially and temporally
white Gaussian noise is a fundamental problem that was studied
extensively in the contexts of array processing (see e.g. [6], [4])
and more recently of spectrum sensing (see among others [17],
[14], [7]). The most popular method to solve the above problem
is the GLRT test (see e.g [13]), which, in the present case, can
be expressed in closed form. In order to obtain some insights
on the statistical performance of the GLRT test, it is standard
to assume that the number of observations N converge towards
∞, and to characterize the asymptotic distribution of the GLRT
statistics under the null and the alternative hypothesis. In practice,
this approach provides reasonable results when N is much larger
than the number of antennas M at the receiver side. When the
antenna array is large, the assumption that N >> M is often
not justified and the standard asymptotic analysis does not provide
reliable results (see e.g. [8] in the context of supervised detection).
In this context, it is now standard to consider the large system
regime M → +∞, N → +∞ in such a way that M

N
→ c where

c > 0. We refer the reader to the papers [1], [16], [12], [5] in which
this approach is developed.

In this paper, we assume that M and N are large and of the
same order of magnitude. We address the detection of a single
signal in a multipath propagation channel, i.e. its contribution to the
observation coincides with the output of an unknown finite impulse
response SIMO filter driven by an unobservable deterministic scalar
sequence s = (sn)n∈Z. The signal to be detected is thus a
rank 1 wideband signal. We assume moreover that the number
of paths P , or equivalently the number of coefficients of the
SIMO filter is much smaller than M . [17] studied the GLRT
test when s is an i.i.d. Gaussian sequence and the filter has an
infinite impulse response, or equivalently when P = +∞. Under
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certain assumptions, [17] proposed to evaluate the log likelihood
ratio using the Witthle approximation, and obtained an expression
based on integrals over the frequency domain. When P is finite,
the GLRT test cannot be expressed in closed form because the
maximization of the likelihood over sequence s and the filter
coefficients (hp)p=0,...,P−1 has no explicit solution.

As the GLRT test cannot be used, a pragmatic approach is
to observe that the signal to be detected can be interpreted as a
superposition of P narrow band deterministic signals. Therefore, it
is possible to use the corresponding GLRT test which consists in
comparing the sum of the P greatest eigenvalues of the empirical
spatial covariance matrix of the observation to a threshold, at least
if the noise variance is known. However, it is intuitively more
appealing to consider the greatest eigenvalues of the empirical
spatio-temporal covariance matrix in order to take benefit of the
particular convolutive structure of the signal to be detected. We
compare these 2 approaches in the asymptotic regime M → +∞,
N → +∞ in such a way that M

N
→ c where c > 0. In this

regime, the first order behaviour of the largest eigenvalues of the
empirical spatial covariance matrix is well known, and this allows
to evaluate the relevance of the ”narrow band” test. In this paper,
we use the recent result [15] in order to evaluate the behaviour of
the greatest eigenvalues of the empirical spatio-temporal covariance
matrix. This allows to have a clear understanding of the advantages
of the use of the spatio-temporal covariance matrix.

This paper is organized as follows. In section II, we introduce
the signal models and the underlying assumptions. In section III,
we present our results concerning the behaviour of the greatest
eigenvalues of the empirical spatio-temporal covariance matrix,
and deduce from this in section IV the first order behaviour of
the detection test based on this matrix. Finally, section V presents
numerical experiments sustaining our theoretical results.

In the following, Nc(x,Γ) represents the M -variate complex
Gaussian (i.e. circular) distribution with mean x and covariance
matrix Γ

II. PROBLEM FORMULATION.

In the following, we denote by (yn)n=1,...,N the M -dimensional
signal received on the M -sensors array. Under hypothesis H0,
the observation is reduced to a spatially and temporally complex
Gaussian noise, i.e.

yn = vn, n = 1, . . . , N (1)

where (vn)n=1,...,N are i.i.d. Nc(0, σ
2I) distributed random vec-

tors. We assume from now on that σ2 is known in order to simplify
the exposition, but our results can be easily generalized if σ2 is
unknown (see below). Under hypothesis H1, the observation is
given by

yn =
P−1
∑

p=0

hpsn−p + vn, n = 1, . . . , N (2)



where (sn)n∈Z is a non observable deterministic scalar sequence

and where the M × 1 transfer function h(z) =
∑P−1

p=0 hpz
−p is

unknown. We however assume that P is known, which, in practice,
means that an upper bound of the number of paths is available. s
is assumed deterministic in order to avoid formulating restrictive
hypotheses,e.g. that signal (sn)n∈Z is an i.i.d. Gaussian sequence.

In order to test hypothesis H0 versus H1, the GLRT test
cannot be implemented because, under H1, the maximum likelihood
estimator of filter h(z) and sequence (sn)n=−(P−1),...,N cannot be
expressed in closed form (see e.g. [18], [11]). We note that when s
is an i.i.d. Gaussian sequence, [17] derived an approximate GLRT
test based on the Whittle approximation, but without assuming
that filter h(z) is FIR. Moreover, the approach of [17] needs
the observation of at least M independent realizations of the
observation (yn)n=1,...,N , an hypothesis which is not formulated
in the present paper. Finally, the approach of [17] cannot be adapted
to the case of a deterministic signal (sn)n∈Z.

As the GLRT test cannot be implemented, we study pragmatic
alternative approaches. The most obvious solution is based on

the observation that signal [h(z)]s(n) =
∑P−1

p=0 hpsn−p can be
interpreted as a superposition of P narrow band signals. It is thus

possible to test the hypothesis H0 against hypothesis H
′

1 defined
by

yn =

P−1
∑

p=0

hps
(p)
n + vn (3)

where signals (s(p))p=0,...,P−1 are non observable deterministic

signals. Hypothesis H
′

1 is of course not equivalent to H1 because

the particular structure of s
(p)
n = sn−p is ignored in the formulation

of H
′

1. We denote by Y the M × N matrix defined by Y =
(y1, . . . ,yN ). Then, H

′

1 is of course equivalent to

Y = A+V (4)

where A is a rank P deterministic matrix, and where V is defined
as Y. The corresponding GLRT test is easy to derive, and consists
in comparing the statistics

ηN =
P
∑

i=1

λi

(

YY∗

N

)

(5)

to a threshold. Here,
(

λi

(

YY
∗

N

))

i=1,...,M
represent the eigenval-

ues of YY
∗

N
arranged in decreasing order.

Matrix YY
∗

N
coincides with the empirical spatial covariance

matrix of the observations. In order to take benefit of the particular
convolutive structure of signal [h(z)]sn, it seems however more
appropriate to consider a statistics based on the largest eigenvalues
of empirical spatio-temporal covariance matrices. If L is an integer,

we denote by y
(L)
n the ML–dimensional vector defined by

y
(L)
n = (y1,n, . . . ,y1,n+L−1, . . . ,yM,n, . . . ,yM,n+L−1)

T

and by Y(L) the ML × N block-Hankel matrix defined by

Y(L) = (y
(L)
1 , . . . ,y

(L)
N ). Thus

Y
(L)(Y(L))∗

N
represents the

spatio-temporal covariance matrix. We note that Y(L) depends
on (yn)n=1,...,N+L−1 while, in principle, the observation yn is
available until n = N . As we consider in the following asymptotic
regimes in which N → +∞ while L remains fixed, the above
mentioned end effect has no consequence on our results.

Under hypothesis H0, matrix Y(L) is reduced to V(L), and
under H1, it holds that

Y
(L) = H

(L)
S
(L) +V

(L)
(6)

where matrix S(L) is the (P +L− 1)×N Hankel matrix defined

by (S(L))i,n = sn+i−P , and where H(L) is defined by H(L) =

(H
(L)T
1 , . . . ,H

(L)T
M )T with H

(L)
m representing the L×(P+L−1)

Toeplitz matrix corresponding to the convolution of signal (sn)n∈Z
with sequence (hm,p)p=0,...,P−1. We remark that matrices Y(1)

and V(1) coincide with Y and V. We also denote matrices S(1)

and H(1) by S and H. Instead of using ηN defined by (5), we

propose to consider the statistics η
(L)
N given by

η
(L)
N =

P+L−1
∑

i=1

λi

(

Y(L)Y(L)∗

N

)

(7)

for a suitable value of integer L. We note that if L = 1, then Y(1)

and η
(1)
N coincide with Y and ηN .

In order to obtain some insights on the merits of statistics η
(L)
N

in the case where M and N are large and of the same order
of magnitude, we evaluate under both hypotheses the first order

behaviour of η
(L)
N in the asymptotic regime M → +∞, N → +∞

in such a way that cN = M
N

→ c where c > 0. We also assume
that P and L do not scale with M,N . In the following, N → +∞
should be understood as the above asymptotic regime. The study

of η
(L)
N when N → +∞ is equivalent to the study of the largest

eigenvalues of matrix Y
(L)

Y
(L)∗

N
. As we shall see below, the case

L = 1 is well known, and followed from existing results (see e.g.
[3]) concerning the behaviour of the largest singluar values of finite
rank perturbation of the i.i.d. large random matrix V. If L > 1,

matrix V(L) is block-Hankel, and its entries are of course not i.i.d.

Our main result shows that the largest eigenvalues of Y
(L)

Y
(L)∗

N

behave as if the MLN entries of V(L) were i.i.d. This behaviour
appears as a consequence of the results of [15].

Remark 1: The case σ2 unknown. When σ2 is unknown, the

GLRT test corresponding to hypotheses H0 and H
′

1 given by (4)
consists in comparing statistics

ηN
1
M

Tr(YY∗/N)
to a threshold. There-

fore, it is relevant to replace statistics η
(L)
N by

η
(L)
N

1
M

Tr(Y(L)Y(L)∗/N)
.

It is easily seen that 1
M
Tr(Y(L)Y(L)∗/N) converges almost surely

towards σ2 in the absence and in the presence of signal. Therefore,

the characterization of first order asymptotic behaviours of η
(L)
N

and of its normalized version are equivalent.

III. LARGEST EIGENVALUES OF THE EMPIRICAL
SPATIO-TEMPORAL COVARIANCE MATRIX.

In order to simplify the notations, we denote by W
(L)
N , B

(L)
N

and X
(L)
N the matrices defined by W

(L)
N = V

(L)
N /

√
N , B

(L)
N =

1√
N
H(L)S(L) and X

(L)
N = B

(L)
N + W

(L)
N . We notice that

Y(L)/
√
N coincides with W

(L)
N under H0 and with X

(L)
N under

H1. This paper is based on a technical result which establishes that,

in a certain sense, the eigenvalues of matrix W
(L)
N W

(L)∗
N behave as

if the entries of W
(L)
N were i.i.d. In order to state the corresponding

result, we recall that the Marcenko-Pastur distribution µd with
parameters (σ2, d) is the probability distribution defined by

dµ(x) = δ0[1− d−1]+ +

√

(x− x−) (x+ − x)

2σ2dπx
1

[x−

d
,x+

d
]
(x) dx

with x−
d = σ2(1 −

√
d)2 and x+

d = σ2(1 +
√
d)2. We

denote by md(z) its Stieltjes transform defined by md(z) =
∫

R

dµ(λ)
λ−z

and by m̃d(z) the function m̃d(z) = dm(z) −
(1 − d)/z. We denote by QN (z) and Q̃N (z) the so-called

resolvent of matrices W
(L)
N W

(L)∗
N and W

(L)∗
N W

(L)
N defined

by QN (z) =
(

W
(L)
N W

(L)∗
N − zIM−L+1

)−1

,Q̃N(z) =
(

W
(L)∗
N W

(L)
N − zINL

)−1

Then, when N → +∞, the following

result holds.



Proposition 1: The eigenvalue distribution of matrix

W
(L)
N W

(L)∗
N converges almost surely towards the Marcenko-

Pastur distribution µcL. Moreover, for each fixed integer k, the k
largest eigenvalues (λl(W

(L)
N W

(L)∗
N ))l≤k verify

λl(W
(L)
N W

(L)∗
N ) → x+,cL = σ2(1 +

√
cL)2 a.s. (8)

and the k smallest non zero eigenvalues of W
(L)
N W

(L)∗
N converge

almost surely towards x−,cL. If aN ,bN are 2 unit norm ML–
dimensional deterministic vectors, then it holds that for each z ∈
C

+

a
∗
N (QN (z)−mcL(z)I)bN → 0 a.s. (9)

Similarly, if ãN , b̃N are 2 unit norm N–dimensional deterministic
vectors, then for each z ∈ C

+, it holds that

ã
∗
N

(

Q̃N (z)− m̃cl(z)I
)

b̃N → 0 a.s. (10)

Moreover, for each z ∈ C

+, it holds that

a
∗
N

(

QN (z)W
(L)
N

)

b̃N → 0 a.s. (11)

Finally, for each ǫ > 0, convergence properties (9, 10, 11) hold
uniformly w.r.t. z on each compact subset of C− [0, x+ + ǫ].
The proof of Proposition 1 can be found in [ [9], Proposition 1]. We
recall that, roughly speaking, the convergence of the eigenvalue dis-

tribution of W
(L)
N W

(L)∗
N towards distribution µcL means that the

histogramms of the eigenvalues of any realization of W
(L)
N W

(L)∗
N

tend to accumulate around the graph of the probability density of
µcL.

The statements of Proposition 1 are well known when L = 1.
Apart (10) and (11), Proposition 1 appears as a consequence of
the results of [15]. We note that [15] is used here when L does
not scale with (M,N). However, the results of [15], and thus
Proposition 1, are still valid if L and M both converge towards
infinity in such a way that ML/N → d with d > 0 and that L =
O(Nα) with α < 2/3. In this case, parameter cL in Proposition
1 should be replaced by d. If 2/3 ≤ α < 1, the eigenvalue

distribution of W
(L)
N W

(L)∗
N still converges towards µd, but the

almost sure convergence of the largest and smallest eigenvalues of

W
(L)
N W

(L)∗
N towards x+,d and x−,d is not guaranteed. We finally

note that if N and L converge toward ∞ at the same rate and that
M remains fixed, the convergence of the eigenvalue distribution

W
(L)
N W

(L)∗
N towards µd is no longer true. Intuitively, this is

because W
(L)
N depends on MN independent random variables,

and that if M is fixed, this number is not sufficient to ensure nice
averaging effects. In particular, if M = 1, it is shown in [2] that

the eigenvalue distribution of W
(L)
N W

(L)∗
N converges towards an

unbounded probability distribution that can be characterized by its
moments.

We finally remark that the almost sure convergence of the

extreme eigenvalues towards x+,cL = σ2(1 +
√
cL)2 and

x−,cL = σ2(1−
√
cL)2 also implies that the non zero eigenvalues

of W
(L)
N W

(L)∗
N are almost surely located in a neighborhood of

[σ2(1−
√
cL)2, σ2(1 +

√
cL)2] when N increases. Proposition 1

thus allows to have a clear understanding of the effect of L on the

spreading of the eigenvalues W
(L)
N W

(L)∗
N .

In the following, we denote by (λ̂
(L)
k,N )k=1,...,ML the eigenvalues

of X
(L)
N X

(L)∗
N , and by λ

(L)
1,N ≥ λ

(L)
2,N . . . ≥ λ

(L)
P+L−1,N the non

zero eigenvalues of B
(L)
N B

(L)∗
N . Proposition 1 allows to generalize

immediately the approach used in [3], and to prove that the P +
L − 1 greatest eigenvalues of X

(L)
N X

(L)∗
N also behave as if the

entries of W
(L)
N were i.i.d.

Theorem 1: We assume that:

Assumption 1: The P + L − 1 non zero eigenvalues

(λ
(L)
k,N)k=1,...,K of matrix B

(L)
N B

(L)∗
N converge towards λ

(L)
1 ≥

λ
(L)
2 ≥ . . . ≥ λ

(L)
P+L−1 when N → +∞.

We denote by KL, 0 ≤ KL ≤ P + L− 1, the largest integer for

which λ
(L)
KL

> σ2
√
cL. Then, for k = 1, . . . , KL, it holds that

λ̂
(L)
k,N

a.s.−−−−→
N→∞

ρ
(L)
k = φL(λ

(L)
k ) =

(λ
(L)
k + σ2)(λ

(L)
k + σ2cL)

λ
(L)
k

> x+,cL.

while for k = KL + 1, . . . , P + L− 1, λ̂
(L)
k,N → x+,cL a.s.

IV. ASYMPTOTIC BEHAVIOUR OF η
(L)
N .

In order to simplify the following discussion, we formulate the
following hypotheses on vectors (hp)p=0,...,P−1 and on signal
(sn)n∈Z:

Assumption 2: • (i) When N → +∞, matrix H∗H con-
verges towards a P × P matrix ∆

• (ii) For each integers i, j ≥ 1, 1
N

∑N
n=1 sn+i−P s

∗
n+j−P

converges towards a limit. In this case, the limit only depends
on i− j, and is denoted Ri−j .

As the entries of matrix H(L)∗H(L) depend on the entries of

H∗H, (i) implies that H(L)∗H(L) converges towards a matrix

∆(L) whose entries depend on the entries of ∆. In the following,

we also denote by R(L) the (P + L− 1)× (P + L− 1) Toeplitz

matrix defined by R
(L)
i,j = Ri−j .

As the non zero eigenvalues of B
(L)
N B

(L)∗
N coincide with the

eigenvalues of matrix H(L)∗H(L) S
(L)

S
(L)∗

N
, it is clear that As-

sumption 2 implies that Assumption 1 holds, and that λ
(L)
k =

λk

(

∆(L)R(L)
)

. We also remark that for each L ≥ 1, matrix

B
(L)
N B

(L)∗
N is a sub-matrix of B

(L+1)
N B

(L+1)∗
N . Therefore (see

[10]), it holds that λ
(L)
k,N ≤ λ

(L+1)
k,N , and therefore that λ

(L)
k ≤

λ
(L+1)
k and ρ

(L)
k ≤ ρ

(L+1)
k for each k = 1, . . . , P + L− 1.

We now use Theorem 1 in order to evaluate the behaviour of
η
(L)
N . It is clear that η

(L)
N converges almost surely η(L) defined by

η(L) =

KL
∑

k=1

ρ
(L)
k + (P + L− 1−KL)σ

2(1 +
√
cL)2) (12)

We note that if KL = 0, or equivalently, if the largest eigenvalue

λ
(L)
1,N of matrix B

(L)
N B

(L)∗
N is below the detectability threshold

σ2
√
cL for each N large enough, then the first order asymptotic

behaviour of η
(L)
N under hypotheses H0 and H1 coincide. In this

case, the test based on η
(L)
N is not consistent, in the sense that

it does not allow to distinguish between the 2 hypotheses when

N → +∞. If however λ
(L)
1,N is greater

√
cL for each N large

enough, the asymptotic behaviours of η
(L)
N under H0 and H1 do

not coincide and the test is consistent. In other words, the test based

on η
(L)
N is consistent if and only if

λ
(L)
1

σ2
√
cL

> 1 (13)

This condition implies that the value of L for which
λ
(L)
1√
cL

is

maximum can be considered as optimal from the consistency of the
GLRT test point of view. In order to obtain some insights on the
optimal choice of L, we first assume that (sn)n∈Z coincides with
a realization of a unit variance zero mean i.i.d. sequence and that
the limit ∆ of matrix H∗H is diagonal, a condition meaning that
the P paths are independent. In order to simplify the notations, we
denote by δ0, . . . , δP−1 the diagonal entries of ∆ which represent

the powers of the various paths. We notice that
∑P−1

p=0 δp coincides



with the power of the signal to be detected. It is easily seen that for

each L, matrix ∆(L) is diagonal as well, and that its largest entry is

equal to
∑P−1

p=0 δp if L ≥ P , and to maxk=0,...,P−L

∑L−1
p=0 δp+k

if L ≤ P . As matrix R(L) is equal to IP−L+1, this implies that

the largest limit eigenvalue λ
(L)
1 is equal to

∑P−1
p=0 δp if L ≥ P ,

and to maxk=0,...,P−L

∑L−1
p=0 δp+k if L ≤ P . If L ≥ P , the left

handside of (13) is equal to

∑P−1
p=0 δp

σ2
√
cL

while it is equal to

maxk=0,...,P−L

∑L−1
p=0 δp+k

σ2
√
cL

if L ≤ P . The optimal value of L of course depends on the
particular values of δ0, . . . , δP−1. If the powers all coincide with δ,

the optimal value is L = P , and the test based on η
(P )
N is consistent

if and only if δ
σ2 is greater than the detectability threshold

√

c/P .
In this case, it is also seen that if L > P , then condition is
δ
σ2 >

√

c/P
√

L/P , i.e. the detectability threshold is multiplied

by
√

L/P , while if L = 1, the detectability threshold is
√
c, and

is thus multiplied by
√
P . If the channel is sparse, the L = P may

of course not be the optimal value.
We now consider a more realistic scenario in which matrix ∆

is not diagonal. We assume that the signal to be detected is a
sampled version of a continuous time linearly modulated signal
∑

n snga(t−nT ) where (sn)n∈Z is an i.i.d. sequence of symbols
and where ga(t) is the classical continuous time shaping filter.
The propagation channel is a Rayleigh multipath channel with Q
uncorrelated paths with time-delays τ0, . . . , τQ−1. In this context,
vectors (hp)p=0,...,P−1 are given by

hp =

Q−1
∑

q=0

λq ga(pT − τq) (14)

where vectors (λq)q=0,...,Q−1 are the realizations of independent
zero-mean random Gaussian vectors. We denote by Λ the M ×Q
matrix Λ = (λ0, . . . ,λQ−1), and assume that matrix Λ∗Λ
converges towards µIQ. In practice, this hypothesis means that
the Q paths share the same power. As H = (hP−1, . . . ,h0)
is given by H = ΛG where G = (gP−1, . . . ,g0) and where
each Q–dimensional vector gp is given by gp = (ga((P −
1)T − τ0), . . . , ga((P − 1)T − τQ−1))

T , it is clear that matrix

H∗H converges towards ∆ = µG∗G, and that H(L)∗H(L)

converges towards ∆(L) = µG(L)∗G(L) where matrix G(L) is
the QL× (P + L− 1) block-Toeplitz matrix with first block line

(gP−1, . . . ,g0, 0, . . . , 0). Therefore, the largest eigenvalue λ
(L)
1 of

∆(L) is equal to µλ1(G
(L)∗G(L)). The optimal value of L thus

depends on the way the largest eigenvalue of G(L)∗G(L) increases
with L. As the optimal value of L cannot be found using analytical
arguments, we give a numerical example. We assume that ga(t) is
a square root Nyquist filter with excess bandwidth 0.5 which is
truncated to interval [−2.5T, 2.5T ]. Moreover, Q = 2, τ0 = 0,
τ1 = 2T , c = 1/2 and the SNR µ

σ2 is equal to 2 dB. In figure 1,

we plot the largest eigenvalue of G(L)∗G(L) and the lefthandside
of (13) versus L. It is seen that the optimal value of L is equal to
3, it is thus different from P , which, is the present context is equal
to P = 7.

V. SIMULATION RESULTS.

In this section, we provide numerical simulations illustrating the
results given in the previous sections. We first consider the case
where matrix H coincides with a realization of Gaussian random
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Fig. 1. Largest eigenvalues to detectability thresholds versus L

matrix with i.i.d. N
C

(0, I/(MP )) entries. In this context, matrix
H∗H converges towards IP . Sequence (sn)n=2−P,...,N−P+1 is a
realization of an i.i.d. sequence taking values ±1 with probability
1/2. In this context, we have shown before that the optimal value
of L is equal to P . In order to illustrate this behaviour, we consider
the case M = 80, N = 160 and P = 5, and represent in figure 2
the ROC curves, evaluated using Monte-Carlo simulations, corre-

sponding to the statistics η
(5)
N , ηN , λ1(

Y
(5)

Y
(5))∗

N
) and λ1(

YY∗
N

),
referred to as spatio-temporal, spatial, lmax-st and lmax-s in figure

2. The numerical results confirm that the use of η
(5)
N leads to much

better results than the use of ηN which corresponds to L = 1, and
that it is indeed beneficial to take into account the P+L−1 largest
eigenvalues of the empirical spatio-temporal covariance matrix, and
not only the largest one.
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Fig. 2. ROC curves of different statistics,∆ diagonal

We now generate vectors (hp)p=0,...,P−1 according to model
(14) for Q = 2, τ0 = 0, τ1 = 2T, P = 7 and when ga(t) is
a square root Nyquist filter with excess bandwidth 0.5 which is
truncated to interval [−2.5T, 2.5T ]. In figure 3, we assume that
M = 80, N = 160 and again represent the ROC curves corre-

sponding to the statistics η
(L)
N , ηN , λ1(

Y
(L)

Y
(L))∗

N
) and λ1(

YY∗
N

)
for L = 3. This time, it is seen that it is not beneficial to take into
account the L+ P − 1 largest eigenvalues of Y(L)Y(L)∗/N , and
that the best strategy is to consider the largest eigenvalue, which,
for L = 3, provides the best results.
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Fig. 3. ROC curves of different statistics, ∆ not diagonal

VI. CONCLUSION

In this paper, we have studied the detection problem of a
signal corrupted by an unknown multipath propagation channel
using a sensor array in the case where the number of sensors
M and the number of observations N are large and of the same
order of magnitude. In this asymptotic regime, we have obtained
a clear understading of the advantages of using statistics based
on the largest eigenvalues of empirical spatio-temporal covariance
matrices.
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