
HAL Id: hal-01616396
https://hal.science/hal-01616396

Submitted on 13 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical SQL Value Expressions Over Encrypted
Cloud Databases

Sushil Jajodia, Witold Litwin, Thomas Schwarz

To cite this version:
Sushil Jajodia, Witold Litwin, Thomas Schwarz. Numerical SQL Value Expressions Over Encrypted
Cloud Databases. 26th International Conference on Database and Expert Systems Applications
(DEXA 2015), Sep 2015, Valencia, Spain. pp.455-478, �10.1007/978-3-319-22852-5_38�. �hal-01616396�

https://hal.science/hal-01616396
https://hal.archives-ouvertes.fr

- - 1 -

Numerical SQL Value Expressions Over
Encrypted Cloud Databases

Sushil Jajodia
George Mason University

Fairfax, Virginia, USA
1.703. 9932952

jajodia@gmu.edu

Witold Litwin
Université Paris Dauphine

Paris, France
33.3.44542742

witold.litwin@dauphine.fr

Thomas Schwarz
University of California
Santa Cruz, CA, USA

1.813.4591041
tjschwarz@scu.edu

ABSTRACT
Cloud databases often need client-side encryption. Encryption
however impairs queries, especially with numerical SQL value
expressions. Fully homomorphic encryption scheme could suffice,
but known schemes remain impractical. Partially homomorphic
encryption suffices for specific expressions only. The additively
homomorphic Paillier scheme appears the most practical. We
propose the homomorphic encryption for standard SQL expressions
over a practical domain of positive values. The scheme uses a
version of Paillier’s formulae and auxiliary tables at the cloud that
are conceptually the traditional mathematical tables. They tabulate
encrypted log and antilog functions and some others over the
domain. The choice of functions is extensible. We rewrite the
expressions with any number of SQL operators ‘*’, ‘/’ ‘^” and of
standard aggregate functions so they compute over encrypted data
using the tables and Paillier’s formulae only. All calculations occur
at the cloud. We present our scheme, show its security, variants and
practicality.

1. INTRODUCTION
It is the common knowledge that client-side encryption is desirable
for privacy of data outsourced to a cloud database. However, the
capabilities of SQL queries on encrypted data are limited, [17], [3],
[14], [7]. If we use a popular encryption such as AES, an SQL query
with a numerical value expression becomes impossible to execute
over encrypted data. We recall that such an expression may contain
the standard operators ‘+’, ‘-‘, ‘*’, ‘/’ or ‘^’ (exponentiation). It also
may contain the standard aggregate functions COUNT, SUM, AVG,
VAR, or STD. SQL dialects make available other aggregate
functions and different collections of scalar functions.
Homomorphic cryptography was therefore proposed for the use of
the above operators (directly) over encrypted data. A fully
homomorphic scheme should allow for expressions with unlimited
number of above operators over any encrypted numerical
values. Current proposals turned however unsafe or impractical for

databases, [14]. Computing with Gentry’s scheme and its variations
is yet billions of times slower than the same plaintext calculations
[13]. An 8-bit multiplication with Gentry’s scheme takes 15 minutes
and a calculation that takes a second in plaintext would last three
centuries, [13]. Another implementation, specifically for a cloud
DB, claims 23 minutes per multiplication of two encrypted 16-bit
integers [6]. Consequently, it took seven days to find a given row in
10-record DB. To make the homomorphic encryption more
practical, the somewhat homomorphic scheme analyzed in [9]
restricts the calculations to expressions with a single ‘*’. The
authors claim execution times of 1ms per ‘+’, and 60ms per ‘*’. Yet
another direction are the semi-homomorphic a.k.a. partially
homomorphic systems. These are notably faster, but each only deals
with selected operators. Especially, the additively semi-
homomorphic systems support basically only ‘+’ and ‘-‘, but are
orders of magnitude faster than other homomorphic systems.
Among these, the Paillier cryptosystem seems the most popular
[10], [17], [14], [4], [15]. 15s may suffice per addition or
subtraction over ciphertexts, [13]. Thus, e.g., 1.5s may suffice to
sum up 100K encrypted values, what seems acceptable for the
database world.

Database applications nevertheless need every available SQL
operator and function, with possibly several invocations of each in
an expression. One approach is to decompose the query so that the
client post-processes the decrypted (plaintext) data for the
operations impossible over the encrypted ones on the cloud, under
the partially or somewhat homomorphic scheme used. Another
approach uses per-row pre-computation of a plaintext expression
over attributes of a table, e.g., a*b, for encryption and later
upload of the computed (dynamic, virtual…) attribute [17]. Yet
another approach is to encrypt only the data which are not destined
for value expressions [3]. The future of all these proposals remains
to be seen.

Efficiency with respect to value expressions must further preserve
usual requirements on any relational DB. The prime one are select-
project-join (SPJ) queries. Paillier cryptosystem is a probabilistic
one that is the same plaintext is about never encrypted to the same
ciphertext. This precludes the equality comparison blocking the
frequency analysis what is good for the security. Without that
capability, outsourced column cannot however obviously support
then SPJ-queries. These are the must for a relational DB as widely
known. A naïve approach could be to split the query so that the
cloud DBMS leaves all the SPJ operations to the client, for the post-
processing after the decryption of the adequately retrieved encrypted

- - 2 -

ones. Even at the glance, one sees that such an attempt would made
the outsourcing usually a nonsense. SPJ-queries require at present
that the same plaintext maps always to the same ciphertext, i.e., they
need a deterministic encryption. This one may be vulnerable to the
frequency analysis, but can also resist to, [1]. The client may help,
e.g., through decoy values, obfuscating power laws possibly serving
disclosures, [2]. To get best of both worlds an approach perhaps
practical is to use Paillier’s scheme and a deterministic encryption
like AES on every column subject to both: value expressions and
SPJ-queries, [17]. The cloud supports then the SPJ-queries directly.
In turn, the resistance to frequency analysis becomes that of the
client data under the deterministic scheme used. There is also an
evident storage and processing overhead.

Next in-line practical requirement for many plaintext DBs is the
exploration of the total order. Related queries involve -joins or
GROUP BY, or TOP K etc. To perform these operations on
ciphertexts, one approach is an order-preserving deterministic
encryption. Any such encryption by definition discloses the order.
This somewhat harms the security by itself. A safer alternative
solution is again to split a query so that these operations are left for
the post-processing on the client after the decryption, [17]. Order-
dependent operations are less frequent than SPJ-queries. The
strategy may perhaps thus be useful. In turn, it is obviously
inefficient with respect to the plaintext DB, whenever the order-
dependent operation reveals highly selective over a large encrypted
dataset. We are not aware of any other proposal.

The final practical requirement is that of selected scalar or even
aggregate functions beyond the SQL standard ones. Each SQL
dialect offers some such functions out-of-the-box. The major
DBMSs support also user-defined (UDF) functions. The client of an
outsourced encrypted DB has to be entitled to similar capabilities.

Below, we propose a novel scheme for an encrypted cloud DB. It
enables the homomorphic encryption sufficient for the above
outlined standard numerical SQL expressions over a domain of
positive values. While this is our primary goal, the scheme also
conforms to some extent the other discussed constraints. SPJ-
queries with the value expressions evaluate entirely at the cloud.
The order-depend operation may occur there, mainly at additional
storage cost. Perhaps surprisingly this capability does not disclose
the order. Next, the client can add any scalar function, also at some
storage cost. Finally, the cloud DBMS may entirely evaluate any
additional aggregate functions defined by the value expressions
combining the standard aggregate ones and the available scalar
functions. For instance, the covariance aggregation defines that way.

Our encryption is a novel deterministic version of Paillier’s scheme.
The cloud DB stores the encrypted data in the tables defined by the
conceptual schema. The DB contains further two auxiliary tables
called each a Scalar Function Table (SFT). An SFT tabulates
encrypted values of selected scalar functions. The client creates each
SFT and uploads it to the cloud, before the DB becomes operational.
Figure 1 shows the concept with related components of our scheme.

Conceptually, an SFT is an old-fashioned mathematical table, e.g., a
printed table of logarithms. Actually however, an SFT usually
should have many times more rows, e.g., hundreds of millions. Our
scheme uses SFTs primarily to evaluate SQL expressions with
operators other than ‘+’ and ‘-’ over encrypted data or with the
aggregate functions, as people used the classical tables. Namely, the
client (site) rewrites the query before sending it out, so that only the
above operators and values retrieved from SFTs are used at the

cloud. For example, to compute x*y over encrypted x and y, the
rewriting applies the high-school identity (rule) x*y = antilog (log x
+ log y). The rewritten query looks up the tabulated encrypted
logarithms that is the log function, then calculates the ‘+’ over these
values, finally, looks up the tabulated encrypted results of exp
function (that is the antilog). The ‘+’ evaluation applies Paillier’s
formulae we reuse within our kernel additively homomorphic
scheme, Figure 1. The kernel scheme uses also our variant of
Paillier’s encryption and the original decryption that remains
applicable to. The whole construction provides the application with
a homomorphic encryption providing in fine more operators than
effectively used. This is the Gentry’s “blueprint” of constructing a
fuller homomorphism through the internal use of a less powerful
kernel.

Our core scheme has as the domain of input and output values of the
value expressions the monetary type values 0.01,
0.02…1,000,000.00. Below, we often note the upper bound as 1M.
This domain should suffice for many, perhaps most, of practical
DBs. It becomes a subset of the key column of an SFT, termed
SFT1, whose rows tabulate, in a column, the encrypted logarithm
for each domain value. For reasons that will appear, we tabulate the
natural logarithm. SFT1 contains also other rows, useful for the
aggregate functions, and a column for encrypted ‘^’ calculus. The
core scheme uses further a second SFT, termed SFT2. This one
tabulates antilogarithms (exponentials). It acts conceptually as a
printed table, but with a practical difference compensating for the
impossibility of interpolation over encrypted values.

The core SFTs suffice for standard SQL value expressions over
encrypted data in the domain, including the ‘^’ and the standard
aggregate functions. Notice that we could not find how the above
discussed fully or somewhat homomorphic schemes calculate the
exponentiation. We could not determine their efficiency for the
aggregate functions neither. As we mentioned, our scheme also
always provides for SPJ-queries over the encrypted data at the
cloud, unlike Paillier’s scheme. We show further that SFTs can get
additional columns, providing for more scalar and aggregate
functions and the - joins. It should be also possible, although
remains future work, to have the negative values in a domain.

The storage for SFTs depends in general on the range and precision
of the encrypted data. It also depends on the number of supported
functions. For the core domain, 50 GB should suffice. SFTs enters
then easily the RAM of a modern cloud server. An operator over
ciphertexts executes then in 15 s or less. In other words, 1.5s
suffice for 100K operations. This speed should satisfy many, if not
most current applications. Experimental performance evaluation
remains nevertheless the further work. At present, apparently, our
scheme is the only to provide the described capabilities.

Our scheme is secure for a cloud DB under the popular honest-but-
curious model. Its security is due in particular to a new cloud
security paradigm. The traditional one is that all the cloud node is
potentially insecure, i.e., the intruder can eventually disclose any
data there. Any sensitive client (meta)data stays at the client. Our
paradigm, restricts insecurity to the stored (permanent, long-term…)
cloud data. The transient (volatile, short-lived…) run-time internal
cloud DBMS variables are secure. The client may safely send
sensitive data. The paradigm proves attractive for our scheme.
The data that the client sends are called below client secret.

Despite more than three decades of high-level research, the
traditional paradigm did not lead to usable schemes. The new one

- - 3 -

proves a way out through our scheme at least. High-level rationale is
that having safely some security related data at the cloud, eases the
apparent hardness of getting efficiency under the former paradigm,
precluding that possibility. In turn, an effort is necessary to
effectively secure a cloud DBMS. Such hope was probably
unreasonable in the past. The progress in secure software
engineering, e.g., through the moving target defenses, [11], makes it
henceforward rational.

The next section introduces our scheme. We call it Table-based
Homomorphic Encryption, THE scheme (crypto system) in short.
We first overview the high-level architecture of THE scheme. Next,
we recall Paillier’s cryptosystem and present our kernel crypto
system. Then, we define the SFTs, the rewrite rules, the value
representation and storage structures for SFTs. Afterwards, we
discuss the secure storage of the ciphertexts in SFTs, as shares of
the client defined secret-sharing. Next, we define THE security
model that fits the popular honest-but-curious one. We show that
cloud DBs under THE scheme are secure under our model.
Section 3 determines the processing times and storage space for
SFTs. Section 4 discusses variants of THE schema. We conclude in
Section 5, where we also point towards further work.

2. THE SCHEME
2.1. High-level Architecture
Figure 1 depicts the high-level architecture of THE scheme. The
client and the cloud sides communicate as usual through query and
data flows. At the cloud, the secure cloud DBMS manages the
(cloud) DB, consisting of potentially insecure SFTs and of
Encrypted Application Data (EAD). EAD component stores all the
data defined by the conceptual schema. These would be in plaintext
in the client DB relations if the client hasn’t outsourced them.

The additively homomorphic Kernel Cryptosystem serves both the
client and the cloud side. At the client, the component handles the
encryption of all the outsourced plaintexts, i.e., in EAD. It serves
similarly the upload of ciphertexts for SFTs and updates to. It
eventually also encrypts query constants. Finally, it decrypts the
retrieved data. At the cloud, the kernel scheme component provides
the operators over ciphertexts in EAD and SFTs. These serve the
addition and subtraction of plaintexts encrypted by the ciphertexts at
the cloud, as well as the multiplication of a ciphertext by a plaintext.
The kernel operators use a version of Paillier’s formulae.

The Client Secret component serves the upload of SFTs and secure
their use at the cloud. Queries with value expressions also use it.
The secret remains in transient cloud DBMS internal variables, as
already mentioned. The Rewrite Rules, finally, serve the numerical
expressions within an application query, using operators other than
these provided by the kernel or aggregate functions. These are
rewritten into equivalent expressions using, over ciphertexts in
EAD, only the kernel operators and scalar functions tabulated in
SFTs. The equivalent expressions compute entirely at the cloud.

2.2. Paillier Cryptosystem
The Paillier Cryptosystem defines an additively semi-homomorphic
encryption [10]. We recall only the properties most relevant to our
work. Formally, plaintexts and ciphertexts are integers in Zn for a
specific n that is the product of two large primes. We use italics to
denote a value x in plaintext and, sometimes, a bold font x to
represent its encryption (ciphertext). Alternatively, we may denote
the encrypted x as E (x). We denote D (x) the decryption of x.

Paillier cryptography uses (g,n) as the public key with g being a
random number. It encrypts a plaintext x mod n after choosing some
random number r in Zn

* as:

(1) x = gx
* rn mod n2.

The scheme is additively homomorphic since:

(2) x + y mod n = D (x*y mod n2).

We can also add a ciphertext x and a plaintext k

(3) x + k mod n = D (x* gk mod n2).

Finally, we can multiply a ciphertext x with a plaintext k via

(4) D (xk mod n2) = D (kx mod n2) = kx mod n.

The decryption of the ciphertext uses the formulae presented in [10].
The random r, makes Paillier scheme probabilistic, making
occurrences of the same plaintext rarely encoded into the same
ciphertext. Notice that (2) means that if we encrypt x with r1 and y
with r2 then x + y is encrypted with r1*r2. We can also subtract
ciphertexts since:

(5) D (gx
* r1

n / gy
* r2

n mod n2) = D (gx

-y

* (r1 / r2)n mod n2).

The right side decrypts x - y mod n encrypted with r1 / r2.

Paillier ciphertext at least doubles the storage necessary for the
plaintext. The ciphertext of a typical 64 bit numerical value requires
at least 128b, i.e., 16B per encrypted value. It believed however
necessary that for adequate level of security the plaintext is 1024b at
least. Smaller actual plaintexts may then be concatenated into a
sufficiently large single plaintext vector, e.g., [17]. As we will show,
such grouping is not necessary for our scheme.

2.3. THE Kernel Cryptosystem
By default we choose r =1 for all clients. Every client gets (g, n)
from DBA as client (encryption) key. To encrypt a plaintext x, the
clients apply formula (1) for r =1, i.e., x = gx

 mod n2. For
decryption, the client reuses the Paillier formulae in [10]. The cloud
DB server(s) get from DBA the cloud key that is n2. This enables the
cloud to manipulate the ciphertext. The cloud reuses the Paillier’s
‘+’ calculation through formula (2). Formula (3) is of no use
since cloud key does not include g. A query constant involved in ‘+’
operation sent to the cloud must be consequently encrypted. THE
scheme reuses also Formula (4). A query constant involved in ‘*’
operation may thus remain in plaintext when processed at the cloud.

In what follows, we will call encrypted addition (or ‘+’) of x and y
the operation over the ciphertext x and y at the right side of formula
(2). Likewise we talk about encrypted subtraction, multiplication
etc., referring implicitly to the manipulations over the ciphertexts.

Paillier’s formulae apply to integers. Database values are usually
reals. THE kernel scheme maps these reals into integers at the
client, using column scale factors. Details are in Section 2.5. If real
x is scaled to integer m, we encrypt x as gm mod n2. The encrypted
operations concern then only ciphertexts of reals with the same scale
factor. The scheme decrypts a ciphertext at the client accordingly to
the representation. First thus to m, through Paillier’s formulae. Then
to x, through the scale factor. As shortcut, below we still denote
E (x) or simply x the ciphertext gm mod n2 encrypting x.

While random r makes Paillier scheme probabilistic, fixed r makes
ours deterministic. As already mentioned, the equality of plaintexts
holds then over the ciphertexts, what equality comparison is

- - 4 -

required for the select-project-join (SPJ) queries at the cloud. We
come back to the issue specifically for THE scheme in Section 2.9.
General comparison of vices and virtues of both classes of schemes
is beyond our work as well-known, [1], [7]. All things considered, a
deterministic scheme appears at present the only practical choice for
a homomorphically encrypted relational DB.

2.4. Scalar Function Tables
We aim on the homomorphic encryption supporting standard
numerical SQL (value) expressions. These may contain ‘+’, ‘-‘, ‘*’,
‘/’ or ‘^’ operators. They also may contain the standard aggregate
functions that are COUNT, SUM, AVG (the average), VAR (the
variance), or STD (the standard deviation). As usual for a major
DBMS, we further aim on the extensibility of the core pack with
optional dialect-dependent functions, e.g., the popular INT scalar
function. We wish all these capabilities available for possibly vast
majority, of ‘practical’ DBs. The basic need seems the money
manipulation. The values are then mainly all positive integers and
reals with the 2-digit typical monetary precision, all within some
‘practical’ range. THE scheme is conceptually independent on this
range. We need however some to evaluate the storage needs. Our
‘practical’ range, apparently sufficient for a vast majority of DBs, is
from 0.01 to 1 million (1M). Thus amounts of money, e.g., a price,
should be 0.01, 0.02…1.00M$ (or €…).

We call V’ the set of values in the range. V’ is our domain. The
domain values are the only allowed as input for a value expression
using an operator other than ‘+’ or computing a standard SQL
aggregate function at the cloud DB over EAD, Figure 1. For the
(plaintext) value expression output values they should be in V’ or in
set V” containing every value x2 where x V’, while x2 V’. We
may use V” for intermediate values during VAR and STD
computation at the cloud, Section 2.8. We basically constraint the
result c of any operator or aggregate function to c V = V’ V”. A
value returned by a query should furthermore fit V’. A ciphertext
overflowing V’ otherwise, may nevertheless get stored in EAD. It is
not expected however to become input value again. Next, for our
domain, any results returned by an expression have 2-digit
precision, e.g., 10/3 = 3.33. Finally, any intermediate result of a
computation at the cloud overflowing V constitutes an exception. By
name these are not supposed to happen, but if ever, they are the only
values triggering the post-processing of an expression at the client.

As already mentioned, THE (core) scheme has two SFTs, called
SFT1, Figure 2 and SFT2 at Figure 3. These tables are conceptually
the old-fashioned mathematical tables. The difference is that every
‘classical’ plaintext x becomes the ciphertext E (x) in SFTs and that
there can be many times more values in these tables than classically.
Actually, the ciphertexts, shown at the figures are encrypted further
(obfuscated) for storage at the cloud, Section 2.6. We ignore the
obfuscation till then.

SFT1 scheme is SFT1 (VAL, LOG, LG2). Informally, VAL is the
key column with the ciphertext E (x) for every x in V. LOG column
tabulates for every such E (x), the ciphertext E (Log (x)), where
Log (x) is the result of the usual SQL scalar Log function returning
the natural algorithm, i.e., ln (x). Likewise, LG2 tabulates the
ciphertexts E (Log (Log (x))). We use these for ‘^’ operator. More
formally, the plaintexts corresponding to both columns have some
p-digit precision after the digital dot. Actually, we have p = 8,
Section 2.5. Since Log function can return a value with more than
eight digits, the functions tabulated in SFT1 are thus formally in

SQL vocabulary: E (Round (Log (x), p)) and E (Round (Log
(Log (x)), p)).

More in detail, SFT1 columns are as follows.

- VAL: This is the key column. For our domain, Figure 2, it contains
{E (0.01^2), E (0.02^2)...E (0.09^2), E (0.01), E (0.02)…E (106),
E (1000.012)… E (1012)}. The figure reminds that for every x V,
E (x) = gm (x), where m is the integer representing x using the scale
factor of the column.

- LOG: It tabulates with 8-digit precision E (ln (x)), i.e. gm(ln (x)) at
the figure, for every x V’. Stated differently, we have LOG (x) = E
(log B (x)), where the logarithm base B is B = e and
p = 8. The decrypted (plaintext) LOG values range from -
4.60517019 = ln (0.01) to 13.81551056 = ln (1,000,000). The
rationale for our choice of B and p are experiments with various
bases and precisions. They have shown that, for the bijection
between VAL and LOG columns, obviously necessary, the choice
of ln provides for the smallest precision that is p = 8. These settings
minimize accordingly the size of SFT2 table, Section 3.2.

- LG2: It tabulates, also with 8-digit precision, E (ln (ln (x))), for
every x V’ such that ln (x) > 0. In other words and as again at the
figure, for every x, LG2 contains g m(ln(ln (x))). We use LG2 for x^y
operations.

Our 2nd core table is SFT2 (DLG, EXP, EX2), Figure 3. This table
serves as the old-fashioned antilog table. With again the difference
of many more values and of their encryption. That one makes
impossible the traditional interpolation of log values that may result
the additions/subtractions of plaintexts D (LOG). Such values may
fall into the “gaps” between two successive D (LOG) values, as
well-known. The bounds of the gaps are unknown to the cloud since
encrypted. Unlike for the printed tables, SFT2 has therefore
conceptually a row with the antilog not only for every value in
LOG, but also for every values within each gap.

DLG has in this way by far more rows than LOG. The number of
rows clearly increases with p chosen for LOG column. As already
hinted, we come back to this issue in Section 3.2. Some SFT2 rows
tabulate also the antilog of antilog, for ‘^’ calculation we explain
soon. All antilog values are interpolated so to fit V.

The SFT2 columns are in detail as follow:

- DLG. The name stands for dense logarithm. As hinted, it means
that DLG tabulates E (x) for every p-digit precise value x such that
(i) x ≥ LOG (min (V’)) and x ≤ LOG (max (V’)) or (ii) x = LOG y
with y V”. For our ‘practical’ V, DLG contains thus, in ascending
order of plaintexts, round-up to p = 8 digit precision, (a)
E (ln (0.012)), E (ln (0.022))… E (ln (0.992)). Next, DLG contains
E (ln (0.01)) = E (-4.60517019). We recall for sake of example that
this stands for the value g-4.60517019. This is followed by
E (-4.60517020), then by E (-4.60517021)…E (0 = ln 1),
E (0.000,000,01), until E (13.81551056 = ln (1,000,000)). At the
end, we have, (c), E (ln 1000.012), E (ln 1000.022)…E (1012).

- EXP: This column tabulates the encrypted natural antilogarithms
and linearly interpolated natural antilogarithms of the plaintexts of
DLG values. The plaintexts of EXP values are all in V. Thus their
encryptions are in VAL. More precisely, given a row (x, y, z) in
SFT2, there are two possibilities. (1) x is in LOG column. Then,
y = EXP (x), where EXP means here the SQL function rounded up
to precision p of V. (2) x is not in LOG. Then y is interpolated, as it
would be for printed log/antilog tables. Namely, let d1 be the

- - 5 -

maximal plaintext D (LOG) such that d1 < x and let d2 be the
minimal plaintext D (LOG) such that d2 > x. These are the bounds
on the gap where x is. Next, let it be d3 = (d1 + d2) / 2, round up to 8-
digit precision. Then, x ≤ d3 implies y = VAL (v) with v in row (v,
d1…) of SFT1. Otherwise y = VAL (v) with v in (v, d2…). Since
DLG has many times more values than VAL, as we said, most EXP
column values are duplicates.

- EX2: The column tabulates the function f = EXP (EXP (x)),
rounded up to the precision p of V, for every x in DLG and such that
f V’. In our case, we recall, we have thus f = 0.01…1M. Like for
LG2, we use EX2 for x^y clauses with both values encrypted.

Example. Consider two plaintexts 23.43 and 23.44 successive in V.
In SFT1, they give rise to rows (23.43, 3.15401725, 1.14867696)
and (23.44, 3.15444397, 1.14881224). These rows are also
successive in SFT1 with respect to plaintexts of their VAL values.
The plaintexts of their LOG values are successive in this sense as
well. There is thus the gap between these, constituted by the
successive values 3.15401726, 3.15401727…3.15444396. We have
d1 = 3.15401725, d2 = 3.15444397 and d3 = 3,15423061 for this gap.
SFT2 has then for our plaintexts 23.43 and 23.44 successive rows
that are (3.15401725, 23.43), (3.15401726, 23.43)… (3.15423060,
23.43), (3.15423061, 23.44)… (3.15444397, 23.44). The antilog of
any encrypted logarithm value falling within the gap will be
interpolated accordingly to 23.43 or 23.44.

Consider now the query Select… Price*VAT… finding the
encrypted plaintexts Price = 19.53$ and VAT = 1.2, reflecting the
20% tax on every price. As the calculus of x*y over x and y in
previous sections mentioned, the cloud applies the high-school
rewrite rule, formalized in Section 2.F, that yields EXP
(LOG (19.53) + LOG (1.20)). Through lookups into SFT1 the cloud
finds two rows t and t’ with respectively VAL (t) = 19.53 and
VAL (t’) = 1.20. It finds further LOG (t) = 2.97195175, equal thus
to E (LOG (19.53)). Likewise, the cloud finds E (LOG (1.20)) that
is E (LOG (t’)) = 0.18232156. It then performs the addition of the
encrypted values using the above discussed THE kernel formula for
it. The encrypted sum is 3,15427331. The cloud looks up then SFT2
for this value in DLG column, to ultimately find the encrypted
antilogarithm in EXP column. The sum is within the above gap and
is above d3. The cloud gets finally (3,15427331) = 23.44. This is the
correct result, as one may easily verify.

2.5. Real Number Representation
As said in Section 2.3, Paillier encryption requires integers, while
DB plaintexts are basically reals. THE scheme represents therefore
every real x to be encrypted in SFTs and EAD as the couple
x = (m,i), where m is an integer and i is a scale factor. Scale factors
are known at the client only. We use m as power of g to produce the
ciphertext of x that we note x by convenience as already discussed.
Figure 2 and 3 show the ciphertexts in SFTs with E notation for
scale factors. The actual plaintext is m * 10-i, i.e., mE-i. For
instance, 0.01 may be represented as (1000, 5), being then encrypted
as g1000 mod n2. This ciphertext is denoted, we recall, as
E (0.01) or 0.01. Every encrypted operation involving 0.01 will use
g1000 mod n2 as the operand. The decryption of the ciphertext first
use the Paillier’ formulae to produce 1000, finally made 0,01 again
as 1000*10-5.

For SFTs, as well as for each table in EAD of course, there is single
i per column. With our core V, the client should choose for VAL
column at least i = 5. One reason is that the smallest plaintext to be
encrypted in VAL is 0.0001. Using i = 4 could suffice, but higher i

benefits the security, Section II.8. For LOG, LG2 and DLG columns
we set i = 8. Thus, e.g., for the above mentioned VAL (t) = 19.53,
i.e., with the ciphertext g1953000 mod n2, since i = 5, we have
LOG (t) = g2.97195175. A negative number -m for these columns is, as
usual, represented as the (positive) complement n – m in Zn. Thus,
e.g., we represent the plaintext ln (0.01) = -4.60517019 as (positive)
complement c = n -460517019 mod n and encrypt it as gc

 mod n2.

2.6. Storage of SFTs and of EAD
We store every ciphertext in SFTs as one of the shares of the basic
two-share secret sharing, for some secret. The obfuscation of the
ciphertexts by secret-sharing serves the security of THE scheme as
we show in Section 2.9. The secret is client-defined as we spoke
about and illustrated at Figure 1. It is a pseudorandom number
s Zn

 , where Zn is also the space of our plaintexts and ciphertexts,
we recall. The ciphertext c serves as the 1st share. Accordingly to the
secret-sharing principles, we then form the 2nd share as c’ = c XOR s
and use c’ as storage representation of c. In practice for our large n,
we always have c’ c. The cloud DBMS extracts c for calculations
from its stored representation as c = c’ XOR s. The s value comes to
the cloud with every query using SFTs and only in such cases. The
SFT lookups serving the query use then s and the latter formula.
The DBMS discards s, at the end of the query at latest.

For both SFTs, key values, i.e., VAL for SFT1 and DLG for SFT2,
are pseudorandom. Both tables are also basically static. We store
therefore each SFT in a static hash file. Each row is represented by
one record. The record (hash) key is the share c’ of the table key
ciphertext c, i.e., c’ = c XOR s with c VAL for SFT1 file and
c’ = c XOR s with c DLG for SFT2 file. There are no duplicated
record keys. Each record contains the key and the non-key values in
the row, as in Figure 2 and Figure 3.

As usual each key c’ hashes to some bucket, h (c’) where h is the
hash function used. For instance, h is the popular hashing by
division over N-bucket file, i.e., h : c’ -> c’ mod N. The buckets
have all the same capacity of a dozen of records. The records in a
bucket share the hash result over different keys, we recall. The in-
bucket search for the record with the given key is basically
sequential. As well-known, fixed buckets with the above capacity
provide then for fast overall search. Especially in RAM that should
be the usual location for SFTs, Section 3.

We actually represent EXP and EX2 values as 4B pointers to their
actual 16B long VAL values. The obvious rationale is smaller
storage for SFT2. We revisit this issue in Section 3.2. We discuss
the actual creation of SFT files in Section 3.3.

The file structures in EAD are client-defined. Records may contain
rows or columns.

2.7. Rewrite Rules for Operators
A rewrite rule modifies the original value expression to an
equivalent one, i.e., with valid SQL syntax and yielding the same
result, but executable over the encrypted data. Incidentally, the
rewriting includes the attribute and column names. These are also
client-side encrypted for cloud security, Section 2.9. The equivalent
query has every operator other than ‘+’ or ‘_’ and every SQL scalar
or aggregate function invoked replaced by look-ups into SFTs and
calculations using only encrypted ‘+’ or ‘-‘. As already mentioned,
the client encrypts eventually also every constant subject to ‘+’
operation.

- - 6 -

The clients sends the equivalent query to the cloud. The result sent
back consists normally of data to be decrypted by the client.
Exceptionally, data that the cloud could not process come back as
well. E.g., when an operation produces the data not in SFTs, i.e.,
with a plaintext above or below values in V. The client is in charge
of post-processing then. In-depth analysis of the exceptions remains
future work.

The query format somehow distinguishes numerical values
representing plaintext from numerical values representing
ciphertext. When the cloud gets the query, it produces an execution
plan. The plan is a transaction formed by SQL queries searching
SFTs and, perhaps, by a host language statements.

In what follows, to simplify notation, the operands and the signs of
operations are overloaded depending on the context. We do not
expressively distinguish between operations over ciphertexts and
over plaintexts, unless necessary. We consider first only numerical
expressions that do not involve aggregate functions. They consist of
column values or of the results of operations only.

(a) Addition / Subtraction: The cloud performs any addition or
subtraction in ciphertext, as discussed in Sections 2.2-3. No rewrite
of clause x ± y occurs, except, perhaps, for above mentioned
plaintext constant encryption for x or y.

(b) Multiplication: if both operands are in ciphertext, then, as
already mentioned, we use the well-known identity:

x*y = antilog (log(x)+log(y))

Using our tabulated scalar functions this translates to the expression

E (x * y) = EXP (LOG (x) + LOG (y)).

The expression has valid SQL syntax. The cloud DBMS knows
nevertheless that ‘+’ is the encrypted addition. Next, it knows that
the scalar functions are the tabulated ones. Also, since EXP has
DLG as the domain, the sum must be within DLG as well, to have
the result in V, as wished. An exception to post-process by the client
occurs otherwise.

(c) Multiplication by a plaintext constant. The cloud uses rule (3).
No rewrite.

(d) Exponentiation x^y, supposing, x encrypted and y either (i)
plaintext constant or (ii) encrypted as well. The rewrite uses
basically the high-school identity x^y = exp (y * log(x)). For case (i),
using SFTs and encrypted ‘*’ defined through formula (4) the
identity leads to the rule:

E (x^y) = EXP (y * LOG(x)).

For case (ii), first, observe that the basic identity expands to the
following, also well-known:

x^y = exp (exp (log(x) + log(log(y)))).

This leads to the following rule, using again an SQL expression
referring to our tabulated functions:

 E (x^y) = EX2 (LOG (y) + LG2 (x)),

Again, the rule refers to the encrypted ‘+‘ and the sum must be in
DLG. In addition, EX2 must evaluate to a value in VAL, hence in V.

The rewrite rules apply recursively. In particular, - when an
expression x with the rewrite R (x), gets equated in a query to a
plaintext constant C in the clause x = C. The rewrite rule is then

simply R (x) = C where C = E (C), we recall. Notice that this rule
applies even if x is only an attribute name.

Example. (a) The popular expression K*(1+R)^Y calculates the
value of capital K placed for Y years at fixed annual rate R. To be
calculated over the encrypted values, our rules yield the following
equivalent one:

EXP (LOG (K) + LOG (EX2 (LOG(Y)+LG2 (1+R))).

The expression has valid SQL syntax. When the client sends it out,
the column names are replaced with meaningless cloud identifiers,
say 123 for C, etc. The cloud evaluates the scalar functions looking
up the SFTs and calculating the encrypted ‘+’.

(b) Consider the clause qty * price = 123. Its rewrite is:

EXP (LOG (qty) + LOG (price)) = 123

2.8. Rewrite Rules for Aggregate Functions
The result of COUNT function is a plaintext that obviously does not
need arithmetic calculations. The functions SUM, AVG, VAR, and
STD do. The calculation of SUM uses the additions as discussed.
No need for a rewrite. For (encrypted) AVG calculation, the basic
rewrite rule is to replace it with the SUM, assumed then in V’,
divided by COUNT. The final result is computed through Paillier
formula (4). If, presumably rarely, SUM is not in V’, while the
overall AVG result is, the rewrite is more complex, Section IV.

For encrypted variance, i.e., VAR, the rewrite rule applies König-
Huygens formula (or Steiner translation) VAR(A) = AVG(A2) –
AVG(A)2. The full rewrite goes in fact recursively further, given
the rewrite of AVG itself and of ‘^”. The 1st iteration is:

VAR (A) = SUM (EXP (2 * LOG (A))) / COUNT (A) + EXP (2 *
LOG (AVG (A))).

We assume again the result of AVG (A) in V’. Then, E (AVG (A))
is in VAL column and 2 * LOG… in the second clause is in DLG.
The The cloud finds EXP value in this row. This value is necessarily
in V’ or in V’’. The squaring was the rationale for V’’, we recall.
Similarly for each LOG (A) and EXP summed up in the first clause.
The cloud can now terminate evaluating the expression using the
kernel scheme operators only.

The rewrite of STD (standard deviation) starts with the well-known
property STD (A) = VAR (A)(1/2). Hence, we have
STD (A) = EXP (1/2 * LOG (VAR (A)). Applied at the cloud, the
rule means first that E (VAR (A)) must be in SFT1. The (encrypted)
result of LOG (tabulated) function is in SFT1 as well and in DLG.
The result of EXP (tabulated) function is logically in SFT2,
although actually in VAL column in SFT1. The encrypted
multiplication by ½ uses rule (4).

2.9. Security Model
We consider the encrypted data within a cloud DB using our
scheme, i.e., stored in SFTs and EAD, Figure 1. Our security model
is the popular honest-but-curious one. The cloud intruder may
succeed accessing any data constituting our cloud DB, i.e., data in
SFTs and EAD. S/he may use, e.g., some storage dump, perhaps
easily available to a cloud management insider. The intruder knows
our method. S/he can do off-line any calculations over the
ciphertexts. S/he is ultimately “curious” to disclose the application
data, i.e., to decrypt ciphertexts in EAD. But, behaves “honestly”,
i.e. only reads EAD. To succeed, the intruder may also ‘honestly’
read SFTs.

- - 7 -

EAD respects furthermore all the well-known conditions necessary
for the security of any deterministically encrypted cloud DB, [1].
These are beyond our scheme, depending solely on the application.
In practice, they mean first no prior knowledge of any client
plaintexts. Next, they presume high min-entropy of every column of
EAD, i.e., many equally likely values. All this prevents the
frequency analysis. The client may help, as already mentioned.

Next, if the client calculates at the cloud an SQL scalar function
beyond the core ones, e.g., the LOG10 mentioned in Section 4, then
all the tabulating columns are within SFTs. Finally, the intruder
cannot access the run-time (temporary) variables within the DBMS
code, instantiated for a query processing and cleared afterwards.
Perhaps, - just since they are short-lived or at locations known only
to the DBMS. Or, since, wisely in these troubled times, the code,
with its run-time variables, is protected, e.g. by a moving target
defense like [11]. We recall that these recent techniques aim on
secure cloud software through secret randomization of the code and
variables, blocking injections and reverse engineering. Among the
variables concerned in our specific case are these with the shared
secrets s and s’. They are instantiated each time a query using SFTs
brings the secrets in, being all discarded at most by the query end.
Are similarly concerned the variables instantiated by values
retrieved from EAD or SFT files. Same for the variables that are set
during the query time for search in SFT or EAD files, e.g., are
instantiated with a record key.

As said, our paradigm of the secure cloud DBMS internals is new.
Up to now, the research on encrypted outsourced DBs considered
simply that the client never releases its sensitive data, e.g.,
encryption keys. As already stressed as well, this somehow natural
paradigm unfortunately did not produce any practical solutions for
more than three decades. In ours, the cloud DBMS internals
constitute a secure space for transient metadata. Just like a bank
vault for transient money. The hope is are practical algorithms that
could not exist otherwise. Somehow like vaults lead to operations
unthinkable without.

In turn, we displace part of the difficulty of creating a practical
cloud DB encryption scheme towards that of creating an
infrastructure of a secure cloud DBMS. We believe that on-going
generic cloud software security research, especially the one we
mentioned, makes the goal already feasible.

The data in any cloud DB using THE scheme are secure (safe) under
this model. In other words, whatever is ciphertext c within EAD, the
intruder cannot disclose the plaintext D (c) in practical time. In
particular every ciphertext c stored obfuscated in an SFT as some
c’, is secure in this sense as well. Otherwise, if the intruder could
disclose a plaintext d for some E (d) there, then one could apply the
kernel operators to calculate E (d + d +…+d) or E (k*d), for various
plaintext constants k. By matching the results with EAD, a
disclosure of all outsourced plaintexts could follow.

As stressed already, we consider EAD immune against any attacks
possibly disclosing values in a DB, independently of the
deterministic encryption used. As we will show, EAD alone is then
secure since the intruder cannot disclose g from any contents it may
have. Reading SFTs is of no help to the intruder. The overall
rationale the missing knowledge of the client secrets s and s’. The
intruder can’t get them under our model neither from stored nor
from run-time values. A fortiori the intruder can’t get knowledge of
any couple (c, c’) with c in EAD stored obfuscated as the share c’ in

VAL, calculated in Section 2.6. This blocks any use of a property of
c in SFTs to disclose the plaintext. The security of EAD follows.

Now, in detail, first, to disclose g, the intruder could start with
guessing likely scale factors. Then, could pick up a ciphertext v
expected to be g and try plausible values of m. This until equality of
vm mod n2 possibly occurs with some ciphertext in EAD. Trying out
accordingly perhaps even every c in EAD. This process should be
obviously already typically rather tedious. In addition, under our
core scheme there are only values gm mod n2 with m > 1 in the cloud
DB. This is due to the choice of the scale factors (s ≥ 5 we recall).
The appearance of g value for any visited v is extremely unlikely.
The discussed attack is hopeless in practice.

Same conclusion applies to the guess of any two values v, v’ as
some gm and gm-1, (modulo n2), yielding g value as g = v / v’.
Likewise, the intruder cannot calculate g from some ciphertext
gm mod n2 with m > 1, either in SFT or EAD. Here, m is the discrete
logarithm of g private and large. While no algorithm calculating the
discrete logarithm for large g in practical time is known, the 128b
wide ciphertext is also believed not large enough for sufficient
security. But, this belief concerns g used as a public key, hence
known to the intruder. This is not our case, what basically multiplies
the complexity of any algorithm proposed for the discrete logarithm
computation by a factor up to 264. On the average the complexity
increases 263 times as g is randomly picked up in Zn, we recall. The
result appears high enough for many years of number crunching by
any supercomputers at present.

Next, with respect to the secret sharing, observe first that the
intruder cannot disclose the secret from SFTs alone. The reason is
that whatever is ciphertext c present in SFTs, the intruder cannot
determine c from c’ obfuscating it. The ciphertexts are in all the
columns of SFT1 and DLG column in SFT2, we recall. A fortiori;
the intruder cannot determine D (c).

The two-share secret sharing is indeed known to be secure for its
secret assumed pseudorandom, as in our case, provided the 1st share
that is here c, is also pseudorandom enough to resist any frequency
analysis. This is our case as well. First, our encryption formula gm
mod n2 acts as the hashing by division. This one usually randomize
the hashed values well. Next, in every column with the shares, every
(hash) value is unique, keeping the distribution uniform. We have a
single secret hidden into two shares as many times as there are
obfuscated values c’ in SFTs. Since each c is pseudo random, c’
values cannot disclose the secret. The intruder cannot thus calculate
any c from its c’ by analyzing only the related columns, i.e., cannot
disclose any c.

In contrast, the values in EXP and EX2 are not the shares. The
columns have also duplicates. It is easy to see that for every
v1,v2 V with v1 > v2 , more rows point to v2 than to v1. The intruder
may accordingly order the shares in VAL. Moreover, the intruder
may luckily guess the scale factors and logarithm base used. E.g., if
the client simply applies the core scheme. A count of duplicates may
then identify a plaintext. For instance, the count of 42680 identifies
23.43 from our example in Section 2.4.

However, for any record in SFT1 file, this knowledge still does not
disclose any ciphertext c that c’ obfuscates. In other words, for any
above D (c), the value of c obfuscated in VAL column remains
unknown if the secret is unknown. We consider the latter to be the
case of the intruder from now on. We will show progressively that it
is actually so. For instance therefore, c with D (c) = 23.43 above
remains unknown to the intruder. The intruder cannot disclose

- - 8 -

therefore the plaintext D (c) for any c in EAD using SFTs alone.
Natural way to progress is then to explore both SFTs and EAD.
Basically, - to identify for some c’ in VAL ‘its’ c in EAD. Guessing
pairs (c’, c) by brute force however, i.e., by trying for given c’
every c there, as possibly sharing D (c), is clearly a nonsense. One
must restrict number of the trials. Possibly towards a single pair.

One hypothetical way to follow then is the access path from some c
in EAD to the (unique) bucket in SFT1 file containing a single
record. The plaintext found for c’ there would be D (c), hence the
disclosure would succeed. Such bucket may exist with a reasonable
probability in SFT1 file, as known for hash files. However, to access
a bucket within SFT1 file one needs to hash c’. Whatever is c, the
intruder cannot determine c’, as discussed. To disclose D (c) is then
impossible as well. Same holds for the other way around. That is, -
the access to the bucket with unique c in EAD, starting from some
c’ in VAL. Clearly, without knowing s, no exploration of our
physical data structures for SFTs and EAD may relate c’ in SFTs to
‘its’ c in EAD and vice versa.

The same rationale blocks the only remaining way. That one is the
sequential (brute force) search through EAD alone. Since g is
unknown, the “Holy Grail’ ciphertext should have the plaintext
being a unique solution to some algebraic identity or equation. It
thus should be the only equalizing two selected different
expressions. For instance, 2 is the only to solve x + x = x*x.
Likewise 3 uniquely solves the identity x + x + x = x*x etc. If one
may calculate an identity over EAD, e.g., may test
E (x + x) =? E (x*x), the disclosure obviously follows. The
performance analysis in Section 3 shows that this could happen then
in less than an hour for an EAD with even dozens of millions of
values. The result would be similar for the search through VAL if
the stored values there were not obfuscated. A rapid disclosure of
entire EAD could follow the wise use of kernel operators above
discussed.

However, the intruder cannot even calculate the ‘+’ above, because
of s’ obfuscation of EAD ciphertexts. Besides, ‘*’ unfortunately (for
the intruder) requires in addition again SFTs. Not knowing the
secrets, the intruder can’t thus test the identity. Same applies to
above mentioned additional SQL scalar functions, e.g., LOG10n
that could serve ‘*’ alternatively. Their tabulations are in SFTs
hence are secret for the intruder as well. Identities using operators
other than ‘*’, e.g., x + x = x^x solved by x = 2, obviously can’t help
neither. Algebraic identities always use at least one non-kernel
operator. This way of proceeding thus still cannot bring the
disclosure under our model.

Finally, the intruder could consider getting knowledge of “useful”
values while they are processed for a query. As already mentioned,
they are then and only then, in some run-time variables within the
DBMS. The ciphertext c could come from EAD. Or could be
brought by the value expression, e.g., in the clause 2^x, with
c = E (2). In both cases, some run-time variables are instantiated
then also with the secrets s and s’, c’ and h (c’), to read the relevant
bucket, e.g., with LG2 (c). Reading s or c and c’ or c and h (c’),
would again trigger a disclosure. However, as we discussed, the run-
time variables are out of reach for the intruder in our model. This
strategy does work neither thus. In particular, the intruder is
definitively unable to disclose the secrets. As we only supposed till
now, we recall, since proving this disclosure impossible from SFTs
alone. Altogether, THE scheme is thus secure under our model.

3. PERFORMANCE ANALYSIS
3.1. Processing Time
Processing a rewritten query requires a few lookups (searches for
records), XORing with the secrets s and s’, and time for one or a
few computations of the kernel operators. The latter times clearly
dominate. The overall time to process an operator other than the
kernel one, should be thus only a few times longer than for a single
encrypted addition. The result is practical as long as that time is.
Authors of [14] report the actual speed of about 12 s per Paillier’s
addition. This is the slowdown of eighty times with respect to the
plaintext addition. Nevertheless, this is still, e.g., only 1.2 s for
100K additions. Processing speed of that order remains practical for
a DB. The same number of plaintext additions needs 14 ms, [14]. In
comparison, the Gentry scheme would need over four years.
Likewise, the somewhat homomorphic scheme we cited, would still
require 100 s. This would clearly be usually impractical, being also
about eighty times more than with our scheme.

The multiplication operation with our scheme requires the time of
an addition and of four lookups: two for LOG values, one for DLG
and for EXP pointer in the same record, and one follow up into
VAL. As it appears below, SFTs may and therefore preferably
should, reside in RAM of a modern (database) server. The lookup
time through a bucket of a hash RAM file should be up to 1s. Time
to get ciphertexts from their storage representations is negligible
since we use XOR. The result is 16 s per multiplication, i.e., 1.6 s
for our 100K multiplications. This should be obviously usually
practical. The result holds obviously for the division. We recall that
the somewhat homomorphic scheme that appears the fastest
supporting both ‘+’ and ‘*’ known till now, requires 60 ms per ‘*’.
In other words, it appears 4000 slower, notwithstanding its inherent
limitation on ‘*’.

If SFTs better do not reside in RAM of the cloud server, the flash
storage is the next candidate on the memory hierarchy. The lookup
time is essentially the flash read time, i.e, about 1 ms. The lookups
then dominate the time for the multiplication and brings the
response time for a single ‘*’ to 3 ms, i.e., to five minutes per 100K.
The latter timing might be already long for some users. The location
of SFTs in flash storage instead of RAM should be therefore
possibly avoided. Nevertheless, even so, the processing is still
twenty times faster than for the somewhat homomorphic scheme.
Finally, with their 5-10ms per access on the average, the next in the
memory hierarchy magnetic disks, are clearly too slow to appear as
practical for SFTs.

The evaluation of ‘^’ shows that for RAM resident SFTs, 100K such
operations should take also less than 2 s. We skip fastidious details
and evaluation for the flash. The calculus of an aggregate function
depends mainly on the number of selected values. In practice the
latter should be usually under a few thousands. The result should be
under a second for SFTs in RAM. Again we skip the details.

3.2. Storage for SFTs
We consider our core domain V. We evaluate the resulting storage
first for SFT1 values, then for SFT2 values. Next, we determine the
total storage for the hash files with these values. Then, we discuss
formulae for the storage, applicable to variants of core choices. We
determine finally the expected storage amount per core domain
value as the thumb rule for comparing variants.

As already said, Paillier’s ciphertext requires at least 128b, i.e., 16B.
For SFT1, the key column VAL has |V| = 200,000,000 values. These

- - 9 -

values require thus 16 * |V| / 10243 3 GB of storage. The non-key
column LOG has only |V’| = 100,000,000 values. Those need
1.5 GB. LG2 column has a value E (ln (ln (x))) only for x V’ and
only if
ln (x) > 0. The difference to |LOG| is negligible. LG2 values require
thus practically 1.5 GB as well. SFT1 values need therefore 6 GB
total.

For SFT2, DLG column has, first, the ciphertexts for the logarithms
of the values forming our domain V’. These are the 100,000,100
ciphertexts in LOG. DLG has also all the values within each gap
among logarithm values encrypted in LOG. The natural logarithms
range for V’, we recall, from 4.60517018 to 13.81551055, with the
bounds provided with our precision p = 8. Altogether, for our V’ and
p, we need thus in DLG 1,842,068,074 values. Notice that this is
eighteen times more than in LOG.

DLG has furthermore the ciphertexts for V” values. We recall that
these values are necessary for the aggregate functions. There is one
such value first for each x V’ such that x > 1000. We have then
x2 > 1M and so x2 V”. We have 99,900,000 such values in V”. We
also have in V”, 9 values for v < 0.1, hence v2 < 0.01, our lower
bound on V’. The grand total is 1,941,968,083. This leads to 29 GB
for DLG values.

Notice that for our V, the choice of the logarithm base B e, would
lead to precision p > 8. Hence, it would lead to even more values in
DLG. Experiment, e.g., with the popular bases B = 2 or B = 10.

EXP and EX2 columns contain only the already mentioned 4B
pointers. Such pointers suffice for up to 232 – 1 values, hence largely
enough for our “practical” V. The storage for EXP values is thus
7.3 GB. EX2 column only has the values that fit V’. The maximal
possible DLG value is ln (ln (106) = 2.62579191. We have therefore
460,517,019 + 100 + 262,579,192 = 723,096,311 values in EX2.
They need 2.7 GB. Altogether, SFT1 and SFT2 values require thus
6+29+7.3+2.7 = 45 GB of storage.

As we said our storage structure for an SFT column is a hash file.
The load factor can then exceed 90% with almost no access
performance deterioration by collisions. 50 GB total should suffice
thus for our core SFTs.

Mass-produced workstations and cloud servers, offer now routinely
64 GB and easily up to 512GB of RAM. As already mentioned, our
SFTs may therefore reside in RAM storage and thus typically
should. Alternatively, there are cheap flash cards and SSDs for
those, as mentioned already as well.

More generally, the storage amount for SFT1, say S1, calculated as
above, is linear with the number of values in VAL. Thus let it be
x = |SFT1|. Next, let w be the ciphertext width, w = 16B in our case.
We have at least S1 = O (3*w*x). Each optional column we talk
about in Section 4 costs for its values w*x bytes. This, except for the
plaintext although also secret RANK costing 8*x bytes for modern
64 bit arithmetic. For SFT2, the cost is S2

 = O ((w + 4+4) * x * o (x,
b)). Here, for the first sum, we consider again 4B pointers for EXP
and EX2, sufficing for up to 232 – 1 pointed values, we recall. For
the last expression, o denotes the overhead of dense log,
o = |DLG| / x. This one depends on x and B. For our V, B = e appears
best as we already pointed out, with still almost 2000 % overhead.
For other values of x another B can perhaps lower o. Finally, since
we needed 50 GB for |V’| = 100M, the thumb rule for our (core)
scheme is 0.5 KB per domain value.

3.3. SFT Upload and Update
To create the SFTs at the cloud, the client has to create SFTs
ciphertexts elsewhere than at the cloud DB server(s) and upload
them there. Suppose first that the client creates all the ciphertexts at
its own site. We call this scheme centralized. To evaluate the time
for SFTs creation at the cloud then, say T, let w is the total number
of encrypted columns in an SFT, and x the average cardinal of a
column. Then T is proportional to w*x. T includes the encryption
time at the client, say TC = O (w*x*c), where c is here the time to
encrypt a single value. It also includes the transfer time and the
time to create the tables at the server. The client-side encryption and
the other operations can be parallel. It suffices to send group
encrypted values, while the encryption goes-on. TC becomes then
the dominant component of T.

Our basic hardware assumption for the centralized scheme is that
the client site is a PC with usual high or low speed connection to the
cloud. This was the basis for the experiments reported in [12] and
[5]. These papers are short and lack important details. Nevertheless,
it appears that TC for 100K values is 3 ÷ 15 minutes. Notice that the
upper bound is ten-year old, while the lower is only two-year old.
We have the total of about 2,241M values to encrypt: the LG2
column of SFT1 and the DLG column of SFT2. The latter reuses the
100M ciphertexts of LOG column. Even the best case, this leads to
47 days. This is hardly practical, although remains subject to
caution, requiring experiments on current hardware. To this time
adds up the creation of the pointers in EXP and EX2 columns of
SFT2 at the client that must follow that of SFT1. That time is
however relatively negligible. One may expect four hours, assuming
reasonably at most 5s per record creation, for our almost 2,700M
records to produce for EXP and EX2 columns.

While the centralized scheme is the classical configuration, a
modern way towards a practical TC is clearly the use by the client of
some popular MapReduce tool distributing the calculations over a
trusted cloud. That cloud is other than the one with the cloud DB,
being chosen by the client as safe. For instance, if the DB is
outsourced to Google cloud, Amazon EC2 could be the trusted one.
One way is that the client creates then locally a file with all the
plaintexts for VAL, say PVL, and, similarly a file PDL of plaintexts
for DLG column. The tool dynamically partitions then each file over
the trusted cloud during the Map phase. For each value of PVL and
of PDL, each node calculates in parallel the rows of each SFT and
forms the records. The Reduce phase sorts the records by bucket
addresses in the cloud DB files. The results are uploaded to the
cloud DB as inserts to the buckets, initially empty.

Provided the trusted nodes have the same throughput, the
partitioning by Map/Reduce over N nodes should reduce TC of the
centralized scheme on the average N times. The client requests thus
enough nodes for an acceptable value. If this one is, e.g., on the
average 1 h, 1100 nodes may do. The total time should be somehow
longer. First, there is time spent to create PVL and PDL files,
possibly in RAM. Next, there are transfers of GBytes of plaintexts
towards the trusted nodes, during the Map phase. There are also
transfers towards the cloud DB from the reducers. There should be
usually high parallelism between theses transfers, as well as with the
encryption calculations. The dominating transfer is the one of 45G
of SFT values for our core domain from the reducers to the cloud
DB. For the Internet fiber optics transfer speed of 200+ MBs, the
overhead to TC should be altogether a couple of minutes.

- - 10 -

An update to SFTs should merely consist of appending optional
scalar functions we describe below. Using the basic scheme, this
operation has the time complexity of O (|V’|) per function. This
could still appear impractical for our core V’, lasting mainly because
of the encryption time perhaps 2 days. Again, one can make it
almost N times faster through the N-node trusted cloud.

4. VARIANTS
We now outline some variants tailoring the core scheme to specific
need. First, the storage for SFTs can be reduced. Results in [16] and
[17] point to impressive almost 90% savings in ciphertexts
representation. One should study the application of these techniques
to SFTs. On the simple side, consider, e.g., the secret decision to
represent plaintext 2.34 as 1.22 + 1.12. We may represent 2.34 then
as two pointers. Instead of 16B we use 8B only. The application of
the strategy on massive scale to SFTs leads to almost 50% saving.
The obvious price to pay is longer processing time. For our 2.34 and
a 16B ciphertext, we about double the ‘+’ and ‘*’ times.

Next, the domain V’ of our core scheme has |V’| 100M. The
algorithmic is nevertheless independent on |V’|, provided V’
contains positive numbers only. An obvious direction is thus to use
a smaller or larger V’, perhaps fitting better a DB. The storage
space for SFTs is affected linearly, as we have shown. A logarithm
base B other than our e one may then perhaps provide to a smaller
DLG for a given domain. Providing therefore a smaller SFT2
storage than our base would do.

Yet another direction is more rewrite rules. For instance the
expression d = a * b / c evaluated as discussed till now may result in
an overflow of V’ after a * b calculation, while d may still be in V’.
An alternative rule could rewrite d as (a / c) * b perhaps avoiding
the overflow. Likewise, the straight calculus a*b – a*c could fail
because of a*b overflow. But, perhaps the rewrite a * (b – c) would
do. The high-school books seem a pond for more rules.

The issue occurs also for the aggregate functions. For AVG, in
particular, the following recursive formula may avoid an overflow:

AVG (A1, A2…An+1) = n / (n+1) *AVG (A1, A2…An)+1/(n+1) An+1.

The formula extends to VAR computation.

An important direction is furthermore the expansion of SFT1 with
optional scalar functions. These are functions other than the core
ones we have discussed. Each optional function give rise to a
dedicated column, with its value entering the core row and record.
For instance, a useful add-up may be the column INT tabulating in
each row (v,…), the ciphertext INT (v) of the popular function. This
could lead e.g., to two rows with (VAL…INT) being (23.43…23)
and (23.44…23). Likewise one may add the RANK column
tabulating in plaintext the descending or ascending order of
plaintexts of ciphertexts in VAL. We recall that RANK plaintexts
would be nevertheless stored obfuscated as the client secret shares.
Under our security model, they would not disclose the order, what
the order preserving encryption schemes naturally do, [17]. The
function allows to compute at the cloud the ORDER BY clause on
value expressions, and thus TOP k, MIN and MAX aggregate
functions. Likewise it allows for -joins. The RAM sizes up to
512 GB discussed in Section 3, easily allows for many more
optional functions.

Another goal is a domain with zero and negative numbers for
operators other than ‘+’ and ‘-‘. One way towards it is, first, an

additional column, say MVL, in SFT1, tabulating –a for each a in
VAL, assuming the representation of the negative numbers as
complements mod n in 0...n. Next, the rewriting rules have to be
revised and optional functions added, to deal with the sign of a
value expression where an operand may be negative. E.g., the rule
for a * b where perhaps a,b < 0, may become SIGN (EXP (LOG
(ABS (a)) + LOG (ABS(b)))), where SIGN depends trivially on the
operands. Some rules have to deal then with forbidden cases, e.g.,
LOG (0) or a1/2 for any a < 0.

Finally, with respect to SFT1 and SFT2 upload, an application of a
scheme in [8], instead of MapReduce, would first bring the
advantage of the guaranteed time limit over Tc at each node, e.g.,
TC

 ≤ 1h. Unlike for MapReduce tools, the limit would hold even if
some trusted nodes had smaller throughput, even heavily, as often in
practice. Next, the client would comparatively save the overhead
time and storage related to the creation and transfer to the nodes of
PVL and PDL files. These would exist only as virtual files,
partitioned over the trusted cloud nodes. For our SFTs, 1100-node
cloud could then again suffice for the previously discussed 1h limit
on TC, if the trusted nodes have the same throughput. More than
1100 nodes would get involved dynamically for heterogeneous
throughput. Known MapReduce tools lead then to processing times
perhaps even much longer than the expected TC /N, executing over
statically allotted N = 1100. However, while there are numerous
MapReduce tools, no application of schemes in [8] appears known
as yet.

5. CONCLUSION
Despite thirty five years quest, a practical fully homomorphic
encryption remains yet the Holy Grail. THE scheme offers the
homomorphic capabilities appearing practical for many, perhaps
most, DBs. It evaluates the numerical SQL expressions over
encrypted data with any number of operators other than ‘+’ and ‘-‘,
and with standard SQL aggregate functions. It uses additively
homomorphic Paillier-based kernel cryptosystem, auxiliary tables
tabulating selected scalar functions and rewrite rules. It also uses a
novel paradigm of the cloud DBMS secure for the transient client
metadata. The research until now presumed to the contrary that the
client never sends out such data. Our paradigm appears practical,
through the progress towards secure cloud software, using the
moving target defenses especially.

THE scheme processes the expressions normally entirely at the
cloud. It is secure under our security model against honest-but-
curious intrusions. THE scheme is finally deterministic, supporting
thus SPJ queries over ciphertexts. Efficiency of SPJ operations is
not subject of our work. Processing such queries entirely at the
cloud is nevertheless well-known to be the key to the success of
relational cloud DBs. To our best knowledge, THE scheme is the
first with this capability to the extent shown.

Further work should address the prototyping. As for other proposals,
this is necessary to evaluate THE scheme in depth. We outlined
several variants. Future efforts should aim at these as well.

6. ACKNOWLEDGEMENTS
Discussions with Ken Smith at the 2013 Cloud Security Meeting at
CSIS (GMU), after the presentation [13] laid the basis of this work.

- - 11 -

REFERENCES
[1] Boldyreva, A, Fehr, S. and O'Neill, A.: On Notions of Security for

Deterministic Encryption and Efficient Constructions without Random
Oracles. In Proceeding of the 28th International Cryptology
Conference, (Crypto ’08). (Santa Barbara, CA, August 17-21, 2008).
Lecture Notes in Comp. Science, Vol. 5157, Springer, 2008, D.
Wagner ed., 335–359.

[2] Blank, A., & Solomon, S. (2000). Power laws in cities population,
financial markets and internet sites (scaling in systems with a variable
number of components). Physica A: Statistical Mechanics and its
Applications, 287(1), 279-288.

[3] De Capitani, S., Foresti, S., Samarati, P. Selective and Fine-Grained
Access to Data in the Cloud. Secure Cloud Computing. Lecture Notes
in Computer Science Vol 5735, Springer, 2014. Jajodia, S. & al eds.,
123-148.

[4] Encounter software library.
http://plaintext.crypto.lo.gy/article/658/encounter.

[5] Farah, S., Javed, Y., Shamim, A., Navaz, T.: An experimental study on
Performance Evaluation of Asymmetric Encryption Algorithms. In
Recent Advances in Information Science, Proceeding of the 3rd
European Conf. of Computer Science, (EECS-12) (Paris 2012)..
WSEAS Press, 121-124.

[6] Gahi, Y & al. A Secure Database System using Homomorphic
Encryption Schemes. In Proceedings of 3rd Intl. Conf. on Advances in
Databases, Knowledge, and Data Applications (DBKDA 2011) (St.
Maarten, Netherlands Antilles). International Academy, Research, and
Industry Association (IARIA), 54-58.

[7] Hacigumus, H. & al. Search on Encrypted Data. Secure Data
Management in Decentralized Systems. Advances in Information
Security, Springer, 2007, Yu, T., Jajodia, S. eds., 383-427.

[8] Jajodia, S., Litwin, W., Schwarz, Th.: Scalable Distributed Virtual Data
Structures. In Proceedings of Second ASE International Conference on
Big Data Science and Computing. Stanford, 2014.

[9] Lauter, K. & al. Can Homomorphic Encryption be Practical? In
Proceedings of 3rd ACM workshop on Cloud computing
security.(CCSW '11) (Chicago), 113-124.

[10] Paillier, P. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Proceedings of Advances in Cryptology, Intl.
Conf. on the Theory and Application of Cryptographic Techniques,
(EUROCRYPT ’99) (Prague). Lecture Notes in Computer
Science Volume 1592, Springer, 1999, Jacques Stern (ed.), 223-238.

[11] Portokalidis, G., Keromytis, A., D. Global ISR: Towards a
Comprehensive Defense Against Unauthorized Code Execution. In :
Moving Target Defense. Advances in Information Security. Springer,
2011, Jajodia & al eds. 49-76.

[12] Subramaniam, H., Wright, R. N., Yang, Z.: Experimental Analysis of
Privacy-Preserving Statistics Computation. In Proceedings of
Workshop on Secure Data Management, (SDM04), held in conjunction
with VLDB04. Springer, 2004, W. Jonker and (Eds.), 55–66.

[13] Smith, K., Allen, D., Sillers, A., Lan, H., Kini, A.: How Practical Is
Computable Encryption? http://csis.gmu.edu/albanese/events/march-
2013-cloud-security-meeting/04-Ken-Smith.pdf

[14] Smith, K., Allen, M., D., Lan, H., and Sillers, A. Making Query
Execution Over Encrypted Data Practical. Secure Cloud Computing.
Springer, 2014, Jajodia, S. & al eds, 173-190.

[15] Thep. The homomorphic Encryption Project.
https://code.google.com/p/thep/

[16] Tingjian, G., Zdonik, S.: Answering aggregation queries in a secure
system model, In Proceedings of 33rd Intl. Conf. on Very Large
Databases (VLDB 07) (September 23-28, 2007, Vienna, Austria).
VLDB Endowment, 519-530.

[17] Tu, S., Kaashoek, M. F., Madden, S., Zeldovich, N. Processing
Analytical Queries over Encrypted Data. Proceedings of the VLDB
Endowment, 6, 5, (March 2013), 289-300.

.

Cloud
DBMS

SFT Upload & Updates

Data Flow

Queries

Encryption
Decryption

Scalar
Function
Tables

Encrypted

Application
Data (EAD)

Cloud

Client

Application

Client Secret

Figure 1. High-level architecture of THE scheme.

Kernel Additively
Homomorphic
Cryptosystem

Operators

Rewrite Rules

- - 12 -

g^((0.01^2)E5)

g^((0.02^2)E5)

…

g^((0.09^2)E5)

g^(0.01E5)

…

g^(1.00E5)

g^(1.01E5)

…

g^(1,000,000.00E5)

g^((1000.01^2)E5)

VAL

g^((ln 0.01)E8)

…

g^((ln1.00)E8)

g^((ln1.01)E8)

…

g^(ln(1,000,000.00)E5)

LOG

g^((ln(ln1.01))E8)

….

g^(ln(ln(1,000,000.00))E8)

LG2

Figure 2. Table SFT1. Ciphertexts are integer powers of g. Plaintexts are reals, scaled up to
become integers (Section 2.5). Scaling factors 5 and 8 are in E notation. Ciphertexts are stored
obfuscated through the client secret s.

g^(1.01E5)

g^(1.01E5)

…

g^(2.72E5)

g^(2.72E5)

…

g^(1,000,000.00E5)

DLG EXP EX2

g^((0.01^2)E5)

g^((0.02^2)E5)

…

g^((0.09^2)E5)

g^(0.01E5)

g^(0.01E5)

…

g^(1.00E5)

g^(1.00E5)

…

g^(13.82E5)

…

g^(1,000,000.00E5)

g^((1000.01^2)E5)

g^(-921034037)

g^(-782404601)

…

g^(-481589121)

g^(-460517019)

g^(-460517018)

…

g^(0)

g^(1)

…

g^(262611682)

…

g^(1381551056)

g^(1381553056)

Figure 3. Table SFT2 with its ciphertexts. These are actually stored as secret shares in DLG and as
pointers to their VAL values displayed here otherwise. Plaintexts are again reals, represented as
integers. Scale factor is implicitly 8 in DLG column and explicitly 5 in EXP and EX2.

