On comonotonically modular functions

Miguel Couceiro 1,2 and Jean-Luc Marichal 1 The discrete Choquet and the discrete Sugeno integrals are well-known aggregation functions that have been widely investigated due to their many applications in decision making (see the edited book [START_REF] Grabisch | Fuzzy measures and integrals -Theory and applications[END_REF]). A convenient way to introduce the discrete Choquet integral is via the concept of Lovász extension. An n-place Lovász extension is a continuous function L : IR n → IR whose restriction to each of the n! subdomains

IR n σ = {x = (x 1 , . . . , x n ) ∈ IR n : x σ(1) • • • x σ(n) }, σ ∈ S n ,
is an affine function, where S n denotes the set of permutations on [n] = {1, . . . , n}. Equivalently, Lovász extensions can be defined via the notion of pseudo-Boolean function, i.e., a mapping ψ : B n → IR; its corresponding set function v ψ : 2

[n] → IR is defined by v ψ (A) = ψ(1 A ) for every A ⊆ [n]
, where 1 A denotes the n-tuple whose i-th component is 1 if i ∈ A, and is 0 otherwise. The Lovász extension of a pseudo-Boolean function ψ : B n → IR is the function L ψ : IR n → IR whose restriction to each subdomain IR n σ (σ ∈ S n ) is the unique affine function which agrees with ψ at the n + 1 vertices of the n-simplex [0, 1] n ∩ IR n σ (see [START_REF] Lovász | Submodular functions and convexity[END_REF][START_REF] Singer | Extensions of functions of 0-1 variables and applications to combinatorial optimization[END_REF]). We then have L ψ | B n = ψ. It can be shown (see [8, §5.4.2]) that the Lovász extension of a pseudo-Boolean function ψ : B n → IR is the continuous function

L ψ (x) = ψ(0) + ∑ i∈[n] x σ(i) ( L ψ (1 A ↑ σ (i) ) -L ψ (1 A ↑ σ (i+1) ) ) , x ∈ IR n σ , (1) 
where

A ↑ σ (i) = {σ(i), . . . , σ(n)}, with the convention that A ↑ σ (n + 1) = ∅. Indeed, for any k ∈ [n + 1], both sides of (1) agree at x = 1 A ↑ σ (k) . Let ψ d denote the dual of ψ, that is the function ψ d : B n → IR defined by ψ d (x) = ψ(0) + ψ(1) -ψ(1 -x). Then L ψ (x) = ψ(0) + L ψ (x + ) -L ψ d (x -), (2) 
where x + = x ∨ 0 and x -= (-x) + . An n-place Choquet integral is a nondecreasing Lovász extension L ψ : IR n → IR such that L ψ (0) = 0. It is easy to see that a Lovász extension L : IR n → IR is an n-place Choquet integral if and only if its underlying pseudo-Boolean function ψ = L| B n is nondecreasing and vanishes at the origin (see [8, §5.4]).

Similarly, a convenient way to introduce the discrete Sugeno integral is via the concept of (lattice) polynomial functions, i.e., functions which can be expressed as combinations of variables and constants using the lattice operations ∧ and ∨. It can be shown that polynomial functions are exactly those representable by expressions of the form [START_REF] Couceiro | Quasi-polynomial functions over bounded distributive lattices[END_REF][START_REF] Couceiro | Polynomial functions over bounded distributive lattices[END_REF].

∨ A⊆[n] c A ∧ ∧ i∈A x i , see, e.g.,
Over real intervals I ⊆ IR, the discrete Sugeno integrals are exactly those polynomial functions p : I n → I that are idempotent, i.e., satisfying p(x, . . . , x) = x.

Natural generalizations of Lovász extensions and polynomial functions are the quasi-Lovász extensions and quasi-polynomial functions, which are best described by

f (x 1 , . . . , x n ) = L(ϕ(x 1 ), . . . , ϕ(x n )) and f (x 1 , . . . , x n ) = p(ϕ(x 1 ), . . . , ϕ(x n )), resp.,
where L is a Lovász extension, p is a polynomial function, and ϕ a nondecreasing function such that ϕ(0) = 0. Such aggregation functions are used in decision under uncertainty, where ϕ is a utility function and f an overall preference functional. It is also used in multi-criteria decision making where the criteria are commensurate (i.e., expressed in a common scale). For a recent reference, see Bouyssou et al. [START_REF]Decision-Making Process -Concepts and Methods[END_REF]. In this paper we show that all of these classes of functions can be axiomatized in terms of so-called comonotonic modularity by introducing variants of homogeneity. To simplify our exposition when dealing with these different objects simultaneously in a unified framework, we will assume hereinafter that I = [-1, 1] ⊆ IR, and we set

I + = [0, 1], I -= [-1, 0] and I n σ = I n ∩ IR n σ .

Comonotonic Modularity

A function f : I n → IR is said to be modular (or a valuation) if

f (x) + f (x ) = f (x ∧ x ) + f (x ∨ x ) (3) 
for every x, x ∈ I n . It was proved (see Topkis [START_REF] Topkis | Minimizing a submodular function on a lattice[END_REF]Thm 3.3]) that a function f : I n → IR is modular if and only if it is separable, that is, there exist n functions f i :

I → IR, i ∈ [n], such that f = ∑ i∈[n] f i .
In particular, any 1-place function f : I → IR is modular.

Two n-tuples x, x ∈ I n are said to be comonotonic if x, x ∈ I n σ for some σ ∈ S n . A function f : I n → IR is said to be comonotonically modular (or, shortly, comodular) if (3) holds for every comonotonic n-tuples x, x ∈ I n . Note that for any function f : I n → IR, condition (3) holds for tuples x = x1 A and x = x 1 A , where x, x ∈ I and A ⊆ [n]. Note that if f : I n → IR is comodular, then by setting x = 0 in (3) we have (iii) There are g : I n + → IR and h : I n -→ IR s.t. for every σ ∈ S n and x ∈ I n σ ,

f 0 (x) = f 0 (x + ) + f 0 (-x -) (where f 0 = f -f (0).)
f 0 (x) = ∑ 1 i p ( h(x σ(i) 1 A ↓ σ (i) ) -h(x σ(i) 1 A ↓ σ (i-1) )
)

+ ∑ p+1 i n ( g(x σ(i) 1 A ↑ σ (i) ) -g(x σ(i) 1 A ↑ σ (i+1) )
) ,

where x σ(p) < 0 x σ(p+1) . In this case, we can choose g = f | I n + and h = f | I n -. In the next section we will propose variants of homogeneity, which will show that the class of comodular functions subsumes important aggregation functions (such as Sugeno and Choquet integrals) as well as several extensions that are pertaining to decision making under uncertainty. We finish this section with a noteworthy consequence of Theorem 1 that provides a "comonotonic" analogue of Topkis' characterization [START_REF] Topkis | Minimizing a submodular function on a lattice[END_REF] of modular functions as separable functions, and which provides an alternative description of comodular functions.

Corollary 1. A function f : I n → IR is comodular if and only if it is comonotonically separable, that is, for every σ ∈ S n , there exist functions f σ i :

I → IR, i ∈ [n], such that f (x) = n ∑ i=1 f σ i (x σ(i) ) = n ∑ i=1 f σ σ -1 (i) (x i ), x ∈ I n ∩ IR n σ .
Remark 1. (i) Quasi-polynomial functions were axiomatized in [START_REF] Couceiro | Axiomatizations of quasi-polynomial functions on bounded chains[END_REF] in terms of two well-known conditions in aggregation theory, namely, comonotonic maxitivity and comonotonic minitivity. It is not difficult to verify that both properties imply comonotonic modularity, and hence quasi-polynomial functions are comodular or, equiv., comonotonically separable. (ii) The discrete Shilkret integral can be seen as an aggregation function f : I n → IR, I ⊆ IR, that can be represented by an expression of the form

f (x) = ∨ A⊆[n] s A • ∧ i∈A x i , x ∈ IR n .
Essentially the Shilkret integral differs from the Choquet integral in the fact that meet-terms are aggregated by join rather than by sum, and from the Sugeno integral in the fact that each meet-term is transformed by scalar multiplication rather than by scalar meet. Surprisingly and despite these similarities, unlike the Choquet and Sugeno integrals, the Shilkret integral is not comodular, and hence not comonotonically separable: Let f : IR 2 → IR be the Shilkret integral f (x 1 , x 2 ) = 0.2•x 1 ∨0.4•x 2 , and let x = (0.1, 0.1) and x = (0.2, 0).

Homogeneity variants

Despite the negative result concerning the Shilkret integral, the class of comodular functions subsumes a wide variety of integral-like functions, such as quasi-polynomial functions (see Remark 1). The next theorem introduces different variants of homogeneity which, together with comonotonic modularity, provide axiomatizations for the various classes of (extended) integrals we consider in this paper.

Theorem 2. A function f : I n → IR is a 1. quasi-Lovász extension iff f is comodular and there is ϕ : I → IR nondec. s.t. f (x1 A ) = sign(x)ϕ(x) f (sign(x) 1 A ) (4) 
2. Lovász extension iff f is comodular and there is ϕ :

I → IR nondecreasing s.t. f (x1 A ) = sign(x) x f (sign(x) 1 A ) (5) 
3. quasi-polynomial function iff it is comodular and there is ϕ :

I → IR nondec. s.t. f (x ∧ 1 A ) = ϕ(x) ∧ f (1 A ) and f (x ∨ 1 A ) = ϕ(x) ∨ f (1 A ) (6) 
4. polynomial function iff it is comodular and for every x in the range of f

f (x ∧ 1 A ) = x ∧ f (1 A ) and f (x ∨ 1 A ) = x ∨ f (1 A )
Proof. The first two assertions follow immediatly from (2) and Theorem 1. Necessity in the last two assertions follows from Remark 1 and the fact that quasi-polynomials and polynomial functions are quasi-min and quasi-max homogeneous, and range-min and range-max homogeneous, resp. (see [START_REF] Couceiro | Axiomatizations of quasi-polynomial functions on bounded chains[END_REF][START_REF] Couceiro | Representations and characterizations of polynomial functions on chains[END_REF]). For sufficiency in the third, note that from ( 6) and Theorem 1 (by applying the left identity on I + and the right on I -), it follows that f is nondecreasing and quasi-min and quasi-max homogeneous, and thus it is a quasi-polynomial function (see Theorem 17 in [START_REF] Couceiro | Axiomatizations of quasi-polynomial functions on bounded chains[END_REF]). Sufficiency in the fourth assertion follows similarly but using results from [START_REF] Couceiro | Representations and characterizations of polynomial functions on chains[END_REF].

Remark 2. (i) For the symmetric variants of quasi-Lovász extensions and Lovász extensions replace ( 4) and ( 5) by f (x1 A ) = ϕ(x) f (1 A ) (ϕ odd) and f (x1 A ) = x f (1 A ), resp. (see [START_REF] Couceiro | Axiomatizations of quasi-Lovász extensions of pseudo-Boolean functions[END_REF]). (ii) For Choquet integrals add nondecreasing monotonicity, and for Sugeno integrals replace "for every x in the range of f " by "for every x ∈ I".

Theorem 1 .

 1 ([6]) For any function f : I n → IR, the following are equivalent.

  (i) f is comodular.(ii) There are g : I n + → IR and h : I n -→ IR comodular s.t. f 0 (x) = g 0 (x + ) + h 0 (-x -) for every x ∈ I n . In this case, we can choose g = f | I n + and h = f | I n -.