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Abstract :
On s’intéresse à une situation où des agents rationnels
peuvent former des coalitions pour améliorer leur bien-
être. Nous nous plaçons dans des jeux coopératifs avec
externalités et plus précisemment des jeux avec valeurs
(“games with valuations”): l’utilité de l’agent est définie
pour chaque structure de coalitions (SC). Pour une SC
donnée, un agent peut changer de coalition en rejoignant
une coalition existante dans la SC. Si un changment lui
est bénéfique, il a intérêt à changer de coalition. Une
SC est stable lorsqu’aucun n’agent n’a intérêt de changer
de coalition. La stabilité est une propriété désirable
car les agents ne gachent pas de temps ou d’energie à
changer sans cesse de coalitions. Si aucune SC n’est sta-
ble, les agents risquent passer leur temps à changer de
coalition, sauf si un agent décide d’accepter une solution
sous-optimale. Lorsqu’une SC stable existe, elle n’est
pas forcément unique, et son choix peut avantager cer-
tains agents plutôt que d’autres, ce qui pose un problème
d’équité. De plus, il n’est pas forcément toujours pos-
sible d’atteindre une SC stable en utilisant une suite de
changements qui profitent à l’agent qui change de coali-
tion. L’objet de notre étude est de proposer une notion
différente de la stabilité. Si les agent sont gloutons et my-
opes (i.e. un agent change de coalition si le changement
améliore son bien être), chaque agent i peut calculer son
utilité espérée ūi (s’il connait la SC de départ ou s’il pos-
sède une distribution de probabilité sur les états de dé-
part). Nous proposons le choix d’une SC et une réparti-
tion des gains de cette SC de telle sorte que chaque agent i
obtienne au moins ūi. Tous les agents ont donc intérêt de
choisir notre solution, et donc rester dans leur coalition.
Malheureusement, notre solution est difficile à calculer.
Keywords: Jeux coopératifs, solutions équitables,
chaines de Markov.

1 Introduction

In the literature on coalition formation, valua-
tion functions are typically defined only over a
coalition, and the agents need to decide or nego-
tiate a payoff distribution. We are interested in
cases where the payoff distribution is defined for
each partition of the population into coalitions,
such partition is called a coalition structure
(CS). In other words, each agent knows its pay-
off for any CS. This model, called games with
valuations, can be viewed from two perspec-
tives. The first perspective is that, eventhough
agents cooperate within a coalition, the payoff
of each member is clearly defined and may de-

pend on the other coalitions present in the en-
vironment. For exemple, when agents have dif-
ferent individual goals, members of a coalition
help each other and compete with agents outside
the coalition. The payoff of an agent depends on
the extent of which her own goal was reached
using the help of her coalition’s members and
the competing coalitions. Another example is
that of firms forming coalitions in a supply chain
domain: each firm in a coalition provides pre-
ferred rates or discounts for its services to other
members of its coalition. The benefit of each
member of the coalition depends on the behav-
iors of other firms. Each firm in the coalition
is autonomous: each sells and buys goods, and
makes its own profit or loss. Note that firms still
benefit from being in a coalition but the benefit
varies from firm to firm in any given CS. The
second perspective is to consider that the payoff
distribution has already been computed using a
simple rule, for instance the marginal contribu-
tion, or using a more complex rule, for example
a stability criterion, e.g., a payoff in the Ker-
nel [4] or the Nucleolus [12]. Let us consider
two different CSs with associated stable payoff
distributions. In both cases, the payoff distribu-
tions are stable, but an agent may prefer to form
the first CS when another agent would prefer the
second: even if agents are using a stable payoff
distribution, agents may still have incentive to
change CS.

The question for games with valuations is which
CS will form. Stability is a key property: the
agents need to agree to stay on a chosen coali-
tion and not change coalition. However, there
may be some games such that there is no CS
where no agent would like to change coalition.
For such game, it is unclear what CS should
form. There are also some games for which
there exists more than one stable CS. In that
case, choosing one CS over another may not be
fair.

The contribution of this paper is to propose a
different view on stability. We assume that
agents are rational and myopic. In this situation,



if they have the opportunity to change coalition
to improve their utility, they will do so. If the
valuation function vi : S → R of each agent
i is common knowledge, every agent i could
compute her expected utility ūi given an initial
state (or a probability distribution over the pos-
sible initial states). We propose to the agents to
form a specific coalition s? (one that maximises
utilitarian social welfare) and we propose that
agents make side payments pi so that each agent
gets a utility wi = vi(s

?) + pi ≥ ūi. The agent
are better off following our proposal and stay in
their respective coalitions: on expectation, each
agent is better off. Hence, we can ensure stabil-
ity. From the societal point of view, this solu-
tion is also good as we use an optimal CS. To
obtain these good properties, we need to make a
non-standard assumption: we need to allow side
payments between members of different coali-
tions. Traditionally, side payments are only al-
lowed between members of the same coalition.
In our work, some coalitions will send payment
to other coalitions to support stability.

The paper is organized as follows. In Sec-
tion 2.1, we present the coalition framework and
the exisiting stability concepts for coalition for-
mation when in the non transferable utility case.
In Section 4, we show how to build a Markov
chain that models the coalition formation pro-
cess, how to use it to compute the expected util-
ity, and finally, we present the payoff obtained
by the agents when they follow our proposed so-
lution.

2 Coalition Framework

2.1 Problem Description

We consider a set N of n agents; N is also
known as the grand coalition. A coalition struc-
ture (CS) s = {S1, · · · ,Sm} is a partition of
N , where Si is the ith coalition of agents with
∪i∈[1..m]Si = N and i 6= j ⇒ Si ∩Sj = ∅. S is
the set of all CSs. The coalition of agent i in s
is noted as s(i). We consider that an agent i has
a preference order %i over S and for a CS s, an
agent i has a utility ui(s). These assumptions
have two consequences.

The first consequence is that each agent has a
private utility which depends on the other agents
present in the coalition, as is done in hedonic
coalition formation [1, 3, 2, 6]. Coalitions do
not always receive a reward as a whole: each

agent has a private cost and benefit which de-
pends on the organization of the agents. Mem-
bers of a coalition help each other, which can
globally reduce the cost or increase the private
benefit of each member. For example, soc-
cer players have a private utility, or satisfac-
tion, which depends on the other members of
the team.

The second consequence is that, unlike in the
hedonic coalition formation case, we are work-
ing in the more general case where the valua-
tion of a coalition depends on the other coali-
tions present in the population. For an agent i
such that i ∈ C and two CSs s1 and s2 such
that C ∈ s1 and C ∈ s2, it is possible that
ui(s1) 6= ui(s2). In our soccer example, the sat-
isfaction of a player in a team playing a league
may also depend on how the remaining players
are dispatched in the other teams, for example,
he may prefer that the best players are put in
different team than put all together in a dream
team. A more generic example involves agents
competing for an environmental niche. The pay-
off of a coalition may be higher when the com-
petitors work alone than when the competitors
also decide to team together to form a more
competitive group. Ray and Vohra [11] con-
sider this problem and propose a protocol where
agents propose a coalition and a distribution of
the coalitions’ worth. Other agents can accept or
reject the proposition. One issue is that, when
proposing a coalition, an agent does not know
which CS will ultimately form. Hence, the pay-
off distribution proposed by an agent is condi-
tioned on the CS that is finally selected. Ray
and Vohra consider that the agents’ offer con-
tains a payoff distribution for each possible CS,
which is not realistic for large populations. But
such elaborate offers allow them to show the ex-
istence of an equilibrium.

We further assume that there is no coordinated
change of coalitions; one agent at a time can
change coalition. This assumption prevents un-
certainties about the state of the CS. For exam-
ple, let agents i, j and k form singleton coali-
tions. At this point, agent i would like to join
agent k, and agent j would like to join agent i,
but neither i or j would like to form the grand
coalition. If we allowed simultaneous moves,
the resulting state would be unclear. The grand
coalition may be formed though it was not the
intent of agent i or j. The resultant CS could
also be {{i, k}, {j}}where agent i joined agent
k, and agent j tried to join the coalition of
agent i, but ended up joining an empty coali-



tion. It could also be {{i, j}, {k}} where agent
j joined agent i, and agent k refused that both
agent i and j joined it at the same time. We
avoid such ambiguities with this assumption.

Finally, we assume that agents are myopic and
rational, and members of a coalition accepts a
new member only when all members agree. Af-
ter a change of CS, it is possible, if not likely,
that another agent changes its coalition, leading
to a different CS. As it is computationally ex-
pensive to perform multi-steps look ahead be-
cause of the large state space, we consider my-
opic agents that change coalition to maximize
their immediate reward. We believe it is reason-
able to assume that current members can control
when other agents can join a coalition. More-
over, it would not be myopic rational for a mem-
ber i to accept a new agent if this meant a pay-
off loss for i. Hence, we also assume that all
members of a coalition must agree to accept a
new member and, if some member i refuses, we
will say that agent i vetoes the transition. We
also make the implicit assumption that mem-
bers of a coalition cannot prevent a member to
leave, even if some of the remaining members
lose utility.

The goal of our work is to choose a CS and
a new, efficient payoff distribution that is also
fair, i.e., given the existing valuation function,
we compute a different valuation function that is
fair, and agents will adjust their payoff by mak-
ing side-payments.

2.2 Stability Concepts

We first start to give the definition of stabil-
ity concepts in the non-transferable utility case
when the value function depends only on the
members of the coalition [3]
Definition 2.1. A coalition structure s is core
stable iff @C ⊂ N | ∀i ∈ C,C �i s(i).
Definition 2.2. A coalition structure s is Nash
stable (∀i ∈ N) (∀C ∈ s ∪ {∅}) s(i) %i

C ∪ {i}
Definition 2.3. A coalition structure s is
individually stable iff (@i ∈ N) (@C ∈
2N ∪ {∅}) | (C ∪ {i} �i s(i)) and (∀j ∈
C, C ∪ {i} %j C)

Definition 2.4. A coalition structure s is
contractually individually stable iff
(@i ∈ N) (@C ∈ 2N ∪ {∅}) | (C ∪ {i} �i

s(i)) and (∀j ∈ C, C ∪ {i} %j C) and (∀j ∈
s(i) \ {i}, s(i) \ {i} %j s(i))

If a CS is core stable, no subset of agents has
incentive to leave their respective coalition to
form a new one. In a Nash stable CS s, no sin-
gle agent i has an incentive to leave its coali-
tion s(i) to join an existing coalition in s or cre-
ate the singleton coalition {i}. The two other
criteria add a constraint on the members of the
coalition joined or left by the agent. For an in-
dividually stable CS, there is no agent that can
change coalition from s(i) to S yielding better
payoff for itself, and the members of S should
not lose utility. The contractually individual sta-
bility requires that in addition, the members of
s(i), the coalition left by the agent, should not
lose utility.

The definition of Nash, individually and con-
tractually individually stability can be extended
to the case where the value of a coalition de-
pends on the CS. Another criterion for a ratio-
nal agent to be a member of a coalition is in-
dividual rationality: an agent i would consider
joining a coalition only when it is beneficial for
itself. The agent compares the situation when it
is on its own and when it is a member of a coali-
tion. However, the payoff the agent gets when
it is by itself depends on the CS. The minimum
payoff that agent i can guarantee on its own is
ri = mins∈S ,{i}∈s v(s, i) [5] (the minimum is
over all the CSs where agent i forms a coali-
tion on its own). An agent is individual rational
when its payoff in a coalition with other agents
is greater than the minimum payoff it can get on
its own.

For some coalition formation problem, it is pos-
sible that no CS satisfies any of these stability
criteria. Satisfying the individually or contrac-
tually individually stability criteria may depend
on the protocol used by the agents to form coali-
tion. We can consider that agents in a coalition
have the power to veto the entrance of a new-
comer, but cannot prevent a member from leav-
ing a coalition. For example, an academic can
freely leaves its department to join a new one,
provided that no member of the new department
will suffer from its presence. In some cases,
the coalition left is allowed to demand compen-
sation. For example, as pointed out in [6], a
player of a soccer team can join another club,
but its former club can receive a compensation
for the transfer. In the following, we will only
assume that members of a coalition can veto the
entrance of new agent in their coalition.

We can construct the preference graph of
the coalition formation process by building a
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(b) Transition model

Figure 1: Preference graph and transition model
for the same valuation function. The valuation
function has one absorbing state and also con-
tains a cycle (double boxed CS are absorbing CS).
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Figure 2: Transition model with two absorbing
CSs (double boxed CS are absorbing CS)

graph where each node is a CS, and there is
an arrow from node S to node T when ∃i ∈
N | T �i S. From the preferences graph,
we can construct the transition graph of the
coalition formation process by first removing
arrows that are vetoed, and by selecting only the
change of coalition that maximizes immediate
payoff.

Property 1. A CS s is individually stable iff
there is no outgoing edges in the transition
graph of the coalition formation.

The proof is obvious given the definition of the
transition graph. In Figure 1, we present an ex-
ample with three agents where the payoff of an
agent is shown below its label in a coalition. In
this example, no CS is core or Nash stable and
{{1, 2, 3}} is individually stable. However, if
the agents start from the bottom of the lattice
(where each agent forms a singleton coalition)
or any other CS in the mid level, the agents
will be trapped in a cycle: for each CS in the
mid-level, one agent benefits from leaving its
coalition in that CS to join the singleton agent.
We present a different scenario in Figure 2: the
CS {{0}{1, 2}} is Nash stable, core stable (and
hence individually stable), and the grand coali-
tion is individually stable. From any CS, it is
possible to reach an individually stable CS.

3 A Markov Chain model

A myopic rational agent will change coalitions
if it can immediately gain utility by doing so. In
this paper, we assume that the valuation is com-
mon knowledge. It is therefore possible to build
and analyze the transition model. The agents
will build a directed graph where the nodes rep-
resent the CSs, and edges are valid transitions
between two CSs. A transition from node Ss to
node Sd exists if there is an agent i such that:

• Sd � Ss, i.e., i is better off in Sd than in Ss.

• and this transition is not vetoed by the mem-
bers of the coalition joined by i (of course, i
is always allowed to form a singleton coali-
tion).

Incidentally, another agent j may also prefer Sd

over Ss (for example, when i moves to an ex-
isting coalition C, all agents in C may benefit).
Hence, a transition may be beneficial for more
than one agent. However, only the agent that
changes the coalition can induce the transition.
Even if it is beneficial for members of some
coalition C that agent i joins, C’s members can-
not force i to leave its current coalition to join
them (this action would be considered to be a
group action whereas in our model, we consider
only individual actions). In the case where two
agents i and j that were previously forming sin-
gleton coalitions now form a coalition of two
agents in the new CS, it may be difficult to in-
terpret which agent induced the transition: as it
is beneficial for both agents, an interpretation of
the transition can be that agent i joins the coali-
tion {j} or vice versa. Our interpretation is that
both agents are responsible for this transition.
Hence we make an exception for this case.

Since we assume that agents are myopically ra-
tional, for a given CS, each agent will only
choose the transition that yields the maximum
immediate payoff gain over all its possible legal
moves. For each state, there can then be at most
n outgoing edges, one for each of the n agents
(this happens when every agent prefer another
CS over the current one). This prunes the num-
ber of transitions from the preference graph to
the transition graph.

We now have a transition graph that models the
best action that each myopically rational agent
can take. If a CS is absorbing, there is no outgo-
ing edge in the graph from that CS. Otherwise,



there will be one outgoing edge for each agent
that wants to change from the current CS. Given
the assumption that only one agent at a time can
change coalition, we are now in position to es-
timate the probability of transition between any
two CSs. For each outgoing edge e from CS s,
the probability of making this transition is

• 1
o(s)

, where o(s) is the out degree of a
node, i.e., the number of agents that want
to change from s.

• 2
o(s)

when two agents i and j that are each
forming a singleton coalition merge to form
the two-agent coalition {i, j} and it is the
best choice for both i and j.

As the probability of a transition does not de-
pend upon the prior states of the population, the
Markov assumption is verified. We have now
completely defined a Markov chain. From the
above specified transition model, we can con-
struct the transition matrix P of the Markov
chain. The size of the matrix is B(n) ×B(n),
where n is the number of agents and B(n) is the
Bell function. The dimension of the matrix can
be quite large, however, the matrix is sparse: for
each row of the matrix, there can be only up to
n positive entries1.

To compute the expected utility, we study its
long term behavior. A Markov chain has tran-
sient and ergodic states: ergodic states are states
that the chain will keep coming back to, whereas
transient states are states that the chain will
eventually leave to never visit again. In the
long term, the chain will be in one of the er-
godic states. The ergodic states can form multi-
ple strongly connected components. If the size
of such a strongly connected component is one,
it means that the corresponding CS is individu-
ally stable (it may also be core or Nash stable,
but not necessarily). The study of the Markov
chain will tell us, given a probability distribu-
tion over the initial state, the probability to reach
each strongly connected component, and, once
reached, what is the proportion of time spent in
each ergodic states. Hence, the value of the ex-
pected utility is an average over the possible sta-
ble CSs, and the CSs that are parts of some cy-
cle.

1S can be represented by a lattice where each CS at a given level of
the lattice contains the same number of coalitions. For each level i in the
lattice, an agent has at most i actions: joining one of the existing i − 1
coalitions and forming a singleton coalition if it is not already forming
one. As there are n levels, the maximum number of transitions from a
CS is n.
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Table 1: Transition Matrices for Figure 1

In Table 1, we present the transition matrix for
the example of Figure 1. As agents change from
one CS to another, the chain moves from one
state to another. We are interested in the long-
term characteristics of the chain. Depending on
the property of the Markov chain, the agents
may be trapped in one of the strongly connected
components of the chain. Let E be the set of
ergodic states of the Markov chain. For each
component X ⊂ E , we compute the probabil-
ity pX to reach X , and then for each state s of
X , we compute the fraction of time ps spent in
s of X in the limit. If a CS s is at least individ-
ually stable, then the size of the corresponding
component is one, and ps = 1. For each ergodic
state s ∈ E , let X(s) be the component of s.
The expected utility E(vi) is then

E(vi) =
∑
s∈E

pX(s) · ps · v(i, s).

In Figure 3, we present an example issue from
the Agent Reputation and Trust testbed [7]. In
the testbed, agents provide appraisals about ar-
tifacts and compete for a pool of clients. To
improve their appraisals, agents can ask other
agents for appraisals for artifacts and reputa-
tion of other agents. We consider collusion of
agents: agents can form a coalition where mem-
bers provide their truthful appraisals, which
benefits all members. In a domain with 8 agents,
we computed the valuation function and the as-
sociated Markov chain for a particular instance,
and the outcome is presented in Figure 3. In that
instance, the Markov chain contains 4,140 CSs,
26,641 transitions, 62 stable CSs and 5 addi-
tional ergodic states which correspond to some
strongly connected components.

4 A Fair Payoff Distribution for
Myopic Rational Agent

It is possible that some coalition formation
problem do not have any stable CS. To operate
efficiently, we require that the agents remain in
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a CS. We propose that the agent forms a CS s?
that maximizes social welfare. However, s? may
not be stable, hence we want to share the utility
u? of s? that provides the agent an incentive to
stay in that CS.

The utility function, as a whole, tells how good
the agent is. A first candidate is to share u?

proportionally to the average utility over all the
CSs. This assumes that each CS is equally im-
portant and we believe it is not so. Another
candidate is to consider an average over the sta-
ble CSs. However, such stable CSs may not al-
ways exist, and even if they do, there may not
be a path allowing to reach a stable CS (as in
the example of Figure 1). If we assume any
CS is likely to be the initial CS, we can com-
pute an expected utility when the agents are my-
opic, rational, and when members of a coalition
can veto the entrance of new members. The ex-
pected utility is a great metric to determine, and
compare the strength of each agent in the coali-
tion formation process. We will show that the
payoff obtained is at least its expected utility,
which is a sufficient incentive for using our pro-
posed payoff distribution.

4.1 Choice of Final Payoff Distribution and
Corresponding CS

The expected value E(vi) we computed using
the Markov chain assumes that the initial CS
is chosen uniformly over S , in other word, it
is no biased by the initial CS2. E(vi) reflects
the utility that agent i receives on average when
all agents are myopically rational. We consider
that this value represents the strength of an agent

2Of course, if an application specifies a probability distribution over
the initial CSs (or requires to start from a specific CS such as the one
where each agent is in a singleton), we can still use our analysis to com-
pute the expected utility.

given the valuation function. Agents with high
E(vi) should obtain a larger payoff than agents
with lower E(vi).

To be used in a real world application, it is not
desirable to have agents continuously change
coalitions: agents should form a stable CS and
have no incentive to further change coalition. To
maximize the agents’ payoff, we choose as the
final CS s? one of the CSs that maximizes so-
cial welfare. This CS may not be a stable, but
it guarantees maximal total payoff to the agents.
As we view the expected utility value as a mea-
sure of the strength of each agent, we propose a
distribution of v(s?) to all agents proportional to
the expected payoff of the agents, i.e., we pre-
scribe the payoff to agent i to be

ui =
E(vi)∑

j∈N E(vj)
v(s?).

Note that this value is guaranteed to be at least
as good as E(vi), as shown by Property 2. So,
when agents share the payoff we propose, they
are guaranteed to have at least the expected
value when they were changing coalitions to
maximize their immediate reward, and in gen-
eral, they may get more. In addition, the pay-
off distribution is Pareto Optimal as we share
the value of a social welfare maximizing CS (if
an agent gets more utility, at least another agent
must lose some). We believe that these incen-
tives are sufficient for the agents to accept our
proposed value. Not only is the payoff distribu-
tion fair, as the share of utility the agents receive
is proportional to their expected utility over the
chain, but the outcome is also efficient as it max-
imizes social welfare.

Property 2. ui = E(vi)∑
j∈N E(vj)

v(s?) ≥ E(vi), i.e.,
the payoff of an agent is at least as good as the
expected utility that an agent would get on aver-
age if the agents are myopically rational.

Proof. Let E denote the set of the ergodic states
of a Markov chain. For player i, the expected
payoff is a weighted average over the ergodic
states: E(vi) =

∑
s∈E αsv(i, s), where αs is

the weight of the ergodic state s and we have∑
s∈E αs = 1. The transient states are only used

to determine the probability of leading to one of
the ergodic sets: the αs’s are determined by the
transient and the ergodic states (when there is a
cycle or a regular sub-chain).



∀s, v(s) ≤ v(s?)
∀s, αs · v(s) ≤ αs · v(s?) as αs ≥ 0∑
s∈E

αs · v(s) ≤
∑
s∈E

αs · v(s?)∑
s∈E

αs · v(s) ≤ v(s?) ·
∑

s∈E αs∑
s∈E

αs · v(s) ≤ v(s?), as
∑
s∈E

αs = 1∑
s∈E

αs

∑
j∈N

v(j, s) ≤ v(s?)∑
j∈N

∑
s∈E

αsv(j, s) ≤ v(s?)∑
j∈N E(vj) ≤ v(s?)

E(vi) ≤ E(vi)∑
j∈N E(vj)

v(s?)

as E(vi) ≥ 0.

Another important question is to determine
whether the payoff distribution vi is individu-
ally rational: is an agent guaranteed to get as
much as when an agent is forming a singleton
coalition? The minimum payoff an agent can
guarantee for itself is ri = mins∈S , {i}∈s v(i, s).
For example, consider the three-agent exam-
ple in Figure 4. The value obtained by i is
209
36

= 5.806, which is lower than 6, the mini-
mum payoff that agent i receives when it forms
a singleton coalition. This means that the pay-
off obtained by an agent in a coalition from our
protocol is less than the worst payoff obtained
by the agent when it forms a singleton coalition.
Although possible in the general case, this may
not be likely in practice: the worst case scenario
for an agent should be when it forms a singleton
coalition and when all other agents in the popu-
lation try to minimize its payoff. As shown by
Property 3, if the worst payoff for an agent oc-
curs when it is forming a singleton coalition, our
protocol is individual rational.

Property 3. If (∀s ∈ S ) v(i, s) ≥ ri =
mins∈S |{i}∈s, then ui ≥ ri, i.e., the payoff dis-
tribution ui is individually rational.

Proof. The hypothesis ∀s ∈ S , v(i, s) ≥ ri
means that for any CS, the valuation of agent i
is at least equal to i’s minimum valuation when
it forms a singleton coalition, i.e., the payoff
of an agent in a coalition with at least another
agent should be at least the minimum payoff the

{i j k}
7 2 2

{i j}
0 5

{k}
6

{i}
6

{j}
0

{k}
0

{i}
6

{j k}
1 1

{i k}
5 0

{j}
1

There is a cycle with 4 states, hence, the proportion spent
in each state is 1

4 . The value of the optimal CS is 11. The
minimum value of agent i when it is in a singleton coali-
tion is 6.

E(vi) = 1
4
(7 + 0 + 6 + 6) = 4.75

E(vj) = 1
4
(2 + 5 + 0 + 1) = 2

E(vk) = 1
4
(2 + 6 + 0 + 1) = 2.25

vi = 4.75
4.75+2+2.25

· 11 = 5.8056 < 6 = 216
36

vj = 2
4.75+2+2.25

· 11 = 2.4444 > 0
vk = 2.25

4.75+2+2.25
· 11 = 2.75 > 0

Figure 4: Case where the protocol is not indi-
vidual rational: i’s payoff is lower than ri, i’s
minimum payoff when it forms a singleton.

agent receives when it is on its own in a single-
ton coalition. Hence, we have

∑
s∈E αsv(i, s) ≥∑

s∈E αsri, and then E(vi) ≥ ri as
∑

s∈E αs =
1. From Proposition 2, we have ui ≥ E(vi) ≥
ri.

4.2 Computational Complexity of the cen-
tralized algorithm

We now consider the complexity of comput-
ing the payoff distribution if a centralized en-
tity was used. To compute the canonical form
of a stochastic matrix, we first need to com-
pute the communication classes of the matrix
and this operation is polynomial in the size of
the matrix (O(B(n)2)). Then, to determine the
canonical form of the matrix, we need to find
the permutation matrix, which can also be done
in quadratic time, hence in O(B(n)2). To com-
pute the limit behavior of the Markov chain, ei-
ther a matrix has to be inverted (which can be
done in O(B(n)3), or a linear system needs to
be solved (iterative methods can also be used
here). The complexity is then O(B(n)3). The
fact that the matrix is sparse should allow for
faster computation. The search of the optimal
CS is O(B(n)) if the brute force method is ap-
plied. As we consider valuation function that
depends on CS, we cannot use the faster algo-
rithm in [10]. The computation of the side-
payments and the execution of the payments has
linear complexity. Hence, the complexity of the
protocol is O(B(n)3).

4.3 Discussion on the payoff distribution

Our protocol uses global properties of the valu-
ation function and shares the utility of the op-
timal CS, s?, in a fair manner. The distribu-
tion of the valuation of s?, however, is not ac-
cording to the actual coalitions present in s?.



In other words, given the payoff function vi,
it is possible that, for each coalition C ∈ s?,∑

i∈C ui 6=
∑

i∈C v(i, s?).

This is different from the traditional assump-
tion in game theory where agents share the
value of their coalition. For some agents i,
v(i, c?) > ui, and these agents may not con-
sider the payoff distribution fair. The alternative
for these agents, however, is to reject the pro-
posed final CS and payoff distribution and con-
tinue to change coalitions to maximize imme-
diate reward. From Proposition 2, we see that
the expected utility from such a process may be
smaller than the value proposed by the protocol
and hence the agents have an incentive to accept
the guaranteed value while saving on the “cost”
of continual change. Hence, on one hand, we
want the entire population of agents to cooper-
ate and work together, which has a flavor of us-
ing the grand coalition. On the other hand, we
want to use the synergy between the agents, and
thus form a CS that maximizes social welfare.
The reward the agent obtain is designed to be
fair for all agents and reflects the performance
of the agents over all CSs.

To compute the expected utility of an agent,
we have assumed that the coalition formation
process starts in a CS picked randomly from a
uniform distribution. Of course, some proba-
bility distribution for the initial CSs will ben-
efit some agents in detriment of others. We
believe that the probability distribution of the
initial CS is part of the definition of the coali-
tion formation problem, and agents do not have
any control over it. It is from the entire def-
inition of the coalition formation problem that
we compute the expected utility, which we use
as a measure of the strength of an agent. If
it the distribution is not uniform, the probabil-
ity to reach the strongly connected components
will be different (some components may not be
reachable). In addition, the search of the CS that
maximizes social welfare should be performed
on the subset of CSs that are reachable from the
set of possible initial CSs. Minor modification
of our computations are needed to address these
changes.

5 Conclusion, current and future
work

Myopic rational agents who receive a private
payoff that depends on the CS may never reach
an agreement on the CS to be formed. It may be

possible that for each CS, at least one agent has
an incentive to change coalition. We designed a
protocol that computes a payoff distribution so
that agents are guaranteed to have at least the ex-
pected utility from a process where each agent
would change coalition to maximize its imme-
diate reward. The protocol assumes that 1) the
valuation function provides a payoff for each
individual agent given a CS and 2) the agents
are myopically rational. The payoff function we
propose is based on the value of a social wel-
fare maximizing CS and on the expected util-
ity of the agents if they try to change coalitions
to maximize their immediate reward. Follow-
ing our protocol, the agents form the optimal
CS, which makes the multiagent system effi-
cient from the viewpoint of a system designer.
The valuation of the optimal CS is shared pro-
portionally to the expected utility of the agents.
We argue that this is a fair distribution as the
payoff obtained by an agent reflects the behav-
ior of the agents over the entire space of CSs,
i.e., it is a global property of the valuation func-
tion. When the agents follow our protocol, they
are guaranteed to have a payoff which is at least
their expected value if all agents try to maximize
their immediate reward.

The drawback of our approach is its computa-
tional cost: the agents needs to build a Markov
chain where the number of states is equal to
the number of the CSs, which grows even faster
than exponentially in the number of agents. Al-
though the corresponding transition matrix is
sparse, this method may not be suitable for large
number of agents (10 and more). The agents can
approximate the expected value by simulating
the Markov chain. In that case, they only need
to be able to evaluate the best coalitional move
from a given CS.

Because of the computational cost, we are
studying algorithms to approximate the compu-
tation of the Markov chain. By sampling the
chain, we can obtain rapidly good estimate of
the expected utility of the agents.

Another line of research is to look for a rep-
resentation that can compactly represent much
more compactly the transition graph. For ex-
ample, if we represent the game using the idea
of a marginal contribution network [8], it is
unclear whether we can represent the Markov
game much more compactly.

When the payoff of an agent is its marginal con-
tribution, the expected payoff has some flavor
of the Shapley value. A first study would be to



compare our value with existing variants of the
Shapley value (see some references in [9]). An-
other interesting line of research is to come back
to the traditional coalitional games where the
value of a coalition only depends on the mem-
bers of that coalition. In the coalition formation
process, we can consider that an agent gets its
marginal contribution. Then, an agent has an
incentive to change coalition when its marginal
contribution improves. This would be a more
realistic assumption on the formation of coali-
tions. We will need to check whether we can al-
ways solve the Markov chain and if so, we will
need to study the properties of the payoffs.
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