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MULTIVARIATE ADAPTIVE WARPED KERNEL ESTIMATION
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Abstract. We deal with the problem of nonparametric estimation of a multivariate regression
function without any assumption on the compacity of the support of the random design. To
tackle the problem, we propose to extend a ”warping” device to the multivariate framework.
An adaptive warped kernel estimator is first defined in the case of known design distribution
and proved to be optimal in the oracle sense. Then, a general procedure is carried out: the
marginal distributions of the design are estimated by the empirical cumulative distribution
functions, and the dependence structure is built using a kernel estimation of the copula density.
The copula density estimator is also studied and proved to be optimal in the oracle and in the
minimax sense. The plug-in of this estimator in the regression function estimator provides a
fully data-driven procedure. A numerical study illustrates the theoretical results.
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1. Introduction

Let (X, Y ) be a couple of random variables taking values on Rd × R such that

Y = r(X) + ε, (1)

with ε a centered real random variable with finite variance independent of X = (X1, . . . , Xd).
Assume that we have an independent identically distributed (i.i.d. in the sequel) sample
(Xi, Yi)i=1...n distributed as (X, Y ). The subject of the paper is the estimation of the mul-
tivariate regression function r(x) = E[Y |X = x] on a subset A ⊂ Rd, not necessarily bounded
with a warping device described below, that also requires the estimation of the dependence
structure between the coordinates of X.

Regression estimation is a classical problem in statistics, addressed in a significant number of
research works frequently based on non-parametric methods such as kernel estimators (Nadaraya,
1964; Watson, 1964), local polynomial estimators (Fan and Gijbels, 1996), orthogonal series or
spline estimators (Golubev and Nussbaum, 1992; Antoniadis et al., 1997; Efromovich, 1999;
Baraud, 2002) and nearest neighbour-type estimators (Stute, 1984; Guyader and Hengartner,
2013). Among kernel methods, the most popular estimator is the well-known Nadaraya-Watson
estimator, defined for model (1) by

r̂NW (x) =

∑n
i=1 YiKh(x−Xi)∑n
i=1Kh(x−Xi)

, (2)
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where h = t(h1, . . . , hd) is the so-called bandwidth of the kernel K, Kh(x) =
K1,h1(x1)K2,h2(x2) . . .Kd,hd(xd), with Kl,hl(x) = Kl(x/hl)/hl for hl > 0, and Kl : R → R such
that

∫
RKl(x)dx = 1, l = 1, . . . , d.

A commonly shared assumption for regression analysis is that the support of X is a compact
subset of Rd (Györfi et al., 2002; Guyader and Hengartner, 2013; Furer and Kohler, 2015). It
could be very restrictive in some situations such as for example the estimation of the regression
function on the level sets of the cumulative distribution function (c.d.f.) (Di Bernardino et al.,
2015). Stone (1982) first conjecture that this assumption could be weakened. To our knowledge,
Kohler et al. (2009) are the first who propose theoretical results with no boundedness assumption
on the support of the design. The price to pay is to make a moment assumption on the design
X (see Assumption (A4) in Kohler et al. 2009).

So far, “warped” estimators have been developed (Yang, 1981; Kerkyacharian and Picard,
2004) and require very few assumptions on the support of X. If we assume, in a sake of clar-
ity, that d = 1, the warped method is based on the introduction of the auxiliary function
g = r ◦ F−1

X , where FX : x ∈ R 7→ P(X ≤ x) is the c.d.f. of the design X. First, an estimator ĝ

is proposed for g, and then, the regression r is estimated using ĝ ◦ F̂ , where F̂ is the empirical
c.d.f. of X. This strategy has already been applied in the regression setting using projection
methods (Kerkyacharian and Picard, 2004; Pham Ngoc, 2009; Chagny, 2013) but also for other
estimation problems (conditional density estimation, hazard rate estimation based on randomly
right-censored data, and c.d.f. estimation from current-status data, see e.g. Chesneau and
Willer 2015; Chagny 2015). If the warping device permits to weaken the assumptions on the
design support, the warped estimator also depend on a unique bandwidth, for d = 1, whereas
the ratio form of the kernel estimator (2) requires the selection of two smoothing parameters
(one for the numerator, one for the denominator). In return, the c.d.f. FX of X has to be
estimated, but this can simply be done using its empirical counterpart. This does not deterio-
rate the optimal convergence rate, since the empirical c.d.f. converges at a parametric rate. A
data-driven selection of the unique bandwidth involved in the resulting warped kernel estima-
tor, in the spirit of Goldenshluger and Lepski (2011) leads to nonasymptotic risk bounds when
d = 1 (Chagny, 2015). To our knowledge, this adaptive estimation has never been carried out
for a ratio regression estimator, the only reference on this subject being Ngoc Bien (2014) who
assumes that the design X has a known uniform distribution.

Nevertheless, the extension of the warped strategy to the multivariate framework is not trivial,
and we propose to deal with this problem here. The key question is to take into account
the dependence between the multivariate components of each Xi. We propose to tackle this
problem by using copulas, that permit to describe the dependence structure between random
variables (Sklar, 1959; Jaworski et al., 2010). The price to pay is the additional estimation of
the copula density of the design : the complete strategy requires the plug-in of such estimate in
the final warped regression estimator. The results are obtained for random design distribution
with possibly unbounded support, like in Kohler et al. (2009). However, we will see that the
assumptions are not exactly the same : in particular, the warping device permits to avoid
the moment conditions on X. Moreover, our results takes place in the field of nonasymptotic
adaptive estimation, and the bandwidth of the kernel estimator we propose does not depend on
the smoothness index of the target function, contrary to the one of Kohler et al. (2009).

The paper is thus organized as follows. We explain in Section 2 how to extend the Yang
(1981) estimator to the multivariate design framework. For sake of clarity, we first concentrate
on the simple toy case of known design distribution (Section 3): under mild assumptions, we
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derive (i) a non-asymptotic oracle type inequality for an integrated criterion for a warped kernel
estimator with a data-driven bandwidth selected with a Lepski-type method, and (ii) an optimal
convergence rate over possibly anisotropic functional classes (Neumann, 2000; Kerkyacharian
et al., 2001; Bertin, 2005). Then, a kernel copula estimate that also adapts automatically to
the unknown smoothness of the design is exhibited and studied in Section 4. An oracle type
inequality is also proved. Finally, warped regression estimation with unknown copula density
is the subject of Section 5: as expected, the risk of the final estimate depends on the risks of
both the copula estimator and the regression estimator with known design density. A simulation
study is carried out in Section 6. Concluding remarks as well as perspectives for future works
are given in Section 7 and all the proofs are gathered in Section 8. Throughout the paper, we
pay a special attention to compare assumptions, methodology and results to the one of Kohler
et al. (2009).

2. Multivariate warping strategy

If d = 1, the warping device is based on the transformation FX(Xi) of the dataXi, i = 1, . . . , n.
For d > 1, a natural extension is to use Fl(Xl,i), for l = 1, . . . , d and i = 1, . . . , n, where Fl is

the marginal c.d.f. of Xl. Let us introduce F̃X : x = (xl)l=1,...,d ∈ Rd 7→ (F1(x1), . . . , Fd(xd)).

Assume that F̃−1
X : u ∈ [0, 1]d 7→ (F−1

1 (u1), . . . , F−1
d (ud)) exists, and let

g = r ◦ F̃−1
X ,

in such a way that r = g◦F̃X. If we consider that the marginal variables Xl of X are independent,
the estimator of Yang (1981) can immediately be adapted to the multivariate setting : we set

ĝ⊥ : u 7→
n∑
i=1

YiKh(u− F̃X(Xi)) (3)

to estimate g, and it remains to compound by the empirical counterpart of F̃X to estimate r.
However, a dependence between the coordinates Xl,i of Xi generally appears. The usual model
for this dependence using a copula C and the c.d.f FX of X can be written

FX(x) = C(F1(x1), . . . , Fd(xd)) = C(F̃X(x)). (4)

Denoting the copula density by c, we have

c(u) =
∂dC

∂u1 . . . ∂ud
(u), u ∈ [0; 1]d,

and the density fX of X can be expressed as

fX(x) = c(F̃X(x))

d∏
l=1

fl(xl), x = (xl)l=1,...,d ∈ Rd,

where (fl)l=1,...,d are the marginal densities of X = (X1, . . . , Xd). It can then be proved that the
previous estimator (3) estimates cg and not g (see the computation (8) below). As a consequence,
we propose to set, as an estimator for g,

ĝ
h,b,F̂

(u) =
1

nĉb(u)

n∑
i=1

YiKh(u− ̂̃FX(Xi)), u ∈ F̃X(A),
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where ĉb is a kernel estimator of the copula density that will be defined later (see Section 4).

We denote by
̂̃
FX : Rd → [0; 1]d the empirical multivariate marginal c.d.f.:

̂̃
FX = (

̂̃
FX,1, . . . ,

̂̃
FX,d),

̂̃
FX,l(xl) =

1

n

n∑
i=1

1Xl,i≤xl , xl ∈ R, l ∈ {1, . . . , d}, (5)

and finally set

r̂
h,b,F̂

(x) = ĝ
h,b,F̂

◦ ̂̃FX(x) =
1

nĉb(
̂̃
FX(x))

n∑
i=1

YiKh(
̂̃
FX(x)− ̂̃FX(Xi)), x ∈ A, (6)

to rebuild our target function r from the data. In the sequel, we denote by ‖ ·‖Lp(Θ) the classical
Lp-norm on a set Θ.

3. The simple case of known design distribution

3.1. Collection of kernel estimators. For sake of clarity, we first consider the regression
estimation problem with a known design distribution. In this section, the copula density c and

the marginal c.d.f. F̃X are consequently considered to be known. Thus, (6) becomes

r̂h(x) = ĝh ◦ F̃X(x) =
1

nc(F̃X(x))

n∑
i=1

YiKh(F̃X(x)− F̃X(Xi)), x ∈ A, (7)

where we denote ĝh(u) =
∑n

i=1 YiKh(u − F̃X(Xi))/(nc(u)), u ∈ [0, 1]d. The following compu-

tation enlights the definitions (6) and (7) above. For any u ∈ F̃X(A),

E[ĝh(u)] = E

[
Y Kh(u− F̃X(X))

c(u)

]
,

= E

[
r(X)Kh(u− F̃X(X))

c(u)

]
,

=
1

c(u)

∫
Rd
r(x)Kh(u− F̃X(x))c(F̃X(x))

d∏
l=1

fl(xl)dx,

=
1

c(u)

∫
[0,1]d

g(u′)Kh(u− u′)c(u′)du′,

=
Kh ? (cg1[0,1]d)

c
(u). (8)

where ? is the convolution product. For small h, the convolution product Kh ? (cg)1[0,1]d is
supposed to be closed to cg : this justifies that ĝh is suitable to estimate g, and r̂h suits well to
recover the target r.

3.2. Risk of the estimator with fixed bandwidth. As in Kohler et al. (2009), we consider a
global weighted integrated risk criterion, to study the properties of our estimator. Let ‖.‖fX be
the classical L2-norm on the space of squared integrable functions with respect to the Lebesgue
measure weighted by fX on A: for any function t in this space,

‖t‖2fX =

∫
A
t2(x)fX(x)dx =

∫
F̃X(A)

t2 ◦ F̃−1
X (u)c(u)du.



MULTIVARIATE ADAPTIVE WARPED KERNEL ESTIMATION 5

The mean integrated squared risk of the estimator r̂h can thus be written

E[‖r̂h − r‖2fX ] = E

[∫
A

(r̂h(x)− r(x))2 fX(x)dx

]
= E

[∫
F̃X(A)

(ĝh(u)− g(u))2 c(u)du

]
and, using a classical bias-variance decomposition, we have E[‖r̂h−r‖2fX ] = B(h)+V (h), where

B(h) =

∫
F̃X(A)

c(u)

(
Kh ? (cg1[0,1]d)

c
(u)− g(u)

)2

du,

V (h) =

∫
F̃X(A)

c(u)

(
ĝh(u)−

Kh ? (cg1[0,1]d)

c
(u)

)2

du.

(9)

To obtain upper-bounds for these two terms, we introduce the following assumptions.

(Hcg,β): The function (cg)1
F̃X(A)

belongs to an anisotropic Nikol’skĭı ball N2(β, L), with

L > 0 and β = (β1, . . . , βd) ∈ (R∗+)d (Nikol′skĭı, 1975). This is the set of functions

f : Rd 7→ R such that f admits derivatives with respect to xl up to the order bβlc
(where bβlc denotes the largest integer less than βl), and

(i) for all l ∈ {1, . . . , d}, ‖∂bβlcf/(∂xl)bβlc‖L2(Rd) ≤ L,

(ii) for all l ∈ {1, . . . , d} and t ∈ R,∫
Rd

∣∣∣∣∣ ∂bβlcf(∂xl)bβlc
(x1, . . . , xl−1, xl + t, xl+1, . . . , xd)−

∂bβlcf

(∂xl)bβlc
(x)

∣∣∣∣∣
2

dx ≤ L2|t|2(βl−bβlc).

(HK,`): The kernel K is of order ` ∈ (R+)d, i.e.

(i) ∀l ∈ {1, . . . , d}, ∀k ∈ {1, . . . , `l},
∫
Rd x

k
lK(x)dx = 0.

(ii) ∀l ∈ {1, . . . , d},
∫
Rd(1 + xl)

`lK(x)dx <∞.

(Hc,low): The copula density is lower bounded: ∃mc > 0, ∀u ∈ F̃X(A), c(u) ≥ mc.

Assumptions (Hcg,β) and (HK,`) are classical for nonparametric multivariate kernel estimation
(Goldenshluger and Lepski, 2011; Comte and Lacour, 2013) and permit to control the bias
term of the risk B(h). Assumption (HK,`) is not restrictive since a wide range of kernels could
be chosen, and an assumption on the support and the bounds of the kernel is also necessary
for Kohler et al. (2009) (see equation (7) of their paper). In (Hcg,β), the index β measures
the smoothness of the function cg, and allows us to deal with possibly anisotropic regression
functions (different smoothness according to the different direction can be considered), like
assumption (A2) in Kohler et al. (2009). However, since they consider a pointwise criterion
(local bandwidth choice), they rather choose Hölder spaces instead of Nikol’skĭı spaces, which
are designed for integrated risks (like our L2−risk, see e.g. Tsybakov 2009) and global bandwidth
selection purpose. A second difference lies in the use of this assumption. Although we assume
that (Hcg,β) holds in the sequel, we will not assume the smoothness index β to be known. Its
value is not required to compute our selected bandwidth (see Section 3.3), while Kohler et al.
(2009) use it to choose the bandwidth of their kernel estimate (see equation (8) in their paper).
The difficulty of (Hcg,β) is that this smoothness assumption is made directly on cg, and not
on the targeted function r. It is for example satisfied if the two functions c and g separately
belong to N2(β, L′) (L′ > 0), for β such that each βl ≤ 1, l ∈ {1, . . . , d}. The fact that the
assumption is carried by the auxiliary function g and not r is classical in warped methods
(Pham Ngoc, 2009; Chagny, 2015). Another solution is to consider weighted spaces: lots of
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details can be found in Kerkyacharian and Picard (2004). Assumption (Hc,low) is specific to
the warped method, which makes appear the copula density in the formula of the estimator.
It is replaced by other assumptions in Kohler et al. (2009), see comments following Corollary
3.2. On [0, 1]d (case of A = Rd), it is verified for example for the Farlie-Gumbel-Morgenstern
copula, for the Ali-Mikhail-Hacq copula with a parameter θ ∈] − 1, 1[ (Balakrishnan and Lai,
2009), or for the copula density of a design with independent marginals. For other copulas, it is
possible to restrict the estimation set A to exclude problematic points : for example, for d = 2,
the points (0, 1), (0, 0) and (1, 0) are generally the ones which makes (Hc,low) not true. The

choice A =]ε,+∞[d, for a fixed ε > 0, (although still uncompact) sometimes permit to avoid the
problem, and thus to consider other copula densities (the example A ⊂ (R+)d is related to the
application of our method to level set estimation, see Di Bernardino et al. 2015). For example,
for the Gumbel Type I bivariate with a parameter θ = 1 or the Frank copula, it is possible to
choose A =]ε,+∞[2 for the case of nonnegative variables (Xi)i. The proof of the following result
can be found at Section 8.1.

Proposition 3.1. Assume (Hc,low), (Hcg,β) and (HK,`) for an index ` ∈ Rd+ such that `j ≥ bβjc.
Then,

E[‖r̂h − r‖2fX ] ≤ 1

mc

(
L

d∑
l=1

h2βl
l + ‖K‖2L2(Rd)E[Y 2

1 ]
1

nh1 . . . hd

)
.

This is a nonasymptotic bias-variance upper bound for the quadratic risk. The first term
of the right-hand-side of the inequality of Proposition 3.1 is an upper-bound for the bias term
B(h). The second one bounds the variance term. Another choice would have been to kept B(h)
in the inequality (in this case, Assumptions (Hcg,β) and (HK,`) are not required). Our choice
permits to immediately deduce the following convergence rate, by computing the bandwidth that
minimizes the right-hand-side of the inequality of Proposition 3.1, over all possible bandwidths
h ∈ (R∗+)d (see a brief proof in Section 8.2).

Corollary 3.1. Under the same assumptions as Proposition 3.1, there exists a bandwidth h(β)
such that

E[‖r̂h(β) − r‖2fX ] = O

(
n
− 2β̄

2β̄+d

)
,

where β̄ is the harmonic mean of β1, . . . , βd: dβ̄
−1 = β−1

1 + · · ·+ β−1
d .

Thus the usual convergence rate in multivariate nonparametric estimation can be achieved by
our estimator, provided that its bandwidth is carefully chosen. Here, the bandwidth h(β) that
minimizes the upper-bound of the inequality of Proposition 3.1 depends on the smoothness index
β of the unknown function cg. This smoothness index is also unknown a priori. The challenge
of adaptive estimation is to propose a data-driven choice that also leads to an estimator with
the same optimal convergence rate.

3.3. Estimator selection. Let Hn ⊂ (R∗+)d a finite bandwidth collection. We set

B̂(h) = max
h′∈Hn


∥∥∥∥∥Kh ? (cĝh′1

F̃X(A)
)

c
◦ F̃X − r̂h′,c

∥∥∥∥∥
2

fX

− V̂ (h′)


+

(10)

with

V̂ (h) = κ

∑n
i=1 Y

2
i

m̂c

1

nh1 . . . hd
, (11)



MULTIVARIATE ADAPTIVE WARPED KERNEL ESTIMATION 7

where κ > 0 is a tuning constant and m̂c an estimator for mc. We define

ĥ = arg min
h∈Hn

{B̂(h) + V̂ (h)}, (12)

and the final estimator r̂
ĥ
. The criterion (12), inspired from Goldenshluger and Lepski (2011),

is known to mimic the optimal “bias-variance” trade-off that has to be realized in a data-driven
way. A short heuristic about the definition of the construction of the criterion could be found at
the beginning of Section 8.3. It is a global criterion : we select the same bandwidth, whatever
the estimation point is. This is one difference with Kohler et al. (2009), who propose local
choices. Another difference is that our choice does not depend on the smoothness index of the
target function.

We also introduce h̃ = arg minh∈Hn{B̃(h) + Ṽ (h)} with

B̃(h) = max
h′∈Hn


∥∥∥∥∥Kh ? (cĝh′1

F̃X(A)
)

c
◦ F̃X − r̂h′

∥∥∥∥∥
2

fX

− Ṽ (h′)


+

and

Ṽ (h) = κ0
E[Y 2

1 ]

mc

1

nh1 . . . hd
, κ0 > 0.

We start with the study of the estimator r̂
h̃,c

. The collection Hn is chosen such that

∃α0 > 0, κ1 > 0,
∑
h∈Hn

1

h1 · · ·hd
≤ κ1n

α0 (13)

and ∀κ1 > 0, ∃C0 > 0,
∑
h∈Hn

exp

(
− κ1

h1 · · ·hd

)
≤ C0.

These assumptions are very common to derive such estimators (Comte and Lacour, 2013;

Chagny, 2015). For example, Hn = {k−1
1 · · · k

−1
d , kl ∈ {1, . . . , bn1/rc}, l = 1, . . . , d} satisfies

them with α0 = 2d/r.

We also introduce additional assumptions:

(Hε): The noise ε is p+ 2 integrable, for some p > 2α0: E[|ε|2+p] <∞.

(Hc,high): The copula density is upper-bounded over F̃X(A): ∃MC > 0, ∀u ∈ F̃X(A), c(u) ≤
MC .

The assumption (Hc,high) is quite restrictive for copula density estimation if A = Rd (ie.

F̃X(A) = [0, 1]d). However, it is also required for copula density estimation (see Section 4),
and it is classical for adaptive density estimation purpose. Moreover, the same upper-bound
is assumed in Autin et al. (2010) on [0, 1]d. Assumption (Hc,high) is for example satisfied by
the Frank copula density, the Farlie-Gumbel-Morgenstern copula, the copula density of a design
with independent marginals... Assumption (Hε) is classical in adaptive regression estimation,
see e.g. Baraud (2002) and Chagny (2015). It is then possible to set the following upper bound,
proved Section 8.3.
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Theorem 3.1. Assume that Hn satisfies (13) and assume also (Hε), (Hc,low) and (Hc,high).
Then there exist two constants c1 et c2 such that

E[‖r̂
h̃
− r‖2fX ] ≤ c1 min

h∈Hn

{
1 + ‖K‖2

L1([0,1]d)

mc

∥∥∥Kh ? (cg1
F̃X(A)

)− cg
∥∥∥2

L2(F̃X(A))

+‖K‖2L2(Rd)E[Y 2
1 ]

1

nmch1 . . . hd

}
+
c2

n
.

This result is an oracle-type inequality which assesses that the selected estimator performs
as well as the best estimator of the collection (r̂h)h∈Hn , up to multiplicative constants and a
remainder term: it achieves the best bias-variance trade-off (see Proposition 3.1). No smoothness
assumption is required to establish the result. If we add Assumptions (Hcg,β) and (HK,`) (for an

index ` ∈ Rd+ such that `j ≥ bβjc, j = 1, . . . , d) to the assumptions of Theorem 3.1, we obtain
the same convergence rate as the one of Corollary 3.1 for the estimator r̂

h̃
.

Corollary 3.2. Under the same assumptions as Theorem 3.1, if we also assume that (Hcg,β)

and (HK,`) are fulfilled for an index ` ∈ Rd+ such that `j ≥ bβjc, we have

E[‖r̂
h̃
− r‖2fX ] = O

(
n
− 2β̄

2β̄+d

)
,

where β̄ is the harmonic mean of β1, . . . , βd: dβ̄
−1 = β−1

1 + · · ·+ β−1
d .

This result can be compared to Theorem 1 of Kohler et al. (2009): our estimate achieves the
same convergence rate as their kernel estimate. As already indicated, the smoothness assump-
tions for the two results are similar. The main difference is that we do not need to know the
smoothness index of the targeted function to compute our estimator, while they have to. This
is what makes our result adaptive. The other assumptions to establish the respective results
are specific to the chosen methodology : our assumptions (Hc,low) and (Hc,high) on the copula
density are specific to the extension of the warping device to the multivariate setting, and permit
to deal with unbounded support for the design. They are replaced by a moment assumption on
the design, and a boundness assumption on the regression function in Kohler et al. (2009).

Notice that Theorem 3.1 and Corollary 3.2 cover the case of the estimator r̂
h̃
, whose bandwidth

h̃ is defined with a variance term that involves the unknown quantities E[Y 2
1 ] and mc. We choose

not to present the final results : to switch from r̂
h̃

to r̂
ĥ

it remains to replace the unknown

expectation E[Y 2
1 ] by its empirical counterpart 1

n

∑n
i=1 Y

2
i and to change Ṽ (h) in V̂ (h). This

is quite classical, and can be done for example like in Theorem 3.4 p.465 of Brunel and Comte
(2005). It is more unusual to replace the lower bound for the copula mc by an estimate m̂c :
this can nevertheless be done thanks to cumbersome computations, following for example the
proof of Theorem 4.1 of Chagny et al. (2017). The oracle-type inequality that will be obtained
is exactly the same as the one of Theorem 3.1, but will be valid only for a sample size n large
enough. The convergence rate of Corollary 3.2 is unchanged. We do not go into details, to avoid
burdening the text by adding two similar results and to avoid lengthening the proofs.

4. Copula density estimation

The estimator defined by (6) involves an estimator of the copula density c that was assumed

to be known in the previous section, on F̃X(A). This section is devoted to the question of copula
density estimation. Since it is an interesting question by itself, to be more general we perform

the estimation on [0, 1]d and not on F̃X(A), like in other papers that deal with copula density
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estimation (Fermanian, 2005; Autin et al., 2010). However the results are the same if we restrict

the risk, all Lp−norms involved in the method and the validity of the assumptions to F̃X(A).
An adaptive estimator based on wavelets is defined in Autin et al. (2010) but, to be consistent

with the previous kernel regression estimator already chosen, we propose to use the kernel
estimator defined by Fermanian (2005). Consider b = t(b1, . . . , bd) ∈ (R∗+)d a multivariate
bandwidth, a kernel Wb(u) = W1,b1(u1)W2,b2(u2) . . .Wd,bd(ud), with Wl,bl(u) = Wl(u/bl)/bl for

bl > 0, and Wl : R→ R such that
∫ 1

0 Wl(u)du = 1, l ∈ {1, . . . , d}. Let us introduce

ĉb(u) =
1

n

n∑
i=1

Wb(u− ̂̃FX(Xi)), u ∈ [0, 1]. (14)

The estimator is very close to the classical kernel density estimator, up to the warping of the

data through the empirical c.d.f. Remark that if we replace the estimator
̂̃
FX in (14) by its

target F̃X, like in the previous section, then ĉb(u) is the density estimator of the random vector
(F1(X1), . . . , Fd(Xd)), with uniformly distributed marginal distributions. We easily obtain the
following upper-bound for the risk of the copula density estimator when the marginal distribu-
tions are known:

E
[
‖ĉb − c‖2L2([0,1]d)

]
≤ ‖Wb ? c− c‖2L2([0,1]d) +

‖W‖2
L2([0,1]d)

nb1 · · · bd
. (15)

The results of Fermanian (2005) are asymptotic. Since our goal is to prove nonasymptotic

adaptive upper-bounds, the Goldenshluger-Lepski method allows us to select a bandwidth b̂
among a finite collection Bn ⊂ (R∗+)d. The collection Bn should satisfy

∃α1 > 0, κ2 > 0,
∑
b∈Bn

1

b1 · · · bd
≤ κ2n

α1 , (16)

and one of the following constraints

|Bn| ≤ ln(n), or ∀κ3 > 0, ∃C0 > 0,
∑
b∈Bn

exp

(
− κ3

b1 · · · bd

)
≤ C0, (17)

where |Bn| is the cardinal of the set Bn. These assumptions are similar to (13). Let

B̂c(b) = max
b′∈Bn

{
‖Wb ? ĉb′ − ĉb′‖2L2([0,1]d) − Vc(b

′)
}

+
(18)

with

Vc(b) = κc
‖W‖2

L1([0,1]d)
‖W‖2

L2([0,1]d)

nb1 · · · bd
, κc > 0, (19)

like above for regression estimation, B̂c stands for an empirical counterpart of the bias term of
the risk, and Vc has the same order as the variance term (compare to (15)).

An oracle-type inequality could be derived for the final copula density estimator ĉ
b̂
, with

b̂ = arg minb∈Bn{B̂c(b) + Vc(b)}.

Proposition 4.1. Assume (Hc,high) (on [0, 1]d), and assume that the marginal c.d.f. of the
vector X are known. Then, there exist some nonnegative constants c1 and c2 such that

E
[∥∥ĉ

b̂
− c
∥∥2

L2([0,1]d)

]
≤ c1 min

b∈Bn

{
‖Wb ? c− c‖2L2([0,1]d) +

‖W‖2
L2([0,1]d)

nb1 · · · bd

}
+
c2 ln(n)

n
.
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Note that the L1-norm of the kernel does not appear in (15), but only in the variance term of
the Goldenshluger-Lepski method, namely (19), for technical reasons (more details on the proof
in Section 8.4 or in Section 3.4.2 of Comte 2015).

The logarithmic term in the upper-bound of the inequality can be avoided by assuming the

second part of (17), instead of |Bn| ≤ ln(n). Like the tuning constant κ in V̂ (see (11)), the
constant κc in (19) has to be calibrated. The bound that we obtain in the proof is unfortunately
not accurate (this is a consequence of numerous technical upper bound, based on a concentration
inequality), and cannot be used for practical purpose. The tuning of this parameter will be
discussed below (see Section 6.2). Keep in mind for the following section that the same oracle

inequality holds for an integrated risk on a smaller set than [0, 1]d, e.g. F̃X(A). In this case,
it is enough to assume an upper-bound on the copula density on this set. Proposition 4.1 also
permits to derive an adaptive convergence rate for our copula density estimator (even if its not
the initial goal of the paper) : if the copula density c belongs to a Nikol’skĭı ball N2(α,L′) for
L′ > 0 and α = t(α1, . . . , αd) ∈ (R∗+)d, and if the kernel W is of order ` ∈ Rd+ such that `j ≥ bαjc
for j = 1, . . . , d, (see Assumption (HK,`)), then ĉ

b̂
automatically achieves the convergence rate

n−
2ᾱ

2ᾱ+d where ᾱ is the harmonic mean of the components of α. Following Autin et al. (2010),
this is also the lower bound for the minimax risk, and thus our estimator is minimax optimal
(with no additional logarithm factor, comparing to Corollary 4.1 of Autin et al. 2010).

5. Plug-in regression estimate

Now we consider the general case of unknown copula density c to estimate the regression
function r. The idea is to plug the kernel estimator ĉb (defined by (14)) of c in (7) for a well-
chosen bandwidth b. We consider the case of fixed bandwidth, both for the regression and the
copula estimators, this paves the way of future works about the fully data-driven estimator (with
two selected bandwidth, see the concluding remarks below). Let us plug in r̂h the estimator ĉb
: for any b,h > 0, under Assumption (Hc,low),

r̂h,b(x) =
1

nĉb(F̃X(x))

n∑
i=1

YiKh(F̃X(x)− F̃X(Xi))1ĉb(F̃X(x))≥mc/2, x ∈ A. (20)

This means that r̂h,b(x) = ((c × ĝh)/ĉb) ◦ F̃X(x)1
ĉb(F̃X(x))≥mc/2. To make the estimator fully

computable, one needs to know the lower bound mc of the copula: in practice it is possible to
replace it by a lower bound of an estimator. As explained previously, to avoid making the proofs
more technical and cumbersome, we choose to not consider the problem from a theoretical point
of view.

We obtain the following upper-bound for our ratio estimator. Its risk has the order of mag-
nitude of the worst risk between the risk of r̂h and ĉb.

Proposition 5.1. Assume (Hc,low) and (Hc,high). Then,

E[‖r̂h,b − r‖2fX ] ≤ 4Mc

m2
c

{ 2McE[‖r̂h − r‖2fX ]

+(2‖g‖2
L∞(F̃X(A))

+ ‖g‖2
L2(F̃X(A))

)E
[
‖ĉb − c‖2F̃X(A)

]}
.

The result is not surprising, and we cannot expect to obtain a sharper bound for the plug-in
estimator. We thus have to add smoothness assumptions both on the regression function and
on the copula density to derive the convergence rate of the plug-in estimator.
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Finally, to obtain the fully computable estimator, one needs to replace the c.d.f. F̃X by its
empirical counterpart introduced in (5). The switch is not a problem: the idea is that the em-
pirical c.d.f. converges at a parametric rate, that does not deteriorate our slower nonparametric
decrease of the risk. The multivariate setting does not change anything for the substitution
compare to the univariate case. The scheme of the switching can now be considered as clas-
sical, since it has been widely detailed both by Kerkyacharian and Picard (2004) and Chagny
(2015), but it significantly increases the length of the proofs. That is why, following many works
about warped estimation (Chesneau and Willer 2015; Pham Ngoc 2009...), we do not give all
the details.

6. Simulation study

In this section we illustrate the performance of our estimator with a simulation study, carried
out with the free software R. The regression function that we consider is r(x1, x2) = 1/

√
x1x2

(for (x1, x2) ∈ R+ × R+, see Figure 1).

x
y

r(x,y)

Figure 1. Regression function: r(x1, x2) = 1/
√
x1x2 for (x1, x2) ∈ R+ × R+.

To check the assumptions of the theoretical results, the design (X1, X2) is generated using
a Frank Copula with parameter 10 and exponential marginals with mean 1 (see Figure 2).
The support of the design distribution is thus unbounded, which is possible with our method,
according to the theory. The case of bounded support for the design distribution is briefly
investigated below, Section 6.3. The response variable is given by Y = r(X1, X2) + ε with ε a
Gaussian noise with mean 0 and standard deviation 0.025.
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Figure 2. Illustration of the design : Frank copula with parameter 10 and
exponential marginals.

To study the performances of our estimators, we use a Monte Carlo approximation, with 1000
iterations of independent samples (from the data used to compute an estimate r̂) of a relative
L2-risk, namely the Relative Mean Square Error (RMSE):

RMSE =
1000∑
j=1

(
r̂(Xj,1, Xj,2)− r(Xj,1, Xj,2)

r(Xj,1, Xj,2)

)2

.

Finally, we confront our estimators with the classical Nadaraya-Watson kernel estimator with
a cross-validation selected bandwidth (using the npreg function of the R package np (Hayfield
and Racine, 2008)) that is not designed to deal with an unbounded design and the estimator
proposed by Kohler et al. (2009).

6.1. Impact of the estimation fo the marginal distributions of the design. In this sec-
tion we investigate how the estimation of the marginal design distribution, through the empiri-
cal c.d.f., affects the results. We compare the estimators r̂h,b computed with the true marginal
distributions and r̂

h,b,F̂
computed with the estimated c.d.f.. using the following bandwidths

h1 = h2 = b1 = b2 = (log(n)/n)0.5. Several bandwidths have been tested, and this choice “by
hand” is a reasonable one among all the possibilities. We provide in Figure 3 the corresponding
boxplots for sample sizes n = 100, 500 and 1000. For each sample size, 100 RMSE values (com-
puted from independent samples) are plotted. The estimation of the marginal distributions is
carried out using the classical empirical cumulative distribution function with the function ecdf
of the software R.

The results are quite similar in both cases. Using the empirical counterpart
̂̃
FX instead of

the true c.d.f. F̃X does not seem to affect the quality of the final estimator. This kind of results

is not very surprising as the estimator
̂̃
FX is widely known to be a very good estimate of F̃X.

From now on, the marginal distributions are thus estimated for all the presented results.
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Figure 3. Effect of the marginal distributions estimation.

6.2. Simulations with data-driven bandwidth for the copula estimator and fixed
bandwidth for the regression estimator. In this subsection, we confront our estimator
(with and without bandwidth selection) to the well-known Nadaraya-Watson estimate and to
the one proposed by Kohler et al. (2009).

The bandwidths of the regression estimator are chosen like in the previous subsection whereas
there are two cases for the copula density estimator. For the estimator without bandwidth selec-
tion they are chosen like in the previous subsection but when we perform bandwidth selection,
the applied methodology is the Goldenshuger-Lepski procedure detailed in Section 4. The L2-
norm involved in the approximation of the bias term (18) in the selection device is approximated
by a Riemann sum over a regular grid of 50 points. As explained above (end of Section 4) the
procedure also requires a value for the tuning constant κc involved in (19). Classically, we tune
it once and for all, for each sample size. Following globally the scheme detailed by Bertin et al.
(2016) (section 7.2), we study the evolution of the risk with respect to the constant, and choose a
value that minimizes the risk. But, we take into account recent research by Lacour and Massart
(2016) about the difficulty of optimal tuning of the Lepski methods. We just propose to select

b̃ ∈ arg minb∈Bn{B̂c(b) + 2Vc(b)} instead of b̂, and to compute the new final estimate ĉ
b̃
. The

reason are mainly technical, and we refer to Section 5 of Lacour and Massart (2016) for details.
Figure 4 thus presents the calibration results (risk of ĉ

b̃
with respect to the value of κc). Remark

that the shape of the curve is the same with different regression functions and different design
distributions.

The figure above assesses that the value of the constant is crucial : a too small or too large
choice can lead to an increase of 50% of the RMSE. The selected values (κc = 30 for n = 100,
κc = 280 for n = 500 and κc = 680 for n = 1000) are then used to compute the estimator ĉ

b̃
and to evaluate its performances.
Once this calibration is made, we are in position to compare the risk of the 4 competing methods.
This is carried out on Figure 5.
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Figure 4. RMSE for ĉ
b̃

with respect to the constant κc for different sample sizes n.
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Figure 5. Comparison of the RMSE of r̂
h,b,F̂

and r̂
h,b̂,F̂

with the Nadaraya-

Watson estimator and the estimator of Kohler et al. (2009).

First, we can see that the estimator of Kohler et al. (2009) seems to have lower performances
than others. Then, the performances of the Nadaraya-Watson estimator are better than our
approach without bandwidth selection but worse when we perform copula bandwidth selection.
For example for n = 100, our estimator has a decrease of the median RMSE of 23% and, above
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all, a variance divided by more than 100. This highlights the robustness of our estimator and
the interest of the bandwidth selection step.

The simulations are implemented in R on a server with 140 cores, 400 Gbytes de Ram and
a E5-2680 v2 @ 2.80Ghz processor. For a data sample of size 100, the computation of the
Nadaraya-Watson estimate with a cross-validation selected bandwidth takes 32 seconds, the one
of Kohler estimate is 9 seconds. Without any bandwidth selection, our estimate is computed in
7 seconds. By adding the selection step for the bandwidths of the copula density estimate, it
requires 84 seconds.

6.3. Case of bounded support for the design. The above subsections illustrate the perfor-
mances of our estimator for the case of an unbounded design. Let us now study the pertinence
of our estimator when the design has a distribution with compact support. Here, the design is
the same as previously (see Figure 2), but restricted to the square [0, 2] × [0, 2], and correctly
normalized (see Figure 6). We consider here samples of size n = 100.
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Figure 6. Illustration of the design : Frank copula with parameter 10 and
exponential marginals truncated on the square [0, 2]× [0, 2].

The Figure 7 below shows the performances of the different methods with bounded or un-
bounded support.

These results highlight the importance of the bandwidth selection procedure and the robust-
ness of our warped estimator to the case of bounded support : even in this case, our estimator
has nearly the same median for the RMSE than the Nadaraya-Watson with a variance divided
by 5.

7. Concluding remarks

The aim of the paper is to extend the so-called ”warping” device to a multivariate framework,
through the study of regression kernel estimation. When the design distribution is known, the
extension of the method can be done and similar results as the ones obtained in the univariate
framework (non-asymptotic risk bound and optimal convergence rate) are proved. When the
design distribution is unknown, the challenge is to cope with the possible dependence structure
between the coordinates of the design, and the extension can be done only through the additional
estimation of the copula density. This can be done separately in an adaptive way, also with a
kernel estimator. Section 5 paves the way for a future study of the plug-in estimator, which is
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Figure 7. Impact of the compacity of the support of the design distribution on
the performances of the different estimators (with n = 100).

out of the scope of the paper: the risk of the regression estimator with fixed bandwidth and
after plug-in of the copula estimate (also with fixed bandwidth), depends both on the risk of
the estimator with known distribution and on the risk of the copula estimator, which is not
surprising.

The next step, out of the scope of the paper, is to propose a bandwidth selection rule for the
regression estimate computed with the adaptive copula density estimate (that is with selected
bandwidth). It requires to replace the copula density c in the Goldenshluger-Lepski estimation
of the bias term of the risk (see (10)) by ĉ

b̂
. This probably also implies a modification of

the variance term (11) to penalize the plug-in, but is not straightforward. The difficulties are
numerous, owing first to the problem of dependence (the regression estimate, the copula estimate,
and the selected bandwidth depend on the design Xi) : it makes difficult to isolate the risk of
the adaptive copula estimator from the risk of the regression estimator with known marginal
distribution. A natural idea is to imagine that we have at our disposal an additional sample of
the design, independent from the data. We can perhaps then conduct the study in the spirit
of Bertin et al. (2016), who deal with similar questions for conditional density estimators (that
involve the plug-in of marginal density estimates). Another way to tackle the problem could be
to adapt very recent research that suggests to develop alternative selection algorithms (see for

example Lacour et al. 2017; Nguyen 2018) to choose simultaneously the two bandwidths b̂ and

ĥ.
Finally notice that the results we obtain above for multivariate random design regression

with additive error term can be extended to handle other multivariate estimation problems,
such as regression estimation in the heteroskedastic model or cumulative distribution function
estimation from data subject to interval censoring case 1, as it is proposed in Chagny (2015) for
d = 1.

8. Proofs

The main tool of the theoretical results is the following concentration inequality (Lacour,
2008).

Theorem 8.1 (Talagrand Inequality). Let F be a set of uniformly bounded functions, which
have a countable dense sub-family for the infinite norm. Let (V1, . . . , Vn) be independent random
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variables and

Z = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Vi)− E [f(Vi)])

∣∣∣∣∣ .
Consider M1, v, and H, such that

M1 ≥ sup
f∈F
‖f‖∞, v ≥ sup

f∈F

1

n

n∑
i=1

Var(f(Vi)) and H ≥ E[Z].

Then, for every δ > 1, there exist numerical positive constants C1, C2, c1 and c2 such that

E
[(
Z2 − δH2

)
+

]
≤ C1

v

n
exp

(
−c1

nH2

v

)
+ C2

M2
1

n2
exp

(
−c2

nH

M1

)
.

We will use several times the following standard convolution inequality, called the Young
Inequality. Let p, q ∈ [1;∞) such 1/p + 1/q ≥ 1. If s ∈ Lp(Rd) and t ∈ Lq(Rd), then,
s ? t ∈ Lr(R) with 1/r = 1/p+ 1/q − 1, and

‖s ? t‖Lr(Rd) ≤ ‖s‖Lp(Rd)‖t‖Lq(Rd). (21)

8.1. Proof of Proposition 3.1. The variance term is

V (h) =

∫
F̃X(A)

c(u)Var (ĝh(u)) du,

=
1

n

∫
F̃X(A)

1

c(u)
Var

(
Y Kh(u− F̃X(X))

)
du,

≤ 1

nmc

∫
F̃X(A)

E
[
Y 2K2

h(u− F̃X(X))
]
du,

using Assumption (Hc,low). But,

E[Y 2K2
h(u− F̃X(X))] = E[r2(X)K2

h(u− F̃X(X))] + E[ε2]E[K2
h(u− F̃X(X))],

and∫
F̃X(A)

E
[
r2(X)K2

h(u− F̃X(X))
]
du =

∫
F̃X(A)

(∫
A
r2(x)K2

h(u− F̃X(x))fX(x)dx

)
du,

=

∫
A
r2(x)fX(x)

(∫
F̃X(A)

K2
h(u− F̃X(x))du

)
ddx,

≤
∫
A
r2(x)fX(x)

‖K‖2

h1 . . . hd
dx ≤ ‖K‖2

h1 . . . hd
E[r2(X)]

where ‖K‖=‖K‖L2(Rd).

Similar computations lead to E[ε2]E[K2
h(u − F̃X(X))] ≤ E[ε2]‖K‖2/(h1 . . . hd). This proves

that

V (h) ≤ ‖K‖
2E[Y 2

1 ]

mc

1

nh1 . . . hd
.

For the bias term, the result is classical, see e.g. Proposition 3 p.579 of Comte and Lacour
(2013) (with rj = aj = 0).
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8.2. Proof of Corollary 3.1. Let f be the multivariate function defined by

f : h = (h1, . . . , hd) ∈ (R∗+)d 7−→ f(h) = C1

d∑
l=1

h2βl
l + C2

1

nh1 . . . hd
,

with C1 = L and C2 = ‖K‖2E[Y 2
1 ]. By studying f , we prove that it admits a unique minimum

on (R∗+)d. The function f is indeed differentiable, and admits a unique critical point h(β) (the
one for which the gradient of f equals to 0) such that

∀j ∈ {1, . . . , d}, − C2

nh1(β) · · ·hd(β)

1

hj
+ 2C1βjhj(β)2βj−1 = 0, (22)

or equivalently

∀j ∈ {1, . . . , d}, hj(β) =

(
C2

C1βj

)1/(2βj)

(h1(β) · · ·hd(β))−1/(2βj)n−1/(2βj).

By multiplying these d equalities, we get

h1(β) · · ·hd(β) =

d∏
j=1

(
C2

C1βj

)1/(2βj)

(h1(β) · · ·hd(β))−
∑d
j=1 1/(2βj)n−

∑d
j=1 1/(2βj).

From this, we derive

h1(β) · · ·hd(β) =

 d∏
j=1

(
C2

C1βj

)1/(2βj)
−

2β̄
2β̄+d

n
− d

2β̄+d .

This is sufficient to compute the associate convergence rate : indeed, we have,

C2
1

nh1(β) · · ·hd(β)
= Cn

− 2β̄
2β̄+d ,

for a constant C, and the second term of f , namely C1
∑d

l=1 hl(β)2βl has the same order of
magnitude (see (22)). Thus, we obtain the result of Corollary 3.1.

8.3. Proof of Theorem 3.1.

8.3.1. Heuristic about the bandwidth selection method. Let us briefly explain the ideas behind
the Goldenshluger-Lepski method. Given the finite bandwidth collection Hn ⊂ (R∗+)d, the
optimal choice is the one which minimizes the bias/variance trade off (see (9)), or the upper-
bound of Proposition 3.1. However, since r is unknown, the variance and the bias term of
the risk are unknown, and the smoothness index of r is likely to be unknown too. Thus the
optimal bandwidth is unattainable. The idea of the method is to mimic the bias/variance
decomposition of the result of Proposition 3.1, with empirical estimations. The simplest term

is V̂ (h) (see (11)) that has the order of the variance term of the risk. The main specificity of
the Goldenshluger-Lepski method is to provide an empirical counterpart for the bias term of
the upper bound by comparing pair by pair several estimators. The proposition is to introduce
auxiliary estimators that involve two kernels, Kh and Kh′ . In our framework, the bias term is

‖(Kh ? (cg))/c) ◦ F̃X − r‖2fX . Since r and cg are unknown, they are replaced by estimators with

bandwidth h′ : this leads to ‖(Kh ? (cĝh′))/c) ◦ F̃X − r̂h′‖2fX , which makes appear the auxiliary

estimator of the method, Kh ? (cĝh′))/c) ◦ F̃X in our framework. This adds a random part to a
deterministic term, namely the bias : this random part should be corrected by substracting

V̂ (h′). Finally, since any bandwidth h′ of the collection could be chosen, we scan all the
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collection. This leads to the definition of the bias estimate, B̂(h) (see (10)). This explanation

is obviously a rough heuristic, and we carefully show that the term B̂ has the order of the bias

term (see Inequality (27) below). It remains to select the bandwidth ĥ that minimizes the sum

of these empirical B̂(h) and V̂ (h), over all the possible bandwidths h. We thus get (12).

8.3.2. Proof of the result. First, the loss function of the selected estimator can be written∥∥r̂
h̃
− r
∥∥2

fX
=

∫
F̃X(A)

(
cĝ

h̃
− cg

)2
(u)

1

c(u)
du.

Let h ∈ Hn be fixed. We introduce K
h̃
? (cĝh1

F̃X(A)
) and follow the decompositions of Theorem

4.2 in Comte (2015) to obtain∥∥r̂
h̃
− r
∥∥2

fX
≤ 6

(
Ṽ (h) + B̃(h)

)
+ 3 ‖r̂h − r‖2fX .

By taking the expectation, the last term of the previous inequality is the risk of an estimator

with fixed bandwidth, controlled by Proposition 3.1. It remains to bound B̃(h). Let us begin
by splitting the norm involved in its definition. We have∥∥∥∥∥Kh ? (cĝh′1

F̃X(A)
)

c
◦ F̃X − r̂h′,c

∥∥∥∥∥
2

fX

=

∫
F̃X(A)

(
Kh ? (cĝh′1

F̃X(A)
)(u)− c(u)ĝh′(u)

)2 du

c(u)
,

≤ 3m−1
c

3∑
l=1

Tl,h,h′ ,

with

T1,h,h′ =

∫
F̃X(A)

(
Kh ? (cĝh′1

F̃X(A)
)(u)−Kh ? Kh′ ? (cg1

F̃X(A)
)(u)

)2
du,

T2,h,h′ =

∫
F̃X(A)

(
Kh ? Kh′ ? (cg1

F̃X(A)
)(u)−Kh′ ? (cg1

F̃X(A)
)(u)

)2
du,

T3,h,h′ =

∫
F̃X(A)

(
Kh′ ? (cg1

F̃X(A)
)(u)− c(u)ĝh′(u)

)2
du.

The proof has now some similarities with the proof of Theorem 1 of Chagny (2015), some easy
calculations are thus omitted. We first apply the Young inequality (21) (with r = 2, p = 1,
q = 2) that leads to

T1,h,h′ ≤ ‖K‖L1([0,1]d)

∥∥∥cĝh′ −Kh′ ? (cg1
F̃X(A)

)
∥∥∥2

L2(F̃X(A))

T2,h,h′ ≤ ‖K‖L1([0,1]d)

∥∥∥Kh ? (cg1
F̃X(A)

)− (cg)
∥∥∥2

L2(F̃X(A))
.

We thus obtain for any h ∈ Hn,

B̃(h) ≤ 3

mc
(1 + ‖K‖L1([0,1]d)) max

h′∈Hn

{∥∥∥cĝh′ −Kh′ ? (cg1
F̃X(A)

)
∥∥∥2

L2(F̃X(A))
− mcṼ (h′)

3(1 + ‖K‖L1([0,1]d))

}
+

+
3

mc
‖K‖L1([0,1]d)

∥∥∥Kh ? (cg1
F̃X(A)

)− (cg)
∥∥∥2

L2(F̃X(A))
.

We have that∥∥∥cĝh′ −Kh′ ? (cg1
F̃X(A)

)
∥∥∥2

L2(F̃X(A))
= sup

t∈S̄(0,1)

(
〈cĝh′ −Kh′ ? (cg1

F̃X(A)
), t〉

F̃X(A)

)2
= νn,h′(t),
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with S̄(0, 1) a dense countable subset of {t ∈ L1(F̃X(A)) ∩ L2(F̃X(A)), ‖t‖
L2(F̃X(A))

= 1},
〈·, ·〉

F̃X(A)
the usual scalar product on L2(F̃X(A)), and

νn,h(t) =
1

n

n∑
i=1

∫
F̃X(A)

t(u)
(
YiKh

(
u− F̃X(Xi)

)
− E

[
YiKh

(
u− F̃X(Xi)

)])
du.

For any t ∈ S̄(0, 1), we have that νn,h(t)2 ≤ 3((νn,h(t)(1))2 +(νn,h(t)(2,1))2 +(νn,h(t)(2,2))2), with,

for l ∈ {(1), (2, 1), (2, 2)}, ν(l)
n,h(t) = 1

n

∑n
i=1 ϕ

(l)
t,h,i − E[ϕ

(l)
t,h,i], and

ϕ
(1)
t,h,i = r(Xi)

∫
F̃X(A)

t(u)Kh

(
u− F̃X(Xi)

)
du,

ϕ
(2,1)
t,h,i = 1|εi|≤κn

∫
F̃X(A)

t(u)Kh

(
u− F̃X(Xi)

)
du,

ϕ
(2,2)
t,h,i = 1|εi|>κn

∫
F̃X(A)

t(u)Kh

(
u− F̃X(Xi)

)
du,

where κn = c0
√
n/ ln(n) is a quantity which plays a technical role in the proof (c0 is a nonnegative

constant). Writing E[Y 2
1 ] = E[r2(X1)] + E[ε2

1], we thus split Ṽ (h) = Ṽ1(h) + Ṽ2(h), with

Ṽ1(h) = κ0E[r2(X1)]/(mcnh1 . . . hd) and Ṽ2(h) = κ0E[ε2
1]/(mcnh1 . . . hd), and consequently

E

[
max
h′∈Hn

{∥∥∥cĝh′ −Kh′ ? (cg1
F̃X(A)

)
∥∥∥2

L2(F̃X(A))
− mcṼ (h′)

3(1 + ‖K‖L1([0,1]d))

}
+

]

≤ 3
∑
h∈Hn

{
E

[(
sup

t∈S̄(0,1)

(
ν

(1)
n,h(t)

)2
− mcṼ1(h)

9(1 + ‖K‖L1([0,1]d))

)
+

]

+E

[(
sup

t∈S̄(0,1)

(
ν

(2,1)
n,h (t)

)2
− mcṼ2(h)

9(1 + ‖K‖L1([0,1]d))

)
+

]
+ E

[
sup

t∈S̄(0,1)

(
ν

(2,2)
n,h (t)

)2
]}

. (23)

Then we obtain, using (Hε),

∑
h∈Hn

E

[
sup

t∈S̄(0,1)

(
ν

(2,2)
n,h (t)

)2
]
≤ ‖K‖2 1

nκpn
E[|ε|2+p]

∑
h∈Hn

1

h1 · · ·hd
. (24)

For the other two terms in (23), we apply the Talagrand inequality (Theorem 8.1). This leads
to

∑
h∈Hn

E

[(
sup

t∈S̄(0,1)

(
ν

(1)
n,h(t)

)2
− δ1

E[r2(X1)]

nh1 · · ·hd

)
+

]
≤ C

 1

n

∑
h∈Hn

exp

(
− c1

h1 · · ·hd

)
(25)

+
1

n2
exp(−c2

√
n)
∑
h∈Hn

1

h1 · · ·hd

 ,
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for constants δ1, C, c1 and c2, and, for other constants δ2, C, c3 and c4,∑
h∈Hn

E

[(
sup

t∈S̄(0,1)

(
ν

(2,1)
n,h (t)

)2
− δ2

E[ε2
1]

nh1 · · ·hd

)
+

]
≤ C

 1

n

∑
h∈Hn

exp

(
− c3

h1 · · ·hd

)
(26)

+
κ2
n

n2
exp

(
−c4

√
n

κn

) ∑
h∈Hn

1

h1 · · ·hd

 .

The assumptions on the collection Hn permit to deduce that the right hand side of (24), (25),
and (26) are less than C/n for a constant C. As soon as

mcṼ1(h)

9(1 + ‖K‖L1([0,1]d))
≥ δ2

E[r2(X1)]

nh1 · · ·hd
and

mcṼ2(h)

9(1 + ‖K‖L1([0,1]d))
≥ δ2

E[ε2
1]

nh1 · · ·hd
,

which is the case if κ0 is large enough, (23) becomes

E

[
max
h′∈Hn

{∥∥∥cĝh′ −Kh′ ? (cg1
F̃X(A)

)
∥∥∥2

L2(F̃X(A))
− mcṼ (h′)

3(1 + ‖K‖L1([0,1]d))

}
+

]
≤ C

n
,

and consequently

B̃(h) ≤ C

n
+

3

mc
‖K‖L1([0,1]d)

∥∥∥Kh ? (cg1
F̃X(A)

)− (cg)
∥∥∥2

L2(F̃X(A))
, (27)

which ends the proof.

8.4. Proof of Proposition 4.1. As the previous one, this proof is based on oracle-type in-
equalities using Goldenshluger-Lepski method so we omit some detailed calculations. We first
obtain, for any b ∈ Bn,∥∥ĉ

b̂
− c
∥∥2

L2([0,1]d)
≤ 6

(
B̂c(b) + Vc(b)

)
+ 3 ‖ĉb − c‖2L2([0,1]d) .

Taking into account the inequality (15), it remains to study B̂c. Thanks to the convolution
inequality (21), we get

B̂(b) ≤ 3
(
‖W‖2L1([0,1]d) + 1

)
max
b′∈Bn

(
‖ĉb′ −Wb′ ? c‖2L2([0,1]d) −

Vc(b
′)

3(‖W‖2
L1([0,1]d)

+ 1)

)
+

+3‖W‖2L1([0,1]d) ‖Wb ? c− c‖2L2([0,1]d) .

We roughly upper-bound

E

[
max
b′∈Bn

(
‖ĉb′ −Wb′ ? c‖2L2([0,1]d) −

Vc(b
′)

3(‖W‖2
L1([0,1]d)

+ 1)

)
+

]

≤
∑
b∈Bn

E

[(
‖ĉb −Wb ? c‖2L2([0,1]d) −

Vc(b)

3(‖W‖2
L1([0,1]d)

+ 1)

)
+

]
,

and write, for any b ∈ Bn,

‖ĉb −Wb ? c‖2L2([0,1]d) = sup
t∈Sc(0,1)

〈ĉb −Wb ? c, t〉L2([0,1]d) = sup
t∈Sc(0,1)

ν2
n,c(t),

where Sc(0, 1) is a countable subset of the unit sphere of L2([0, 1]d) (the set of function t
such that ‖t‖2

L2([0,1]d)
= 1), 〈·, ·〉L2([0,1]d) is the scalar product of L2([0, 1]d), and νn,c(t) =
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n−1
∑n

i=1 ϕt,c,b(Xi)− E[ϕt,c,b(Xi)], with ϕt,c,b(x) =
∫

[0,1]dWb(u− F̃ (x))t(u)du. We could now

apply Theorem 8.1 to the centered empirical process νn,c. It is not difficult to see that the
following choice for the constants are possible:

M1,c =
‖W‖L2([0,1]d)√

b1 · · · bd
, H2

c =
‖W‖2

L2([0,1]d)

n(b1 · · · bd)
, vc = Mc‖W‖L1([0,1]d).

We only detail the computation of vc: firstly n−1
∑n

i=1 Var(ϕt,cb(Xi)) = Var(ϕt,cb(X1)) ≤
E[ϕ2

t,cb(X1)]. Then, denoting by W̌b(x) = Wb(−x), we use Assumption (Hc,high), and the

Young inequality (21) with p = 2, q = 1, and r = 2:

E
[
ϕ2
t,c,b(X1)

]
= E

[
(t ? W̌b)2(F̃X(X1))

]
=

∫
Rd

(t ? W̌b)2(F̃X(x))fX(x)dx,

=

∫
[0,1]d

(t ? W̌b)2(u)c(u)du ≤Mc‖t ? W̌b‖2L2([0,1]d) ≤Mc‖W‖2L1([0,1]d) := vc,

since ‖t‖2
L2([0,1]d)

= 1. Using Theorem 8.1, we obtain, for any δ ≥ 1 and for some constants

C, c1, c2 (that may change from line to line)∑
b∈Bn

E

[(
sup

t∈Sc(0,1)
ν2
n,c(t)− δ

‖W‖2
L2([0,1]d)

nb1 · · · bd

)
+

]
≤ C

∑
b∈Bn

{
1

n
exp

(
−c1

1

b1 · · · bd

)
1

n2
exp(−c2

√
n)

1

b1 · · · bd

}
,

≤ C

 |Bn|n +
1

n2
exp(−c2

√
n)
∑
b∈Bn

1

b1 · · · bd

 ,

≤ C ln(n)

n
,

using the first part of (17) and then the constraint (16) on the collection B\. If it is the second
part of (17) which is assumed, then

∑
b∈Bn

E

[(
sup

t∈Sc(0,1)
ν2
n,c(t)− δ

‖W‖2
L2([0,1]d)

nb1 · · · bd

)
+

]
≤ C

 1

n
+

1

n2
exp(−c2

√
n)
∑
b∈Bn

1

b1 · · · bd

 ≤ C

n
.

Thus, if Vc(b)/(3(‖W‖2
L1([0,1]d)

+ 1)) ≥ δ
‖W‖2

L2([0,1]d)

nb1···bd which means that κc is large enough, we

have proved the following inequality, which concludes the proof of Proposition 4.1 :

B̂(b) ≤ C

n
+ 3‖W‖2L1([0,1]d) ‖Wb ? c− c‖2L2([0,1]d) .

8.5. Proof of Proposition 5.1. We split the loss function ‖r̂h,b − r‖2fX = T1 + T2, with

T1 = ‖(r̂h,b − r)1ĉb◦F̃X≥mc/2‖
2
fX
, T2 = ‖r1

ĉb◦F̃X<mc/2
‖2fX .

First we have

T1 =

∥∥∥∥(c× ĝhĉb
◦ F̃X − r

)
1
ĉb◦F̃X≥mc/2

∥∥∥∥2

fX

=

∥∥∥∥(c× ĝhĉb
◦ F̃X −

c× g
c
◦ F̃X

)
1
ĉb◦F̃X≥mc/2

∥∥∥∥2

fX
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and thus, T1 ≤ 2(T1,1 + T1,2), with

T1,1 =

∥∥∥∥c× ĝh − c× gĉb
◦ F̃X1

ĉb◦F̃X≥mc/2

∥∥∥∥2

fX

,

T1,2 =

∥∥∥∥(c× g) ◦ F̃X

(
1

ĉb
− 1

c

)
◦ F̃X1

ĉb◦F̃X≥mc/2

∥∥∥∥2

fX

.

Then, with (Hc,high) and (Hc,low), T1,1 ≤ (4M2
c /m

2
c)‖(ĝh − g) ◦ F̃X‖2fX and similarly, adding a

change of variables

T1,2 =

∥∥∥∥g c− ĉbĉb
c1ĉb≥mc/2

∥∥∥∥2

L2(F̃X(A))

≤ 4Mc

m2
c

‖g‖2
L∞(F̃X(A))

‖c− ĉb‖2L2(F̃X(A))
,

thus, T1,2 ≤ (4Mc/m
2
c)‖g‖2L∞(F̃X(A))

‖c− ĉb‖2L2(F̃X(A))
.

Similar arguments lead to T2 ≤Mc

∫
F̃X(A)

g2(u)P(ĉb(u) < mc/2)du. But, using (Hc,low),

ĉb(u) ≤ mc

2
=⇒ |ĉb(u)− c(u)| ≥ mc

2
,

we deduce

E[T2] ≤ Mc

∫
F̃X(A)

g2(u)P(ĉb(u)− c(u)| ≥ mc/2)du,

≤ 4Mc

m2
c

∫
F̃X(A)

g2(u)duE
[
‖ĉb − c‖2L2(F̃X(A))

]
,

by applying the Markov inequality. Gathering the bound for T1,1, T1,2 and T2 concludes the
proof.
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