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Quantifying discretization errors for soft-tissue simulation in
computer assisted surgery: a preliminary study

Stéphane Pierre Alain Bordas, Marek Bucki, Franz Chouly, Michel Duprez, Vanessa Lleras, Claudio Lobos,
Alexei Lozinski, Pierre-Yves Rohan, and Satyendra Tomar

Abstract Errors in biomechanics simulations arise from modeling and discretization. Modeling errors are due to
the choice of the mathematical model whilst discretization errors measure the impact of the choice of the numer-
ical method on the accuracy of the approximated solution to this specific mathematical model. A major source
of discretization errors is mesh generation from medical images, that remains one of the major bottlenecks in the
development of reliable, accurate, automatic and efficient personalized, clinically-relevant Finite Element (FE)
models in biomechanics. The impact of mesh quality and density on the accuracy of the FE solution can be quan-
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tified with a posteriori error estimates. Yet, to our knowledge, the relevance of such error estimates for practical
biomechanics problems has seldom been addressed, see [25]. In this contribution, we propose an implementation
of some a posteriori error estimates to quantify the discretization errors and to optimize the mesh. More precisely,
we focus on error estimation for a user-defined quantity of interest with the Dual Weighted Residual (DWR) tech-
nique. We test its applicability and relevance in two situations, corresponding to computations for a tongue and an
artery, using a simplified setting, i.e., plane linearized elasticity with contractility of the soft-tissue modeled as a
pre-stress. Our results demonstrate the feasibility of such methodology to estimate the actual solution errors and to
reduce them economically through mesh refinement.

1 Introduction

Patient-specific finite element models of soft tissue and organs have received an increasing amount of interest in
the last decades. Such finite element models are widely employed to investigate both, the underlying mechanisms
that drive normal physiology of biological soft tissues [8, 44, 54], and the mechanical factors that contribute to the
onset and development of diseases such as pressure ulcers [77, 117], atherosclerosis or aneurysms [70, 9, 111], or
multilevel lumbar degenerative disc diseases [97, 113], to name a few. Finite element models are also valuable tools
that contribute to the development of medical devices, see e.g. vascular stent-grafts [100], artificial facet systems
for spinal fusion [51] or knee braces [101]. They have the potential to improve prevention strategies [79, 124],
surgical planning [21] and pedagogical simulators for medical training [20, 32, 28, 33] .

In this context, one major issue is meshing, since the reliability of the predicted mechanical response arising
from computer simulation heavily relies on the quality of the underlying finite element mesh: if some elements
of the mesh are too distorted or if the mesh is too coarse in some regions, the numerical solution may deteriorate
significantly [55].

Whilst generating meshes of complex shapes with tetrahedral elements is generally possible thanks to advanced
meshing algorithms, e.g. [49, 108], low-order Lagrange tetrahedral elements are unsuitable for most biomechani-
cal problems due to volumetric locking. To circumvent such issues, strain smoothing approaches were developed
[94, 71], which have the drawback of leading to larger system matrix bandwidth, but the advantage of being
easily parallelized on graphical processing units thanks to nodal integration. Hexahedral low-order Lagrange el-
ements alleviate locking issues, but research on the automatic generation of hexahedral meshes is still ongoing
[18, 99, 107], spurred by a recrudescent surge in research on polyhedral mesh generation [60, 83, 24, 31, 128] and
approximations such as the virtual finite element method [16], hybrid high-order (HHO) methods [38], polyhe-
dral finite elements [119, 67, 86, 43], smoothed finite elements [114], scaled finite elements [119, 87], for various
applications, including large strain hyper-elasticity [104, 1] and optimization [30, 30, 89].

The patient-specific mesh has to be built from segmented medical images (CT, MRI, ultra-sound), and has to
conform to anatomical details with potentially complex topologies and geometries [123, 17, 6], which led to the
design of algorithms that aim to optimize the quality of the generated mesh by reducing the distortion of the
elements [131, 69, 115]. These algorithms may also have to satisfy a number of additional constraints such as
minimizing human intervention (automation), preservation of certain important anatomical details or robustness
with respect to data [34, 7, 61, 116, 76]. In general the quality of a given mesh can be assessed through purely
geometrical criteria, that allow in some way to quantify the distortion of the geometry of the elements and how far
they are from their ideal shape [45, 22, 26, 47].

To circumvent or simplify the mesh generation issue, implicit/immersed boundary approaches have been proposed,
where the mesh does not conform to the geometry, which is treated by implicit functions such as level sets and
enriched finite element methods. This idea was proposed in [81] and later generalized in [84, 85], [58, 27], [75,
66] and [109, 126, 46], in combination with (goal-oriented) error estimates. Although promising, applications of
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such approaches to patient-specific geometries remain in their infancy, see a review of related methods in [19].
Yet another approach consists in directly using the image as a model which could enable simulations without
any mesh generation [72]. In “image as a model”, the boundary of the domain is smeared, which significantly
complicates imposition of boundary conditions, particularly contact. Finally, meshless methods [88] are possible
alternatives which may simplify biomechanics simulations by relaxing the constraints posed on mesh quality and
simplifying local mesh adaptation. Comparatively to Galerkin meshfree methods [73, 37, 74], point collocation
methods [11], also known as generalized finite difference methods, are potentially competitive as they do not
require any numerical integration. Quality control of such collocation methods remains an open problem, as well
as conditioning of the system matrix, which is strongly related to the choice of the stencil [36]. On the other hand,
collocation methods are easily parallelized, for instance on graphical processing units.

Beyond mesh quality, mesh density is another, related, parameter which must be controlled during biomechanics
simulations. Solutions must be obtained on commodity hardware within clinical time scales: milliseconds (for
surgical training); minutes (for surgical assistance); hours (for surgical planning). Therefore, and although this
would lead to the most accurate solution, it is impractical to use a uniformly fine mesh over the whole domain.
This remark begs the question: “given a tolerable error level, what is the coarsest possible mesh which will provide
the required accuracy.” This leads to the notion of “mesh optimality,” which is achieved for an optimal balance
between the accuracy in a given quantity of interest to the user and the associated computational cost. It is probably
intuitively understood that this “optimality” criterion, and the resulting optimized mesh both depend on the quantity
of interest and that, in general, the optimal mesh will be non-uniform, displaying local refinement around specific
regions. A possible criterion for mesh adaptation can be any a priori knowledge of the problem or its solution
such as geometry, material properties or boundary layers e.g. localized loads, contacts, sharp features, material
interfaces. Similarly, knowledge of the quantity of interest can help guide local mesh refinement. Nevertheless,
such mesh refinement guidelines are generally ad hoc and cannot guarantee the resulting mesh will be optimal.
To summarize, the, standard, piecewise linear or quadratic Lagrange-based, finite element method is still the most
popular technology to solve biomechanics problems. The choice of an optimal mesh, in particular its local re-
finement level for given problems and quantities of interest remains an open issue. Moreover, without knowing
the finite element solution itself, it is practically impossible to quantify the adequacy of a given mesh only from
heuristics or other ad hoc criteria derived from a priori knowledge of the problem or its exact solution.

As a result, we aim at addressing the following two questions in this paper:

1. For a patient-specific finite element computation, can we provide some information to the user about the
accuracy of the numerical solution, namely can we compute an approximate discretization error caused
by the choice of the mesh ? By discretization error, we mean the difference between the finite element
solution and the exact solution of the same boundary value problem on the same geometry.

2. Can the numerical solution be used to optimize the mesh in the critical regions only, to achieve maximum
accuracy for a given computational cost, or, conversely, to achieve a given accuracy with a minimum
computational cost ?

For the sake of simplicity we do not consider

1. modeling errors, which arise due to the approximation of the geometry, physical assumptions, and uncertainty
on material parameters,
2. numerical errors, which arise due to linearization, iterative solvers, and machine precision.

In this paper, we investigate the capability of a posteriori error estimates [3, 127] to provide useful information
about the discretization error. A posteriori error estimates are quantities computed from the numerical solution, that
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indicate the magnitude of the local error. These estimates are at the core of mesh adaptive techniques [92]. Many
a posteriori error estimation methods have been developed in the numerical analysis community. These methods
have different theoretical and practical properties. However, despite their great potential, error estimates, to the best
of our knowledge, have rarely been considered for patient-specific finite element simulations in the biomechanical
community. The only reference known to us which addresses discretization error estimation in biomechanics is the
very recent paper [25] who consider simple but real-time error estimation approaches for needle insertion.

We limit our study to a simplified setting in order to gain preliminary insights into the behaviour of such a posteriori
error estimates and to address with the first technical difficulties. We focus on two-dimensional linear elasticity
(plane strain) problems, with simple boundary conditions (prescribed displacements and tractions), and we assume
triangular meshes. This is somehow restrictive in comparison to current practice in soft-tissue simulation. Among
the existing a posteriori error estimates, we focus on Dual Weighted Residuals (DWR), as presented in, e.g.,
[13, 14] (see also [96, 95, 102, 80, 50, 10]). Indeed this method allows to estimate the error for a given quantity of
interest. As a matter of fact, for the majority of applications, controlling the error in the energy norm is not relevant,
and the error must be controlled for a specific quantity of interest to the user (e.g., stress intensity factors, shear
stress or strain intensity at specific locations). The DWR method is conveniently implemented in the standard finite
element library FEniCS [78] and we make use of the implementation described in detail in the paper of Rognes
and Logg [110], with minor modifications.

This paper is organized as follows. In Section 2, we present the linear elastic problem, the corresponding finite
element method, the a posteriori error estimates as well as the algorithm for mesh refinement. In Section 3, we
consider two simplified test-cases, inspired by patient-specific biomechanics, where the current methodology is
applied. The results are discussed in Section 4.

2 Material and methods

We first present the general problem considered in this contribution, that represents a simplified setting for con-
tractile soft-tissue simulation. We then describe in details the computation of the a posteriori error estimate: a
global estimator that provides an estimation of the discretization error and a local estimator that drives the mesh
refinement. We end this section with the description of a simple algorithm for mesh refinement.

We first introduce some useful notations. In what follows, bold letters such as u, v, indicate vector or tensor valued
quantities, while the capital ones (e.g., V, K) represent functional sets involving vector fields. As usual, we denote
by (H“‘(-))d, s € R, d=1,2,3, the Sobolev spaces in one, two or three space dimensions [2]. In the sequel the
symbol | - | will either denote the Euclidean norm in R?, or the measure of a domain in R,

2.1 Setting: a “toy” boundary value problem in linear elasticity

We consider an elastic body whose reference configuration is represented by the domain £ in R?. We consider the
plane strain formulation, and allow only small deformations. We suppose that € consists of two disjoint parts
Ip and Iy, with meas(Ip) > 0. The unit outward normal vector on d€ is denoted by n. A displacement up = 0
is applied on I}, and the body is subjected to volume forces f € (L?(£2))? and surface loads F € (L?(Iy))?. We
introduce the bilinear form

a(v,w) == /Q o(v) : £(w) dx,
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which represents the (internal) virtual work associated to passive elastic properties. The notation £(v) = %(VV +

VVT) /2 represents the linearized strain tensor field, and 6 = (0;;), 1 < i, j < 2, stands for the stress tensor field,
assumed to be given by Hooke’s law. The linear form

ZE(W)::/f-wdx+ F-wds

Jo JIy

stands for the virtual work of external loads in the body and on its surface. Finally we represent in a very simplified
manner the active properties of soft-tissue as a linear anisotropic pre-stress

la(w):= _ﬁT. w (e(w)es) - ey dx,

where @y is the part of the body where muscle fibers are supposed to act, T > 0 is a scalar which stands for the
tension of the fibers, e,4 is a field of unitary vectors that stands for muscle fibers orientation, and 8 € [0, 1] is the
activation parameter. When 8 = 0 there is no activation of the muscle fibers, and the value 8 = 1 corresponds to
the maximum activation. This modeling can be viewed as a linearization of some more sophisticated active stress
models of contractile tissues (see, e.g., [35, 98]).

We want to solve the following weak problem

ey

Find a displacement u € V such that
a(u,v)=1I(v), Vvev,

where [(-) = Ig(-) +14(+), and where u and v lie in the space of admissible displacements
Vi={veH (Q)?* v=00nIp}.
From the displacement field, we are interested in computing a linear quantity
J:Vour—J(u) eR, 2)

which can be defined according to a specific application and the interest of each practitioner. Thereby, the quantity
J will be aptly called quantity of interest (Qol). We will provide its expression(s) for each test case.

2.2 Finite element method

Consider a family of meshes ()0 constituted of triangles and assumed to be subordinated to the decomposition
of the boundary 92 into I and I'y. For a mesh ., we denote by &, the set of edges, by &§™ :={E € &,: E C Q}
the set of interior edges, and by é’;fv :={E € &), : E C Iy} the set of boundary edges that correspond to Neumann
conditions (we assume that any boundary edge is either inside Iy or inside Ip). For an element K of .7}, we set
& the set of edges of K, & := &N &M and &Y = &k N &Y. We also assume that each element K is either
completely inside @y or completely outside it. Let ¢ be a second-order tensorial field in €2, which is assumed to
be piecewise continuous. We define the jump of ¢ across an interior edge E of an element K, at a pointy € E, as
follows

[[G]]EJ((y) : 11m+ (O'(y + OCIIEJ() — G(y — anEyK)) ng g,

a—0

where ng g is the unit normal vector to E, pointing out of K.
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The finite element space V;, C V is built upon continuous Lagrange finite elements of degree k = 1,2 (see, e.g.,
[42]), i.e.

V)= {Vh e (€°(Q))": Vi € (Px(K))?, YK € H#p, v, =0 on FD}.
Problem (1) is approximated by

Find u;, € V}, such that
(3)

a(ay,vy) = 1(vs), Vv, € V.

2.3 Goal-oriented error estimates

We compute goal-oriented error estimates using the Dual Weighted Residual (DWR) technique [13, 14] (see also
[10, 50, 80, 95, 96, 102]), which is inspired from duality arguments (see, e.g., [41]). We follow the framework
described in [110], with some minor changes and adaptations.

Let us consider uy, the solution to Problem (3). The weak residual is defined for all v € V by

r(v) :=1(v) —a(uy,v).
Let z denote the solution to the dual problem:

Find z € V such that
“4)

a(v,z) =J(v), Vvev.

The DWR method, in a linear setting, relies on the fundamental observation that

J(a) —J(uy) = a(u,z) —a(uy,z) = 1(z) —a(uy,z) = r(z). Q)

From this, we design an error estimator of J(u) — J(uy,) as an approximation of the residual r(z). We detail the
different steps below.

2.3.1 Numerical approximation of the dual problem and global estimator

The exact solution z to the dual system (4) is unknown in most of the practical situations, and thus needs to be
approximated. Let us consider a finite element space V; C V. This space is assumed to be finer than V,, for
instance, made of continuous piecewise polynomials of order k -+ 1. The approximation Zz; of the solution to the
dual problem z is obtained by solving the following approximate dual problem

(6)

Find Z;, € V}, such that
a(/v\hv/z\h) = J(/‘;h), V?h € Vh.
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We define
Ny = |r(z)] @)

as the global estimator that approximates the residual r(z).

2.3.2 Derivation of local estimators

Following [14, 110], we provide a local estimator of the error |J(u) — J(uy)|, that can be written in a general
form

Y nk, nxi= /RK Zy —ipZp)dx + Y /REK —ipzp)ds|, VK € Hp, (®)

Keu,

EE&’K

where the notation i;, stands for the Lagrange interpolant onto V/,.

The local element-wise and edge-wise residuals are given explicitly by

Ry := fK—‘rdiVO'A(llh)

and |
——[loalup)llex ifE € &M,
RE,K = 2
FE — GA(llh)IlE,K ifE € g[](\],
where

ox:=c(u")+BT(es@eq)xa.

The notation x4 stands for the indicator function of wy, i.e. Y4 = 1 in w4 and x4 = O elsewhere. The quantity
o4 represents the sum of passive and active contributions within the stress field. The quantity fx (resp. Fg) is a
computable approximation of f (resp. F).

The following bound always holds

m< Y Mk,
Ket,

since compensation effects (balance between positive and negative local contributions) can occur for 1y, see, e.g.,

[93]. Thus 7y, is expected to be sharper than ). ng. In practice, ). g aims at quantifying the local errors for
Keo, Ke,
mesh refinement.

Remark 1. Each local estimator Mg is made up of two contributions. On one hand, the residuals Rg and Rf g
represent the local error in the natural norm. On the other hand, the contribution (22 — iyz;,) coming from the dual
problem can be interpreted as a weight (or a sensitivity factor) that measures the local impact on the quantity of
interest J(-), see, e.g., [14, Remark 3.1].

Remark 2. In [110] the local residuals Rx and Rg x are computed implicitly through local problems, in a generic
fashion. No significant difference has been observed numerically between their technique and an explicit compu-
tation.
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Remark 3. We have chosen to compute z;, through the approximate dual system computed in \A7h C V (i.e. the space
made of continuous piecewise polynomials of order k+ 1). Other strategies are possible: see, e.g., [14, Section 5.1]
for a discussion. For example, the authors of [110] use extrapolation of the approximate dual system computed in
V;,. We can also mention [12], where the weight is estimated using a residual a posteriori error estimate for the
dual system, approximated in V. The aforementioned techniques are cheaper since the same space is used for the
primal and dual solutions, but they can be less accurate.

2.4 Algorithm for goal-oriented mesh refinement

In the last sections, we have described the different steps to construct the global and local error estimators. Using
the Dorfler marking strategy [39], we now describe, in Algorithm 1, a simple algorithm to refine the mesh by taking
into account these quantities. In this algorithm, there are two independent numerical parameters: first a parameter
0 < a0 < 1 that controls the level of refinement in Dorfler marking, and then a tolerance threshold &€ > 0 for the
global estimator, that serves as a stopping criterion.

Algorithm 1: Refinement algorithm

Initialization :

Select an initial triangulation %%}, of the domain Q.

| Build the finite elements spaces V;, and V;,.

While 1, > € do

Compute u;, € Vj, : a(wy,vy) =1(vy), Vv, € V.
Compute /Z\h c Vh : a(%,ih) = J(\/’Z), Wh (S \7;,.
Evaluate the global error estimator 1y, = |r(zy)|.
If n;, < &, then stop.

Evaluate the local estimators

SR =

Nk = '/[(RK.(ih *ihih)dx =+ Z /EREwK'(/Z\l/'z *ihih)ds R VK € Ji/h

Ecék

6. Sort the cells {K1,...,Ky} by decreasing order of ng.
7. Dorfler marking: mark the first M* cells for refinement where

M* :=min {Me N

M
ZnKiZa Z nK}~
i=1

Ke Ay

8. Refine all cells marked for refinement (and propagate refinement to avoid hanging nodes).
9. Update correspondingly the finite element spaces V; and V.
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3 Results

We present numerical results for two different test cases: the biomechanical response of both a human tongue and
an artery predicted using finite element analysis, inspired from studies [17] and [70], respectively. We propose to
assess the discretization error for the two quantities of interest

Ji(u) := /w(ux—&-uy)dx and J(u) ::/wdivualx7 )

where u, and u, are the two components of u in a Cartesian basis. The first quantity J; (u) is physically related
to the displacement in the region of interest @ C 2. This corresponds to a quantity that can easily be measured
experimentally and that is therefore of practical interest. The second quantity J>(u) physically corresponds to the
internal strain /; = tr(€(u)). This is also of practical interest because many of the mechanisms driving the onset
of pathologies are related to shear strains or principal strains. The region of interest @ will be specified in both
situations. All the simulations of this section are performed with Lagrange finite elements of degree k = 2, and
the space V;, in which 7, is computed is built from Lagrange finite elements of degree k = 3. In Algorithm 1, the
parameter o for Dorfler marking is fixed at 0.8, and the stopping criterion € will be specified for each application.
In the following, the exact value of J(u) is unknown but is estimated using computations on a very fine uniform
mesh.

3.1 Human tongue with fiber activation

In the first example, we focus on the case study for the activation of the posterior genio-glossus (GGp), that is a
lingual muscle located at the root of the tongue and inserted in the front to the mandible. The activation of this
muscle compresses the tongue in the lower part and generates a forward and upward movement of the tongue
body, because of the incompressibility of tongue tissues, for example during the production of the phonemes /i/
or /s/. The 2D mesh used in this example has been derived from the generic 3D mesh presented in [17] where
the authors developed a process to generate subject-specific meshes. More precisely an automatic atlas-based
method was proposed that generates subject-specific meshes via a registration guided by Magnetic Resonance
Imaging. The domain € is depicted in Figure 1 (left). The width and height of the tongue are respectively equal
to 73.8 mm and 53.7 mm. For the passive tissue material properties, we use the values reported in [48] based on
indentation experiments on a cadavers tongue. The authors initially proposed an incompressible two parameter
Yeoh hyperelastic material model and fitted the material constants to the data. In this work, a linear elastic material
model is assumed. According to [125], linearisation of the model proposed in [48] yields E ~ 6¢10 = 0.6 MPa. For
the sake of simplicity Poisson ratio is assumed to be v = 0.4. No volumic force field is applied: f = 0. The direction
of the fibers e, is depicted in Figure 1 (center) and corresponds approximately to the posterior genioglossus muscle
[17]. Other parameters for fiber activation have been chosen as T = 2e-5 MPa and 8 = 1. The tongue is attached
to the hyoid bone and to the mandible, which are supposed to be fixed. This leads to a homogeneous Dirichlet
boundary condition such as depicted in Figure 1 (right). On the remaining part of the boundary a homogeneous
Neumann condition (F = 0) is applied. The orange part depicts the region w4 where fibers are supposed to be
located. The green part depicts the region of interest @ for the computation of J; and J;.

The resulting displacement is depicted in Figure 2 (left). We computed the relative displacement and the strain
intensity, which maximal values are of 5.7 % and 4.8 %, respectively: thus the small displacement and small strain
assumptions are both verified in this case. The parameter 7' has been chosen accordingly in order to respect these
assumptions. In Figure 2, the dual solutions for the quantities of interest J; (center) and J, (right) are represented.
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Region of interest

Fixed l

-

Fig. 1 Tongue model: initial geometry (left), fiber orientation (center) and region of interest (right).

(Homogeneous Dirichlet)

As mentioned in Remark 1, the dual solution z is used as a weight in the computation of the estimators, and
influences the local refinement.

0.580m 7:100+05 gy
0.435 / 5.320405

- 0.290 3560+40!
0.1 45I 1.786+0:
0.00 000

Fig. 2 Tongue model: displacement (left), dual solutions for J; (center) and for J, (right).

4.600+03 gy

3.45e+03

2.30e+0

1.15e+0:

0.00

We present the final mesh after 2 and 8 iterations of Algorithm 1 for both quantities of interest J; and J5, in Figure
3 and Figure 4, respectively. We first remark that the refinement occurs in some specific regions such as those near
Dirichlet-Neumann transitions and concavities on the boundary. Note as well that the refinement is stronger for J,
at the boundary of the region of interest ®,.

Fig. 3 Tongue mesh: refinement driven by the Qol J;. Initial mesh (left) with 426 cells and a relative error of 1.07e-2, adapted meshes
after 2 iterations (center) with 523 cells and a relative error of 2.82e-3 and after 8 iterations (right) with 5143 cells and a relative error
of 3.82e-05.

Figure 5 depicts the relative goal-oriented errors |J/; (w) —J; (wy)|/|J1 (w)| (left) and |J2(u) —J2(wy)|/|J2(u)| (right)
versus N, the number of cells of the mesh, both for uniform refinement (blue) and adaptive refinement (red). The
stopping criterion € has been fixed to 2e-4 and le-6, respectively. In each situation, we observe that, as expected,
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Fig. 4 Tongue mesh: refinement driven by the Qol J. Initial mesh (left) with 426 cells and a relative error of 2.51e-2, adapted meshes
after 2 iterations (center) with 766 cells and a relative error of 2.21e-3 and after 8 iterations (right) with 13513 cells and a relative error

of 2.44e-5.

adaptive refinement performs better: not only it leads to a lower error but it also converges much faster when the

number of cells N is increased.
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Fig. 5 Tongue model: relative error for the Qol J; (left) and J, (right) vs.
adaptive (red) refinement.
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N

the number N of cells in the case of uniform (blue) and

Finally in Figure 6 we depict the efficiency indices for the global estimator 7, and the sum of local estimators
Y« Nk For both quantities J; and J», the two estimators provide an estimation of the discretization error with an

efficiency index around 1. In the case of J,, we observe a slight
mation for 1p,.

overestimation for Y g Mg and a slight underesti-
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Fig. 6 Tongue model: efficiency indexes for 7n;, (blue) and Y x ng vs. the number N of cells for the Qol J; (left) and J, (right).

3.2 Human artery with fiber activation

As a second example we showcase the performance of the proposed algorithm for the analysis of the mechanical
response of an artery with vulnerable coronary plaque to internal loading. Rupture of the cap induces the formation
of a thrombus which may obstruct the coronary artery, cause an acute syndrome and the patient death. The geometry
(see Figure 7 (left)) comes from [70] where the authors develop a methodology to reconstruct the thickness of the
necrotic core area and the calcium area as well as the Young’s moduli of the calcium, the necrotic core and the
fibrosis. Their objective is the prediction of the vulnerable coronary plaque rupture. As represented in Figure 7
(left), the diameter of the Fibrosis is equal to 5 mm. Following [70], we set different elastic parameters in each
region: E = 0.011 MPa, v = 0.4 in the necrotic core and £ = 0.6 MPa, v = 0.4 in the surrounding tissue. No
volumetric force field is applied: f = 0. We consider muscle fibers only in the media layer, where smooth muscle
cells are supposed to be perfectly oriented in the circumferential direction e4 = eg, where (e,,eq) is the basis for
polar coordinates, see Figure 7 (center). Other parameters for fiber activation have been chosen as 7 = 0.01 MPa
and B = 1. As depicted in Figure 7 (right), the artery is fixed on the red portion of external boundary I'p. Elsewhere,
on the remaining part of the boundary, a homogeneous Neumann condition is applied: F = 0. In the same figure,
the green part represents the region of interest @. This choice is relevant in the study of vulnerable coronary plaque
rupture. As in the previous example, we computed the relative displacement and the strain intensity, which maximal
values are of 6.15 % and 0.3 %, respectively. This ensures that small displacement and small strain assumptions
are verified. Figure 8 depicts the magnitude of the solution in terms of displacements (left) and the dual solutions
associated to J; (center) and J, (right).

In Figure 9, we present the final mesh after 2 and 6 iterations of Algorithm 1 for the quantity of interest J;. As
in the previous example, the refinement occurs in some specific regions, such as those near Dirichlet-Neumann
transitions and concavities on the boundary. Our results also show that the proposed method leads to the strong
refinement near the interface between the necrotic core and the fibrosis, where stresses are localized because of the
material heterogeneity. Conversely to the previous example, the refined meshes obtained for J, (not depicted) are
very similar to those obtained for J;.

Figure 10 (left) depicts the relative goal-oriented error |J; (u) — J; (uy)|/]J; ()| versus the number N of cells in the
mesh, both for uniform refinement (blue) and adaptive refinement (red). The stopping criterion € has been fixed
at 5e-6. In Figure 10 (right), we depict the efficiency indices for the global estimator 7, and the sum of local
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Fig. 7 Artery model: geometry (left), fiber orientation (center) and region of interest (right).
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Fig. 8 Artery model: displacement (left), dual solution for J; (center) and for J, (right).
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Fig. 9 Artery mesh: refinement driven by the Qol J;. Initial mesh (left) with 1242 cells and a relative error of 3.83e-1, adapted meshes
after 2 iterations (center) with 2079 cells and a relative error of 5.25e-2 and after 6 iterations (right) with 15028 cells and a relative

error of 3.37e-3.

estimators ) g Ng. The same observations as in the previous example can be stated, and the estimators provide
acceptable value of the discretization error. Moreover 1, performs better though it still underestimates slightly the

error. Results we obtained for the quantity J, are very similar.
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Fig. 10 Artery model. Left: relative error for the Qol J; vs. the number N of cells in the case of uniform (blue) and adaptive (red)
refinement. Right: efficiency indexes of 1, (blue) and } g N vs. the number of cells N for the Qol J;.

4 Discussion

In the first part, we discuss about the ability of the proposed methodology to assess and reduce the discretization
error. In a second part, we comment on some further issues to improve and guarantee the accuracy of the error
estimator, and to optimize the mesh refinement algorithm. Finally we address the issue of tackling more complex
problems that arise in current practice for clinical biomechanics, and point out the main limitations of the current
study as well as some perspectives.

4.1 Towards quantification of the discretization error: first achievements

The numerical results obtained in the last section show the ability of the proposed framework to provide
relevant information about the discretization error: though the global estimator 1), provides only an approx-
imation of the error in the quantity of interest |J(u) — J(uy)|, this is often sufficient in practice. Moreover,
the local estimators ng provide a means to evaluate “relative” errors and thereby drive mesh refinement
(Algorithm 1). Both the local and global errors can be significantly reduced without much computational
effort. For instance, in the first test-case 3.1, and for Ji, the error is reduced by a factor of almost 4, after
two successive refinements, and with only 20 % of extra cells. In order to quantify more precisely the com-
putational gains provided by the adaptive procedure, the computational time required to compute the error
estimator and to regenerate or adapt the mesh should be thoroughly computed and analyzed, as was done for
three-dimensional fracture problems treated by enriched finite element methods [62].

Let us emphasize the well-known fact that sources of discretization errors are local, and concentrated mostly
in regions where the solution is not smooth, e.g. subjected to strong variations, discontinuities or singularities.
As a consequence, uniform refinement is highly suboptimal, while adaptive refinement performs much better by
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optimizing the number of elements, their size and location within the domain. Moreover, the proposed adaptive
procedure is fully automatic, and no a priori knowledge of the critical regions is needed. For goal-oriented error
estimation, the refined mesh obtained by the algorithm can in fact be counter-intuitive, because it is driven by the
sensitivity of the quantity of interest with respect to the local error. This sensitivity is obtained by solving the dual
problem (see for instance Figure 2 in Section 3.1) whose solution is, indeed, often not intuitive and difficult to
interpret from a physical viewpoint.

In comparison to widespread error techniques implemented in most of commercial finite element software, the
DWR technique allows to estimate and to improve the error for an arbitrary quantity of interest J. Each practitioner
can choose the relevant quantity of interest J and obtain an approximation of the error on this quantity of interest
|[/(u) —J(uy)|, as well as a map of the local error. The authors emphasize that the results obtained in the current
study also demonstrate that the optimal refinement strategy depends significantly on the choice of the quantity of
interest J. In general, such a goal-oriented refinement strategy leads to meshes which may differ significantly from
those obtained by minimizing the error in energy. Remark that such goal-oriented approaches were also developed
for the Zienkiewicz-Zhu error estimators [132] in [52, 53] and for explicit residual based estimates in [112] and
[130].

4.2 Some further mathematical / computational issues

It is desired that the global estimator 1), provide reliable information on the error in the quantity of interest |J(u) —
J(uy)|, providing quality measures to the user. In theory, this error is a guaranteed upper bound, with an explicit
constant equal to 1. Yet, the theory assumes that the dual solution z is exactly known. This is never the case in
practice as the dual problem is also solved using finite elements. Our numerical experiments show, however, that
|[J(w) — J(uy)| is estimated with reasonable accuracy and that the effectivity indices are close to 1, meaning that
the approximate error on the quantity of interest is close to the (unknown) exact error on this quantity.

The numerical experiments provided in this paper confirm those of the literature on DWR technique, e.g., [14, 50,
110] showing that the DWR is, in most situations, a reliable approach to compute goal-oriented error estimates.
However, in certain situations, the DWR estimator is not as reliable as desired, since the effect of approximating
the dual solution is difficult to control. This issue has been already pointed in the literature: see e.g. [29, 93, 4] and
earlier considerations in, e.g., [50, 10]. Especially, in [93] a simple situation where 7;, provides a poor estimation
on a coarse mesh is detailed. There is up to now no simple, cheap and general technique to address this issue,
but first solutions have been suggested in [29, 93, 4]. They consist in modifying the DWR estimator so as to take
into account the approximation of z. This is a stimulating perspective for further research. Moreover, the issue of
computing a cheaper approximation of z, without compromising the reliability and efficiency of the estimator still
needs to be addressed in depth.

Concerning mesh refinement, though the local estimator nx combined with Algorithm 1 provides acceptable re-
sults, no effort has been spent on finding the value of parameter & in the Dorfler marking that yields improved
refined meshes. On this topic, our global strategy for error estimation and mesh refinement is only a first attempt,
and can be improved. For instance, in [12], an adaptive method based on specific weighting of the residuals of the
primal and dual problems has been designed, and leads to quasi-optimal adapted meshes. Such a method could be
tested and compared to the current one.
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4.3 Applicability for patient-specific biomechanics ?

Though the preliminary results presented in this paper demonstrate the relevance and practicability of a posteriori
error estimators for providing quality control in quantities of interest to the biomechanics practitioner, and to drive
mesh adaptation, much effort is still needed for the approaches developed here to address practical, personalized,
clinically-relevant Finite Element (FE) simulations for biomechanical applications.

First, the compressible linear framework considered here is inadequate in practice and must be replaced by a fully
non-linear, incompressible, time and history dependent model [98]. Non-linearities also occur due to boundary
conditions, when, for instance, contact is present [33]. Moreover, most of the quantities of interest in biomechanics
are non-linear (norm of the displacements, local shear stress, maximum admissible stress and strain, etc). It is
important to point out here that the DWR method for goal-oriented error estimation is already capable of tackling
non-linearities: see, e.g., [14] for the general framework, and, e.g., [68, 129] for first applications in non-linear
elasticity and [112] for fracture mechanics. Nevertheless, this non-linear framework needs to be adapted and tested
in the specific case of hyperelastic soft-tissue.

The major limitation of our work is that it assumes that the mathematical model used to describe the biomechanics
problem is able to reproduce the physical reality. Unfortunately, in general, selecting the proper mathematical
model for a given biomechanics problem is probably the most challenging part of the simulation process. The
large, and increasing, number of papers dealing with the choice of constitutive model, for example, testifies for this
difficulty. For a wide range of problems, indeed, modeling errors are the most significant. Estimating rigorously
and systematically the impact of these errors is extremely challenging, in particular when dealing with patient-
specific simulations. Dealing with this issue is the focus of ongoing research in our teams but is far beyond the
scope of this paper.

We would nonetheless like to make the following remarks. The first problem which must be addressed is the choice
of a model (hyperelastic, viscous, porous, single/multi-scale...). The chosen model has parameters which must be
estimated through inverse analysis. Once estimates, or probability distributions for these parameters are available,
their importance on quantities of interest must be evaluated, through sensitivity analysis and uncertainty quantifi-
cation. The major difficulty is, therefore, to select the proper model, and its parameters for a given patient. As in
vivo experiments are in general not possible, data must be extracted as the patient is being treated, e.g. during an
operation. This can be done using Bayesian methods, which provide a reconciliation between expert knowledge on
patient cohorts (prior) and actual properties of a given patient [106, 105]. Real-time machine-learning-like methods
such as Kalman filters demonstrated as well promising results [82, 57]. To evaluate the effects of uncertainties on
such material parameters, accelerated Monte-Carlo methods are possible avenues of investigation [59]. An exciting
question is the comparative usefulness and combination of physical models (potentially learnt during medical treat-
ment) and machine-learning algorithms, mostly based on data acquired during the intervention. Last but not least,
note that the DWR method is based on optimal control principles, that makes it suitable for extensions to parameter
calibration (viewed as an optimal control problem). In such a setting, it allows to combine sensitivity analysis with
goal-oriented a posteriori error estimation, see [15]. In the same spirit, the interplay between a posteriori error
estimation and uncertainty quantification has been object of recent research interests [40, 56].

We also note that if users can obtain some estimate, even rough, of modeling errors, they will also be able to
compare discretization and model errors. This enables the coarsening of the mesh if the discretization error is
unnecessarily small in comparison to the modeling error as is done, e.g. in [5] and [120, 23, 121, 118, 122] for
adaptive scale selection. Conversely, for specific applications where modeling errors are small or moderate, the
mesh can be refined efficiently to increase the precision.

With our methodology, practitioners spending a large amount of time and effort in patient-specific mesh
generation can obtain useful information on the impact of the quality of the mesh on quantities of interest to
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them. This information goes well beyond purely geometrical criteria for the regularity of the elements which
are typically provided in commercial software.

This information can be used directly to optimize the choice of the discretization/mesh in view of minimizing
the error on a specific quantity of interest. Fast/real-time numerical methods which provide real-time predictions
have been intensively researched since the beginning of the 1990’s. Those approaches are critical to build surgical
planning and guidance tools, for example. Reliable error estimation is critical in these situations to guarantee the
accuracy, but has been extremely scarcely addressed in the literature. As a first step in this direction, the recent
work of [25] provides a real-time mesh refinement algorithm for needle insertion. Mesh refinement is driven by
a ZZ error estimate, for the global norm. It would be interesting to extend such a method for goal-oriented error
estimation, e.g. on the motion of a target, or reaction/friction force along the needle shaft.

We should also mention alternative approaches to (implicit, standard) finite elements for fast nonlinear finite ele-
ment analysis: for instance the solution of total lagrangian formulation of the equilibrium equations on graphics
processing unit for neurosurgical simulation [64, 63, 65], or model order reduction techniques for the real-time,
interactive simulation of tissue tearing during laparoscopic surgery [90, 91, 103]. A perspective consists in extend-
ing the current framework to such numerical methods where error control is particularly challenging. For explicit
approaches, the interplay between the choice of the time-step and that of the mesh size is a difficult topic, es-
pecially for domains with significant stiffness differences where adaptive and multi-time-step schemes should be
investigated.
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