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Random walk on random walks: low densities

We consider a random walker in a dynamic random environment given by a system of independent simple symmetric random walks. We obtain ballisticity results under two types of perturbations: low particle density, and strong local drift on particles. Surprisingly, the random walker may behave very differently depending on whether the underlying environment particles perform lazy or nonlazy random walks, which is related to a notion of permeability of the system. We also provide a strong law of large numbers, a functional central limit theorem and large deviation bounds under an ellipticity condition.

Introduction and main results

s:intro

The present article is a continuation of the works [START_REF] Blondel | Random walk on random walks: higher dimensons[END_REF][START_REF] Hilário | Random walk on random walks[END_REF] concerning the behaviour of a random walker in a dynamic random environment (RWDRE) given by a system of independent simple symmetric random walks. These works are focused on the high density regime in one and higher dimensions, respectively. Here we will consider the low density regime in one dimension, and also the case of a strong local drift on particles. As indicated in [START_REF] Blondel | Random walk on random walks: higher dimensons[END_REF][START_REF] Hilário | Random walk on random walks[END_REF], the main challenge in this model stems from the relatively poor mixing properties of the random environment. In fact, these properties become even worse as the density decreases, which poses additional difficulties in our setting. A brief overview of connections to the literature will be given in Section 1.1 below.

Let us introduce the environment over which we will define our random walker. Let Z + := N ∪ {0} where N is the set of positive integers. Fix ρ > 0 and let (N (x, 0)) x∈Z 1 be an i.i.d. collection of Poisson(ρ) random variables. Let (S z,i ) z∈Z,i∈N be a collection of simple symmetric random walks on Z, independent of (N (x, 0)) x∈Z and such that (S z,i -z) z∈Z,i∈N are centered, independent and identically distributed. We call S z,i with i ≤ N (z, 0) a particle. We then let N (x, t) := z∈Z,i≤N (z,0) 1 {S z,i t =x} , i.e., N (x, t) is the number of particles present at the space-time point (x, t).

To define the random walker X = (X t ) t∈Z + , let p • , p • ∈ [0, 1]. For a fixed realization of N = (N (x, t)) x∈Z,t∈Z + , X is defined as the time-inhomogeneous Markov chain on Z that starts at 0 and, when at position x at time t, jumps to x + 1 with probability

p • if N (x, t) = 0, or p • if N (x, t) ≥ 1,
(1.1) e:defX and jumps to x-1 otherwise. The parameters p • , p • ∈ [0, 1] thus represent the chance for random walker to jump to the right in the absence (respectively, presence) of particles.

It will be also convenient to define the local drifts

v • := 2p • -1, v • := 2p • -1. (1.
2)

The case v • v • > 0 is called non-nestling and has already been treated in [START_REF] Hilário | Random walk on random walks[END_REF]. Here, we will focus on the case

v • ≤ 0 < v • , (1. 
3) e:assumpvel meaning that random walker has a local drift to the right on empty sites, and no drift to the right on sites occupied by particles. An important parameter in our analysis will be q 0 := P (S 0,1 1 = 0) ∈ [0, 1).

(1.4) e:defq˙0

When q 0 > 0 we say that the random walks S z,i are lazy. Surprisingly, the asymptotic behaviour of the random walker may strongly depend on whether q 0 = 0 or q 0 > 0. Indeed, for small values of p • , the random walker may develop a positive speed if q 0 > 0 and a negative one if q 0 = 0. This is related to a notion of permeability: if p • = q 0 = 0, the random walker cannot cross any particles that it meets to the right, and we say that the system is impermeable to the random walker. If either p • or q 0 are positive, it is possible for the walker to cross particles in both directions, and we call the system permeable.

Let P ρ denote the joint law of N and X for a fixed density ρ > 0. In order to describe our results, we introduce the following condition: e:defBAL Definition 1.1 (Ballisticity condition). Fixed ρ, p • , p • , q 0 and given v = 0, we say that the ballisticity condition with speed v is satisfied if there exist γ > 1 and c 1 , c 2 ∈ (0, ∞) such that

P ρ ∃ n ∈ N : v |v | X n < |v |n -L ≤ c 1 exp {-c 2 (log L) γ } ∀ L ∈ N.
(1.5) e:BAL Condition (1.5) is reminiscent of ballisticity conditions from the literature of random walks in static random environments such as Sznitman's (T ) condition (cf. [START_REF] Sznitman | An effective criterion for ballistic behavior of random walks in random environment[END_REF]). Such a condition provides control on the backtracking probability of the random walker that can be very useful in obtaining finer asymptotic results, see e.g. Theorem 1.4 below. Note that, if ρ = 0 (i.e., if no particles are present), the random walker has a global drift v • , which is positive under (1.3). Our first ballisticity result states that, in the permeable case, perturbations around ρ = 0 still lead to a positive speed.

t:ballisticity˙permeable

Theorem 1.2. Assume (1.3) and p • ∨ q 0 > 0. There exist ρ = ρ (p • , p • , q 0 ) > 0 and v = v (p • , p • , q 0 ) > 0 such that, for any ρ ≤ ρ , (1.5) holds with γ = 3/2.

Our second ballisticity result shows a radically distinct behaviour for perturbations of p • around the impermeable case.

allisticity˙impermeable Theorem 1.3. Assume q 0 = 0. For any p • ∈ [0, 1], ρ > 0 and γ ∈ (1, 3/2), there exist v = v (ρ) < 0 and p = p (p • , ρ, γ) ∈ (0, 1) such that, if p • ≤ p , then (1.5) holds.
Theorem 1.3 may be seen as a manifestation of particle conservation in our dynamic random environment. Indeed, when q 0 = 0, this conservation forces the random walker to interact with environment particles that it crosses; see Section 4.2.

The difference in the ballistic behaviour of the two cases is illustrated by the phase diagrams in Figure 1.

Lazy environment

Non-lazy environment As already mentioned, the ballisticity condition (1.5) can be used to study further asymptotic properties of the random walker. The following theorem summarizes new results as well as previous results from [START_REF] Hilário | Random walk on random walks[END_REF]. 2. (Functional central limit theorem) Under P ρ , the sequence of processes

0 0 1 1 p • p • ρ ρ v > 0 v < 0
t:limits˙permeable Theorem 1.4. Fix 0 ≤ p • < p • ≤ 1, ρ ≥ 0, q 0 ∈ [0, 1) and assume that (1.5) holds with v = 0. Assume additionally that a) p • > 0 if v > 0 (1.6) e:ASSLIM1 or b) p • < 1 if v < 0. (1.7) e:ASSLIM2 Then there exist v = v(p • , p • , q 0 , ρ) ∈ R and σ = σ(p • , p • , q 0 , ρ) ∈ (0, ∞) satisfying vv > 0,
X nt -nt v σ √ n t≥0
, n ∈ N, (1.9) e:FCLT˙perm converges in distribution as n → ∞ (with respect to the Skorohod topology) to a standard Brownian motion.

3. (Large deviation bounds) For any ε > 0, there exist constants c 1 , c 2 > 0 such that

P ρ X n n -v > ε ≤ c 1 e -c 2 (log n) γ ∀ n ∈ N. (1.10) e:LD˙perm
At this point, a few remarks are in order:

1. Theorems 1.2 and 1.3 are proved with the help of a renormalization scheme taken from [START_REF] Blondel | Random walk on random walks: higher dimensons[END_REF]. In fact, given the setup developed therein, our problem is reduced to proving two triggering theorems, which are key a priori estimates on the probability of certain undesired events (cf. Section 3). This step is here much more involved than in the highdensity regime considered in [START_REF] Blondel | Random walk on random walks: higher dimensons[END_REF][START_REF] Hilário | Random walk on random walks[END_REF]: for Theorem 1.2, it is proved through a careful analysis of the behaviour of X under decreasing densities and, for Theorem 1.3, by comparison with the front of an infection model (cf. Section 4).

2. Theorem 1.4 is proved via a regeneration argument as in [START_REF] Hilário | Random walk on random walks[END_REF]. Note that the assumption p • > p • implies no loss of generality. The conditions on p • , p • in items a) and b) can be seen as ellipticity assumptions, as they allow the random walk to take jumps in the direction of v independently of the environment. Under b), the conclusion already follows from [START_REF] Hilário | Random walk on random walks[END_REF]Theorem 1.4] (and reflection symmetry); in this case, the ellipticity condition can be in fact relaxed using techniques from the proof of [START_REF] Blondel | Random walk on random walks: higher dimensons[END_REF]Theorem 5.2]. The proof of the theorem under a) will be given in Section 5 below. The control of the regeneration time is here different, as the asymmetry in law of occupied/empty sites in the random environment leads to different monotonicity properties once the roles of p • and p • are exchanged (cf. Section 5.1). We are presently unable to extend this analysis to the non-elliptic case, i.e., when p • = 0.

3. Under the conditions of Theorems 1.2 and 1.4, it is possible to show that the speed v in (1.8) above is a continuous function of ρ in the interval [0, ρ] (cf. Remark 4.8 of [START_REF] Hilário | Random walk on random walks[END_REF]). In particular, for fixed p • > 0, v → v • as ρ → 0. When p • = 0, we also expect that v in Theorem 1.2 may be taken arbitrarily close to v • by making ρ sufficiently small, but we are currently not able to prove this.

4.

Our results could be presumably extended to higher dimensions and more general transition kernels, but extra work would be required. The approach of [START_REF] Blondel | Random walk on random walks: higher dimensons[END_REF] does not help here, the problem being again the asymmetry between occupied/empty sites in the environment. For 2-state transition kernels, the approach of [START_REF] Bethuelsen | Law of large numbers for random walks on attractive spin-flip dynamics[END_REF] could be possibly made to work, however several technical steps would need to be adapted.

5.

A crossover from positive to negative speed of a RWDRE is also obtained in [START_REF] Huveneers | Random walk driven by the simple exclusion process[END_REF], where the random environment is a simple symmetric exclusion process. The transition is observed when varying the jump speed of the exclusion particles. We also mention [START_REF] Avena | A class of random walks in reversible dynamic environments: antisymmetry and applications to the East model[END_REF], where very interesting symmetry properties of the speed are obtained (in particular for the case where the environment is given by the East model).

The rest of the paper is organized as follows. A short overview of the literature in our context is provided next in Section 1.1. Technical statements start in Section 2, where we provide a convenient construction of our model. Theorems 1.2-1.3 are proved in Section 3 by application of a renormalization setup from [START_REF] Blondel | Random walk on random walks: higher dimensons[END_REF]; the proof relies on two triggering theorems that are in turn proved in Section 4. Finally, in Section 5 we prove Theorem 1.4 by means of a regeneration argument.

Connections to the literature ss:connections

Models of random walks in random environments have been studied since many years. The setup of the present paper fits in the context of RWDRE in interacting particle systems, as introduced in [START_REF] Avena | Large deviation principle for onedimensional random walk in dynamic random environment: Attractive spin-flips and simple symmetric exclusion[END_REF][START_REF] Avena | Law of large numbers for a class of random walks in dynamic random environments[END_REF]. One motivation for RWDRE in one dimension comes from the static version (i.e., where the environment is constant in time), which is known to exhibit, in some regimes, anomalous behaviour such as transience with zero speed [START_REF] Solomon | Random walks in a random environment[END_REF] and non-diffusive scalings [START_REF] Kesten | A limit law for random walk in a random environment[END_REF], in sharp contrast to usual homogeneous random walks. These phenomena are related to trapping effects, whereby regions of the lattice with atypical environment configurations tend to hold the random walker for abnormally large times. Since in the dynamic case the trapping regions may disappear, the question is raised of whether the phenomena remain. This question is up to now only partially answered in the literature, mostly by identifying regimes with no anomalous behaviour. For example, [START_REF] Avena | Lˆ2-perturbed Markov processes and applications to random walks in dynamic random environments[END_REF][START_REF] Avena | Law of large numbers for a class of random walks in dynamic random environments[END_REF][START_REF] Bethuelsen | Absolute continuity and weak uniform mixing of random walk in dynamic random environment[END_REF][START_REF] Hollander | Law of large numbers for non-elliptic random walks in dynamic random environments[END_REF][START_REF] Redig | Random walks in dynamic random environments: a transference principle[END_REF] identify general conditions under which laws of large numbers and central limit theorems hold, and [START_REF] Avena | A class of random walks in reversible dynamic environments: antisymmetry and applications to the East model[END_REF][START_REF] Avena | Transient random walk in symmetric exclusion: limit theorems and an Einstein relation[END_REF][START_REF] Hollander | Scaling of a random walk on a supercritical contact process[END_REF][START_REF] Mountford | Random walks generated by equilibrium contact processes[END_REF][START_REF] Huveneers | Random walk driven by the simple exclusion process[END_REF] study particular examples. We also mention the works [START_REF] Avena | Symmetric exclusion as a random environment: hydrodynamic limits[END_REF][START_REF] Avena | Large deviation principle for onedimensional random walk in dynamic random environment: Attractive spin-flips and simple symmetric exclusion[END_REF][START_REF] Avena | Explicit LDP for a slowed RW driven by a symmetric exclusion process[END_REF][START_REF] Campos | Level 1 quenched large deviation principle random walk in dynamic random environment[END_REF][START_REF] Orenshtein | Zero-one law for directional transience of onedimensional random walks in dynamic random environments[END_REF][START_REF] Dos | Non-trivial linear bounds for a random walk driven by a simple symmetric exclusion process[END_REF], concerning other asymptotic results. For further discussion, we refer the reader to [START_REF] Blondel | Random walk on random walks: higher dimensons[END_REF][START_REF] Hilário | Random walk on random walks[END_REF] and the references therein. was carried on while MH was on a sabbatical year on the University of Geneva. He thanks the mathematics department of this university for the financial support. OB and AT thank the University of Geneva for hospitality and financial support.

Construction

s:construction

In this section, we provide a convenient construction of our random environment and our random walker by means of a point process of trajectories as in [START_REF] Hilário | Random walk on random walks[END_REF].

Define the set of doubly-infinite trajectories

W = w : Z → Z : |w(i + 1) -w(i)| ≤ 1 ∀ i ∈ Z . (2.

1) e:def˙W

Note that trajectories in W are allowed to jump to the left, jump to the right, or stay put. We endow the set W with the σ-algebra W generated by the canonical coordinates w → w(i), i ∈ Z. Let (S z,i ) z∈Z,i∈N be a collection of independent random elements of W , with each S z,i = (S z,i ) ∈Z distributed as a double-sided simple symmetric random walk on Z started at z, i.e., the past (S z,i -) ≥0 and future (S z,i ) ≥0 are i.i.d. and distributed as a simple symmetric random walk satisfying (1.4).

For a subset K ⊂ Z 2 , denote by W K the set of trajectories in W that intersect K, i.e., W K := {w ∈ W : ∃ i ∈ Z, (w(i), i) ∈ K}. We define the space of point measures

Ω = ω = i δ w i ; w i ∈ W and ω(W {y} ) < ∞ for every y ∈ Z d × Z , (2. 
2) e:Omega endowed with the σ-algebra generated by the evaluation maps ω → ω(W K ), K ⊂ Z 2 . For a fixed initial configuration η = (η(x)) x∈Z ∈ Z Z + , we define the random element

ω := z∈Z i≤η(z) δ S z,i ∈ Ω (2.
3) e:defomega and, for y ∈ Z 2 , we set N (y) := ω(W {y} ).

(2.4) e:defN

Let U = (U y ) y∈Z be i.i.d. Uniform[0, 1] random variables independent of ω. We define the space-time processes

Y y = (Y y n ) n∈Z + , y ∈ Z 2 by setting Y y 0 = y, Y y n+1 = Y y n + 21 {U Y y n ≤p•} -1, 1 if N (Y y n ) = 0, 21 {U Y y n ≤p•} -1, 1 if N (Y y n ) ≥ 1, n ∈ Z + . ( 2 

.5) e:defY

For y = (x, t) ∈ Z 2 , we define the random walkers X y = (X y n ) n∈Z + by the relation Y y n = (X y n , n + t), i.e., X y n is the spatial projection of Y y n . Writing X = X 0 , one may check that the pair (N, X) has indeed the distribution described in Section 1.

For η ∈ Z Z

+ fixed, we denote by P η the joint law of ω and U = (U y ) y∈Z d ×Z . For ρ > 0, denote by ν ρ the product Poisson(ρ) law on Z Z + . We write P ρ = P η ν ρ (dη), i.e., P ρ is the joint law of ω and U when η is distributed as ν ρ . Our configuration space will be taken as Ω := Ω × [0, 1] Z d ×Z , equipped with the product σ-algebra.

An important observation is that, under P ρ , ω is a Poisson point process on Ω with intensity measure ρµ, where µ =

z∈Z d P z (2.
6) e:defmu and P z is the law of S + z as an element of W . Note that, under P ρ , the law of (ω, U ) is invariant with respect to space-time translations; in particular, the law of Y y -y does not depend on y.

We will need the following definition.

d:monotone Definition 2.1. For ω, ω ∈ Ω, we say that ω ≤ ω when ω(A) ≤ ω (A) for all A ∈ W.
We say that a random variable f :

Ω → R is non-decreasing when f (ω, ξ) ≤ f (ω , ξ) for all ω ≤ ω and all ξ ∈ [0, 1] Z 2 . We say that f is non-increasing if -f is non-decreasing.
We extend these definitions to events A in σ(ω, U ) by considering f = 1 A . Standard coupling arguments imply that E ρ (f ) ≤ E ρ (f ) for all non-increasing random variables f and all ρ ≤ ρ .

r:monotone

Remark 2.2. The above construction provides two forms of monotonicity: (i) Initial position: If x ≤ x have the same parity (i.e., x -x ∈ 2Z), then In this section, we apply the renormalization setup from Section 3 of [START_REF] Blondel | Random walk on random walks: higher dimensons[END_REF] to reduce the proof of our main results to the following two triggering statements:

X (x,n) i ≤ X (x ,n) i ∀ n ∈ Z ∀ i ∈ Z + . (2.7) 
(ii) Environment: If v • ≥ v • ,
t:triggerperm Theorem 3.1. Assume p • ∨ q 0 > 0. There exists c = c(p • , p • , q 0 ) > 0 such that P L -1/16 (X L < L 15/16 ) ≤ c exp -c -1 (log L) 2 ∀ L ∈ N. (3.
1) e:triggerperm t:triggerimperm Theorem 3.2. Assume q 0 = 0. For any ρ > 0, there exist v = v(ρ) < 0 and c > 0 such that the following holds. For any L ∈ N, there exists

p = p (ρ, p • , L) ∈ (0, 1) such that, if p • ≤ p , then P ρ X L > v L ≤ c exp -c -1 (log L) 3/2 . (3.
2) e:triggerimperm

The proof of Theorems 3.1-3.2 will be given in Section 4. Next we use [10, Corollary 3.11] to show how these two theorems respectively imply Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Define a local function g

: Ω → [-1, 1] by setting g(ω, U ) = 1, if U 0 < p • , or if N (0) = 0 and U 0 < p • , -1, if U 0 ≥ p • or if N (0) > 0 and U 0 ≥ p • , (3. 
3) e:defg i.e., the function g returns the first step of the random walker X 0 for a given realization of ω, U . Then we define a function H : Ω × Z → {0, 1} by

H (ω, U ), z = 1 {g(ω,U )=z} . (3.4) e:defH
In words, H decides whether a jump z is correct (H = 1) or not (H = 0) for a given realization of ω, U according to whether the actual random walk X 0 would take z as its first jump or not. Recall now the definition of a (0, L, H)-crossing in the paragraph after equation (3.41) of [START_REF] Blondel | Random walk on random walks: higher dimensons[END_REF], and note that i.e., the only (0, L, H)-crossings are the trajectories of the RWDRE with initial position in {0, . . . , L}. Recall also the definition of averages along a crossing σ,

σ : [0, ∞) ∩ Z → Z is a (0, L, H)-
χ g σ (ω, U ) := 1 L n+L-1 i=n g(θ (σ(i),i) (ω, U )), (3.6) 
to note the following correspondence between events: for any L ∈ N, v > 0,

∃ (0, L, H)-crossing σ : χ g σ ≤ v = ∃ x ∈ {0, . . . , L -1} : X (x,0) L -x ≤ vL . (3.7) e:equalityevents
Since, for v ∈ (0, 1),

P L -1/16 ∃ n ≥ 1 : X 0 n < v n -L ≤ P L -1/16 ∃ n ≥ L/2 : X 0 n ≤ v n , (3.8 
) e:prthmbalperm1

we only need to bound the right-hand side for some v ∈ (0, 1). Now, by (3.7), translation invariance and Theorem 3.1, for all L large enough,

P L-1/16 ∃ a (0, L, H)-crossing σ with χ g σ ≤ L-1/16 ≤ LP L-1/16 X 0 L ≤ L15/16 Theorem 3.1 ≤ c L exp -c -1 (log L) 2 < exp(-(log L) 3/2 ). (3.9) 
Noting that the events in (3.7) are measurable in σ(N (y), U y :

y ∈ B 0,L ) (where B 0,L := ([-2L, 3L) × [0, L)) ∩ Z 2 )
, and are non-decreasing by (1.3), we verify the assumptions of Corollary 3.11 in [START_REF] Blondel | Random walk on random walks: higher dimensons[END_REF] (taking v(L) = ρ(L) = L -15/16 , and L = L k for some k large enough), obtaining v ∈ (0, 1), ρ > 0 and c > 0 such that, for all ρ ≤ ρ ,

P ρ X 0 n ≤ v n ≤ P ρ ∃ a (0, n, H)-crossing σ with χ g σ ≤ v ≤ c -1 exp -c(log n) 3/2 (3.10)
for all n ∈ Z + . To conclude, sum over n ≥ L/2 and apply the union bound to (3.8).

Proof of Theorem 1.3. This time, we define g : Ω → [-1, 1] as Denote by X y t the first coordinate of Y y t . Note that, by invariance in law of ω under reflection through the origin, X y has the same distribution as -X y . Setting H : Ω×Z → {0, 1} as in (3.4), we analogously obtain (3.5)-(3.7) with X substituted by X.

g(ω, U ) = -1, if U 0 < p • ∧ p • , or if ω(W 0 ) = 0 and U 0 < p • ,
Fix now γ ∈ (1, 3/2) and take k o as in Corollary 3.11 of [START_REF] Blondel | Random walk on random walks: higher dimensons[END_REF]. Fix ρ > 0 and consider an auxiliary density ρ > 0, to be fixed later. For this ρ, let v < 0 as in Theorem 3.2; we may assume that |v| < 1. Fix k ≥ k o , p • ∈ [0, 1] and let p be as in Theorem 3.2 for L = L k. Reasoning as in the proof of Theorem 1.2, we see that, if p • ≤ p , then 

P ρ ∃ a (0, L, H)-crossing σ with χ g σ ≤ |v| ≤ LP ρ X 0 L ≥ Lv Theorem 3.2 ≤ c L exp -c -1 (log L) 3/2 < exp(-(log L) γ ) (3.

Permeable systems at low density ss:trigger˙perm

Throughout this section, we assume p • ∨ q 0 > 0 (and

v • > 0 ≥ v • ).
As mentioned in the introduction, we call this case permeable since the random walker is able to cross over particles of the environment. The usefulness of this condition comes from the fact that X may be coupled with an independent homogeneous random walk X with drift v • (which we call a "ghost walker") such that, whenever the initial configuration η consists of at most one particle that is not at the origin, there is a positive probability that X n = Xn for all n ∈ Z + . In fact, we will show that this probability decays at most exponentially in the number of particles of the environment. This suggests the following strategy: whenever a "ghost walker" is started to the left of X, it can "push" X to the right. This may happen with small probability but, if enough time is given, many trials are possible and so there is a large probability that at least one of them succeeds.

In order to implement this idea, we work first in a time scale at which typical empty regions in the initial configuration remain empty, and the number of particles between such regions is relatively small. This ensures that X does not move very far to the left, and that the "ghost walkers" do not meet too many particles on their way. The original scale is then reached via translation-invariance and a union bound.

We proceed to formalize the strategy outlined above. In the following, we state two propositions which will then be used to prove Theorem 3.1. Their proofs are postponed to Sections 4.1.1-4.1.2 below.

First of all we define the ghost walkers. For (x, t) ∈ Z 2 , put X(x,t)

0 := x, X(x,t) s+1 := X(x,t) s + 1 if U ( X(x,t) s ,s+t) ≤ p • , -1 otherwise. s ∈ Z + . (4.1) defbarXxt Then X(x,t) is a simple random walk with drift v • started at x. For T ∈ [0, ∞], let G (x,t) T := X (x,t) s = X(x,t) s ∀s ∈ [0, T ] (4.
2) defGinfty be the good event where the random walk X (x,t) follows X(x,t) up to time T . A comparison between X and X(x,t) on this event is given by the next lemma.

l:compbarX Lemma 4.1. Fix (x, t) ∈ Z 2 with x ∈ 2Z. If X t ≥ x and G (x,t) T occurs, then X t+s ≥ X(x,t) s for all s ∈ [0, T ].
Proof. Follows from Remark 2.2(i) and the definitions of X, X, G (x,t) T .

To set up the scales for our proof, we fix α, β, β ∈ (0, 1) satisfying

0 < α 2 < β < β < α < 2β < 1 8 (4.
3) e:relationscales and we let

T i := i2 2v -1 • L β , i ∈ [0, M L ] ∩ Z where M L := 1 4 v • L α-β , (4.4) 
L := L β . (4.5)
We assume that L is large enough so that L , M L ≥ 1.

If p • = 0, it is not possible to couple X (x,t) 1 and X(x,t)

1
if there is a particle at (x, t). Thus, if we aim to control G (x,t) T , we should have N (x, t) = 0. To that end, define

Ẑ := max {z < -2 L : N (x, 0) = 0 ∀ x ∈ Z, |x -z| ≤ 2 L } (4.6) e:defhatz
to be the center of the first interval of 4 L + 1 empty sites to the left of the origin in the initial configuration. Then set

X -:= Ẑ -L if Ẑ -L ∈ 2Z, Ẑ -L + 1 otherwise. (4.7) e:defx- Note that X -∈ 2Z.
In order to use Lemma 4.1, we must control the probability that X crosses X - before time L α . This is the content of the following proposition, whose proof relies on standard properties of simple random walks and Poisson random variables.

p:lowerestimate Proposition 4.2. There exist c, ε > 0 such that, for all large enough L ∈ N,

P L -1 16 min 0≤s≤L α X s < X -≤ ce -c -1 L ε . (4.8) e:lowerestimate
The next proposition shows that, with large probability, one of the G (X -,T i ) T 1 's occurs. Its proof depends crucially on the permeability of the system. p:crossingtraps Proposition 4.3. There exists c > 0 such that, for all large enough L ∈ N,

P L -1 16   i∈[0,M L -1] G (X -,T i ) T 1 ∩ { X(X -,T i ) T 1 ≥ L β }   ≥ 1 -ce -c -1 (log L) 2 .
(4.9) e:crossingtraps

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. First we argue that, for some constant c > 0,

P L -1 16 sup 0≤s≤L α X s < L β ≤ ce -c -1 (log L) 2 ∀ L ∈ N. (4.10) pptrigger0
Indeed, by Lemma 4.1, the complement of the event in (4.10) contains the event

min 0≤s≤L α X s ≥ X - i∈[0,M L -1] G (X -,T i ) T 1 ∩ { X(X -,T i ) T 1 ≥ L β },
which by Propositions 4.2-4.3 has probability at least 1 -ce -c -1 (log L) 2 . Now let σ k be the sequence of random times when the increments of X are at least L β , i.e., σ 0 := 0 and recursively

σ k+1 := inf{s > σ k : X s -X σ k ≥ L β }, k ≥ 0. ( 4 

.11) defsigma

Setting K := sup{k ≥ 0 : σ k ≤ L}, we obtain

X L = K-1 i=0 X σ i+1 -X σ i + X L -X σ K ≥ KL β -(σ K+1 -σ K ). (4.12) pptrigger1
On the event

B L := {σ k+1 -σ k ≤ L α ∀ k = 0, . . . , K}, (4.13) defAL
we have K ≥ L 1-α -1. Therefore, by (4.12), on B L we have

X L ≥ L 1-α+β -L β -L α ≥ L 15 16 
(4.14) pptrigger2

for large L since 1 -α + β > 15/16 > α > β. Thus we only need to control the probability of B L . But, by the definition of X,

P L -1 16 (B c L ) ≤ P L -1 16 ∃ (x, t) ∈ [-L, L] × [0, L] : sup s∈[0,L α ] X (x,t) s < L β ≤ cL 2 P L -1 16 sup 0≤s≤L α X s < L β ≤ ce -c -1 (log L) 2 , (4.15) pptrigger3
where we used a union bound, translation-invariance and (4.10). This completes the proof of Theorem 3.1.

Proof of Proposition 4.2 roofproplowerestimate

Recall the definition of Ẑ in (4.6). The idea behind the proof of Proposition 4.2 is that, with our choice of scales, the interval [ Ẑ -L , Ẑ + L ] remains empty throughout the time interval [0, L α ]. Since inside this interval X behaves as a random walk with a positive drift, it avoids X -≤ Ẑ -L + 1 with large probability. We first show that Ẑ -2 L ≥ -L β with large probability.

l:estimateE-Lemma 4.4.

P L -1 16 Ẑ -2 L < -L β ≤ ce -c -1 L β-β . (4.16) e:estimateE-
Proof. We may assume that L is large enough. Let E 0 := 0 and recursively 16 ) random variables. Let

E k+1 := max{z < E k : N 0 (z) > 0}, k ≥ 0. (4.17) defEk Then (E k -E k+1 ) k≥0 are i.i.d. Geom(1 -e -L - 1 
K := inf{k ≥ 0 : |E k+1 -E k | > 4 L }. ( 4 

.18) defK

Then K + 1 has a geometric distribution with parameter e -4 L L 1/16 . Thus

P L -1 16 K + 1 > 1 4 L β-β ≤ (1 -e -4L -(1/16-β ) ) 1 4 L β-β ≤ 4 1 4 L β-β e -1 4 (1/16-β )L β-β log L ≤ ce -c -1 L β-β . (4.19) e:estimK Since | Ẑ -2 L | ≤ 4 L (K + 1), P L -1 16 Ẑ -2 L < -L β ≤ P L -1 16 K + 1 > 1 4 L β-β ≤ ce -c -1 L β-β (4.
20) e:estimE+ by (4.19). This finishes the proof.

Next we show that, with large probability, the particles of the random environment do not penetrate deep inside the empty region up to time L α . Let

E L := {N (y) = 0 ∀ y ∈ [ Ẑ -L , Ẑ + L ] × [0, L α ]}.
(4.21) defcB1 l:noparticles Lemma 4.5. There exists c > 0 such that

P L -1 16 (E c L ) ≤ ce -1 c L (β-β )∧(2β -α) . ( 4 

.22) e:noparticles

Proof. For x ∈ Z, the random variable

N L (x) := z / ∈[x-2 L ,x+2 L ] i≤N (z,0) 1 {∃ s∈[0,L α ] : S z,i s ∈[x-L ,x+ L ]} (4.23) defNLx has a Poisson distribution with parameter λ L (x) := L -1 16 z / ∈[x-2 L ,x+2 L ] P (∃ s ∈ [0, L α ] : S z,1 ∈ [x -L , x + L ]), (4.24) parameterNLx 
where S z,1 is a simple symmetric random walk started at z as defined in the introduction. By standard random walk estimates, we have 

λ L (x) ≤ 2 k> L P sup s∈[0,L α ] |S 0,1 s | ≥ k ≤ c k> L β e -k 2 cL α ≤ cL α e -c -1 L 2β -α . ( 4 
P L -1 16 N L ( Ẑ) > 0 ≤ P L -1 16 Ẑ < -L β + P L -1 16 ∃ x ∈ [-L β , 0] : N L (x) > 0 ≤ ce -c -1 L (β-β ) + cL β sup x λ L (x) ≤ ce -1 c L (β-β )∧(2β -α) . (4.26) e:nopart1 Since N (z, 0) = 0 for all z ∈ [ Ẑ -2 L , Ẑ + 2 ] by definition, N L ( Ẑ) is equal to the total number of particles that enter [ Ẑ -L , Ẑ + L ] × [0, L α ].
This completes the proof.

Let now, for t ∈ N,

H (t) + := inf{s ≥ 0 : X ( Ẑ,t) s -Ẑ = L }, H (t) - := inf{s ≥ 0 : X ( Ẑ,t) s -Ẑ = -L + 1} (4.27) defhittimes
be the times when the random walk X ( Ẑ,t) hits the sites Ẑ + L or Ẑ -L + 1. Let

D L := {H (t) -> H (t) + ∧ (L α -t) ∀ t ∈ [0, L α ]}. (4.28) defcDL
The last lemma of this section shows that also D L has large probability.

l:blockevent Lemma 4.6.

P L -1 16 (D c L | E L ) ≤ ce -c -1 L β . (4.29) e:blockevent
Proof. Fix t ∈ [0, L α ] and note that, on the event E L , X

( Ẑ,t) s -Ẑ is up to time H (t) + ∧ H (t) -∧ (L α -t) equal to X( Ẑ,t) s -Ẑ.
The latter is a random walk with drift v • > 0, so by standard estimates we obtain

P L -1 16 H (t) -≤ H (t) + ∧ (L α -t) E L ≤ P L -1 16 inf s≥0 X( Ẑ,t) s -Ẑ ≤ -L + 1 ≤ ce -c -1 L ≤ ce -c -1 L β . (4.30) pblockevent1
The proof is completed using (4.30) and a union bound over t ∈ [0, L α ].

With Lemmas 4.4-4.6 at hand we can finish the proof of Proposition 4.2.

Proof of Proposition 4.2. By Lemmas 4.5-4.6,

P L -1 16 (D L ) ≥ 1 -ce -c -1 L ε (4.31) e:pproplowerestim where ε := β ∧ (β -β ) ∧ (2β -α). The proof is finished by noting that, since X must hit Ẑ in order to reach Ẑ -L + 1 ≥ X -, if D L occurs then X s ≥ X -∀ s ∈ [0, L α ].

Proof of Proposition 4.3 proofpropcrossingtraps

The proof of Proposition 4.3 follows two steps that are presented in Lemmas 4.7 and 4.9. We first show an lower bound on the probability of G ∞ ∩ Λ ∞ . This lower bound is provided in Lemma 4.7 and decays exponentially in the number of particles in η.

Intuitively speaking this can be interpreted as if the walker had to pay a constant price to ignore each particle.

Then in Lemma 4.9 we show that, if the initial configuration has a logarithmic number of particles and we are given enough attempts, the walker is very likely to ignore all of them.

For (x, t)

∈ Z 2 and T ∈ [0, ∞], let Λ (x,t) T := X(x,t) s -x ≥ 1 2 v • s ∀ s ∈ [0, T ] . (4.32) defLambdaxt
When (x, t) = (0, 0), we will omit it from the notation for both G (x,t) T and Λ The first goal of the section is the following key lemma, providing a lower bound on the probability of G ∞ ∩ Λ ∞ when |η| < ∞ and η(0) = 0. l:permeability Lemma 4.7. There exists p * ∈ (0, 1) such that

(x,t) T . For η ∈ Z Z + , denote by |η| := z∈Z η(z) ∈ [0, ∞] (4 
inf η : |η|≤k,η(0)=0 P η (G ∞ ∩ Λ ∞ ) ≥ p k * ∀ k ≥ 0. ( 4 

.34) e:permeability

In order to prove Lemma 4.7, we will need an auxiliary result. For a set B ⊂ Z and two configurations η, ξ ∈ Z Z + satisfying ξ ≤ η (i.e., ξ(x) ≤ η(x) ∀ x ∈ Z), let Proof. For (x, t) ∈ Z 2 , let

η B,ξ (x) := η(x) -ξ(x) if x ∈ B, η ( 
E η f (N (A), U A ) (S z,i ) i≤ξ(z),z∈B = E η B,ξ [f (N (A), U A )] a.s. on the event {S z,i n ∩ A = ∅ ∀ n ∈ Z, i ≤ ξ(z), z ∈ B}.
N B,ξ (x, t) := z / ∈B 1≤i≤η(z) 1 {S z,i t =x} + z∈B ξ(z)<i≤η(z) 1 {S z,i t =x} . ( 4 

.37) defNB

On the event in the second line of (4.36), f (N (A), U A ) = f (N B,ξ (A), U A ) and the latter is independent of (S (z,i) ) i≤ξ(z),z∈B . To conclude, note that N B,ξ has under P η the same distribution of N under P η B,ξ .

We can now give the proof of Lemma 4.7.

Proof of Lemma 4.7. We start with the case q 0 > 0. We claim that one may assume η(z) = 0 for all z ≤ 0. Indeed, apply Lemma 4.8 with

A = {(x, t) ∈ Z 2 + : x ≥ 1 2 v • t}, B = (-∞, -1] ∩ Z and ξ(z) = η(z)1 {z<0} to obtain P η (G ∞ ∩ Λ ∞ ) ≥ P (S 0,1 n -1 / ∈ A ∀ n ∈ Z + ) |ξ| P η B,ξ (G ∞ ∩ Λ ∞ )
where η B,ξ (z) = 0 for all z ≤ 0 and |η B,ξ | = |η| -|ξ|. We thus let

p k := inf |η|=k,η(z)=0 ∀ z≤0 P η (G ∞ ∩ Λ ∞ ). (4.38) prlperm1
It is clear that

p 0 = P 0 (Λ ∞ ) = P Xn ≥ 1 2 v • n ∀ n ∈ Z + > 0. (4.39) e:inductionbase Let A = 2 i=0 {(i, i)} ∪ {(x, t) ∈ Z 2 : t ≥ 3, x ≥ 1 2 v
• t} and B = {1, 2}. We say that "S z,i avoids A " if S z,i n / ∈ A for all n ∈ Z. Since q 0 > 0, p := inf z∈B P (S z,1 avoids A ) > 0. (4.40) prlperm3

We will prove that, for all k ≥ 0,

p k ≥ p k * *
where p * * := p 0 p (4.41) prlperm2 by induction on k. Let |η| ≥ 1, η(z) = 0 for all z ≤ 0, and assume that (4.41) has been shown for all k < |η|. Assume first that η(1)+η( 2) ≥ 1 and put ξ(z) = η(z)1 {1,2} (z). Noting that G ∞ ∩Λ ∞ is measurable in σ(N (A ), U A ), use Lemma 4.8 and the induction hypothesis to write

P η (G ∞ , Λ ∞ ) ≥ E η   z∈B,i≤ξ(z) 1 {S z,i avoids A } P η G ∞ ∩ Λ ∞ (S z,i ) z∈B,i≤ξ(z)   ≥ p|ξ| p |η|-|ξ| ≥ pp |η|-1 * * ≥ p |η| * * . (4.42) prlperm4 If η(1) + η(2) = 0, let τ := inf{n ∈ N : N ( Xn + 1, n) + N ( Xn + 2, n) ≥ 1}. ( 4 

.43) e:deftau

Note that τ < ∞ a.s. since X has a positive drift while the environment particles are symmetric. Let ητ (x) = N ( Xτ + x, τ ) and note that, since the random walks are all 1-Lipschitz, ητ (z) = 0 for all z ≤ 0. Furthermore, X is equal to X until time τ since it meets no environment particles up to this time. Thus, using the Markov property and (4.42) we can write

P η (G ∞ ∩ Λ ∞ ) ≥ P η Λ τ ∩ G ( Xτ ,τ ) ∞ ∩ Λ ( Xτ ,τ ) = E η [1 Λτ P ητ (G ∞ ∩ Λ ∞ )] ≥ pp |η|-1 * * P η (Λ τ ) ≥ p |η| * * , (4.44) prlperm5
completing the induction step.

We turn now to the case q 0 = 0, p • > 0. In this case, we can actually control

p k := inf |η|=k P η (G ∞ ∩ Λ ∞ ) = inf y∈Z 2 inf |η|=k P η (G y ∞ ∩ Λ y ∞ ), (4.45) prlperm6
where the second equality holds by the Markov property, particle conservation and translation invariance. Let p * * := p • p 0 p where p 0 is as in (4.39) and p := P (S 0,1 avoids A ),

A := {(x, t) ∈ Z 2 : t ≥ 1, x ≥ 1 2 v • t}. ( 4 

.46) prlperm7

Then we can prove (4.41) by induction in a similar way as for the previous case. Indeed, suppose first that η(0) > 0. Note that, since

X 1 = 1 when U 0 ≤ p • , P η (G ∞ ∩ Λ ∞ ) ≥ P η U 0 ≤ p • , G (1,1) ∞ ∩ Λ (1,1) ∞ = p • P η G (1,1) ∞ ∩ Λ (1,1) ∞ ≥ p • E η   i≤η(0) 1 {S 0,i avoids A } P η G (1,1) ∞ ∩ Λ (1,1) ∞ (S 0,i ) i≤η(0)   . (4.47) prlperm8 Noting that G (1,1) ∞ ∩ Λ (1,1) ∞
is measurable in σ(N (A ), U A ), we may apply Lemma 4.8 with B = {0}, ξ = η1 0 followed by the induction hypothesis to obtain

P η (G ∞ ∩ Λ ∞ ) ≥ p • p|η(0)| p |η|-|η(0)| ≥ p • pp |η|-1 * * . (4.48) prlperm9 If η(0) = 0, define τ := inf{n ∈ N : N ( Xn , n) ≥ 1} ∈ [1, ∞]. (4.49) prlperm10
Setting ητ (x) = N ( Xτ + x, τ ), use the Markov property and (4.48) to write

P η (τ < ∞, G ∞ ∩ Λ ∞ ) ≥ E η 1 {τ <∞} 1 Λτ P ητ (G ∞ ∩ Λ ∞ ) ≥ p • pp |η|-1 * * P η (τ < ∞, Λ τ ) . ( 4 

.50) prlperm11

Now note that G ∞ occurs if τ = ∞ and use (4.50) to obtain

P η (G ∞ ∩ Λ ∞ ) = P η (τ = ∞, Λ ∞ ) + P η (τ < ∞, G ∞ ∩ Λ ∞ ) ≥ p • pp |η|-1 * * {P η (τ = ∞, Λ ∞ ) + P η (τ < ∞, Λ ∞ )} = p |η| * * , (4.51) prlperm12
concluding the proof.

Next we use Lemma 4.7 to show that, if |η| is sufficiently small and is empty in an interval of radius L around 0, then one of the G (0,T i ) T 1 's occurs with large probability. l:crossfinitetraps Lemma 4.9. There exist δ, ε, c > 0 such that Put η t (x) := N (x, t) and use the Markov property to write, for k ≥ 0, 

inf η : |η|≤δ log L, η(z)=0 ∀ z∈[-L , L ] P η   i∈[0,M L -1] G (0,T i ) T 1 ∩ Λ (0,T i ) T 1   ≥ 1 -ce -c -1 L ε . ( 4 
P η k+1 i=0 G (0,T i ) T 1 ∩ Λ (0,T i ) T 1 c ∩ {η T i+1 (0) = 0} ≤ E η k i=0 1 G (0,T i ) T 1 ∩Λ (0,T i ) T 1 c ∩{η T i+1 (0)=0} P η T k+1 ((G T 1 ∩ Λ T 1 ) c ) . ( 4 
-L δ log p * P η k i=0 G (0,T i ) T 1 ∩ Λ (0,T i ) T 1 c ∩ {η T i (0) = 0} . ( 4 

.54) prlemmacrossfinit

We conclude by induction that

P η   M L -1 i=0 G (0,T i ) T 1 ∩ Λ (0,T i ) T 1 c ∩ {η T i (0) = 0}   ≤ 1 -L δ log p * M L ≤ ce -1 c L ε * (4.55) prlemmacrossfinit
where ε * := α -β + δ log p * > 0 by our choice of δ. Now, using standard random walk estimates as in the proof of Lemma 4.5, we obtain

P η (∃ t ∈ [0, L α ] : η t (0) > 0) ≤ ce -c -1 L ε (4.56) prlemmacrossfinit
for some ε > 0, so we may take ε := ε ∧ ε * .

Finally, we gather all results of this section to prove Proposition 4.3.

Proof of Proposition 4.3. Note that, if

X -≥ -L β +1, then Λ (X -,T i ) T 1 ⊂ { X(X -,T i ) T 1 ≥ L β }. Therefore, by Lemma 4.4, it is enough to show that P L -1 16   i∈[0,M L -1] G (X -,T i ) T 1 ∩ Λ (X -,T i ) T 1 c ∩ {X -≥ -L β + 1}   ≤ ce -c -1 (log L) 2 . (4.57) e:crossingtraps˙red
By a union bound and translation invariance, the left-hand side of (4.57) is at most 

L β P L -1 16   i∈[0,M L -1] G (0,T i ) T 1 ∩ Λ (0,T i ) T 1 c ∩ E L   ( 4 

Perturbations of impermeable systems

ss:trigger˙imperm

In this section, we assume q 0 = 0. As already mentioned, the main strategy in the proof of Theorem 3.2 is a comparison with an infection model, which we now describe.

Recall the random walks S z,i from Section 2. Define recursively a random process ξ(z, i, n) ∈ {0, 1}, z ∈ Z, i ∈ N, n ∈ N by setting ξ(z, i, 0) = 1 if z ≥ 0, z ∈ 2Z and i ≤ N (z, 0), ξ(z, i, 0) = 0 otherwise, The interpretation is that, if ξ(z, i, n) = 1, then the particle S z,i is infected at time n, and otherwise it is healthy. Then (4.65) means that, whenever a group of particles shares a site at time n, if one of them is infected then all will be infected at time n + 1.

We are interested in the process X = ( Xn ) n∈Z + defined by Xn = min{S z,i n : z ∈ Z, i ≤ N (z, 0) and ξ(z, i, n) = 1}, (4.66) e:defbarX i.e., Xn is the leftmost infected particle at time n. We call X the front of the infection. Note that, by (4.64) and since q 0 = 0, all infected particles live on 2Z. In particular, Xn ∈ 2Z for all n ≥ 0. This implies the following. Proof. Since the processes are one-dimensional, proceed by nearest-neighbour jumps, are ordered at time 0 and the difference in their positions lies in 2Z, we only need to consider what happens at times s when X s = Xs . For such times, X s+1 = X s -1 since p • = 0, and thus X s+1 ≤ Xs+1 .

The advantage of the comparison above becomes clear in light of the following.

Figure 1 :

 1 Figure 1: Phase diagrams corresponding to lazy and non-lazy particles

  then X y n is non-increasing (in the sense of Definition 2.1) for any y ∈ Z 2 , n ∈ Z + .3 Renormalization: proof of Theorems 1.2-1.3 s:renorma

  [START_REF] Hollander | Scaling of a random walk on a supercritical contact process[END_REF] whenever k (and thus L) is large enough. The events in (3.7) (with X replaced by X) are again measurable in σ(N (y), U y : y ∈ B 0,L ), and are either always non-decreasing, or always non-increasing (depending on whether p • ≥ p • or not). Applying [10, Corollary 3.11] (with v(L) = |v|, ρ(L) = ρ) we obtain ρ ∞ , c > 0 depending on ρ such thatP ρ∞ X 0 n ≥ vn ≤ c -1 exp -c(log n) γ(3.14) e:prbalimperm for all n ∈ Z + . Now we note that, using the explicit expression for ρ ∞ mentioned in the proof of [10, Corollary 3.11], we may choose ρ in such a way that (3.14) is still valid with ρ in place of ρ ∞ . To conclude, sum (3.14) over n ≥ L/2 and use {∃ n ≥ 1 : X 0 n > vn + L} ⊂ {∃ n ≥ L/2 : X 0 n ≥ vn} together with a union bound.4 Triggering: proof of Theorems 3.1-3.2 s:trigger Here we give the proofs of Theorem 3.1 (Section 4.1) and Theorem 3.2 (Section 4.2).

  .25) e:estimparamNLx Therefore, by Lemma 4.4 and (4.25),

  .33) d:numbereta the total number of particles in η. Note that |N (•, t)| = |η| a.s. under P η .

( 4 .

 4 36) e:localeventslocalp

  .52) e:crossfinitetraps Proof. For p * is as in Lemma 4.7, fix δ > 0 such that δ log 1 p * < α -β. Fix η with |η| ≤ δ log L, η(z) = 0 for all z ∈ [-L , L ].

  .53) prlemcrossfinitetr Since |η T k+1 | = |η| ≤ δ log L and η T k+1 (0) = 0 inside the integral, by Lemma 4.7 we may bound (4.53) from above by 1

≤ P L -1 16 NP L -1 16 N

 1616 .58) prpropcrosstraps0whereE L := {N (z, 0) = 0 ∀ z ∈ [-L , L ]}.Recalling the definition of T i , L in (4.4), we note that, since all our random walks are 1-Lipschitz, there exists c 1 > 0 such that the indicator functions ofG (0,T i ) T 1 , Λ (0,T i ) T 1 and E L are functionals of U A , N (A) with A := [-c 1 L β , c 1 L β ] × [0, L α ] ∩ Z 2 . Let B := Z \ [-(c 1 + 1)L β , (c 1 + 1)L β ], put N L := z∈B i≤N (z,0) 1 {∃s∈[0,L α ] : S z,i s ∈[-c 1 L β ,c 1 L β ]} (4.59)and, analogously to (4.35),η B (x) := N (x, 0) if x / L > 0 + P L -1 16 |η B | > δ log L + ce -c -1 L ε . (4.61) prpropcrosstraps1Reasoning as in the proof of Lemma 4.5 (see (4.23)-(4.25)), we obtainL > 0 ≤ ce -c -1 L 2β-α , (4.62) prpropcrosstraps2while, since |η B | has under P L -1 16 a Poisson law with parameter at most cL -(1/16-β) ,P L -1 16 |η B | > δ log L ≤ cL -(1/16-β) δ log L ≤ ce -c -1 (log L) 2 . (4.63) prpropcrosstraps3Combining (4.58)-(4.63), we obtain (4.57) and finish the proof.

  (4.64) e:initconf and, supposing that ξ(z, i, n) is defined for all z ∈ Z, i ∈ N, N (z, 0) and∃ z ∈ Z, i ∈ N with η(z , i , n) = 1, S z ,i n = S z,i n , 0 otherwise.

( 4 .

 4 65) e:defeta

Lemma 4 . 10 .

 410 If p • = 0, then X n ≤ Xn for all n ≥ 0.

  crossing if and only if σ

t = X y t for every t ∈ [0, L) ∩ Z and some y ∈ {0, . . . , L} × {0}, (3.5) e:crossing

  For A ⊂ Z 2 , we write N (A) = (N (y)) y∈A and U A = (U y ) y∈A . The following lemma is a consequence of the i.i.d. nature of the particles in the environment. Lemma 4.8. Let A ⊂ Z 2 and B ⊂ Z. For any two configurations ξ ≤ η ∈ Z Z + and any measurable bounded function f ,

	x)	otherwise.	(4.35) defetaB

caleventslocalparticles
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p:infection Proposition 4.11. For any ρ > 0, there exist v < 0, c > 0 such that

Proof. Follows from Proposition 1.2 of [START_REF] Blondel | Random walk on random walks: higher dimensons[END_REF] once we map 2Z to Z and apply reflection symmetry.

We are now ready to finish the:

Proof of Theorem 3.2. Fix ρ > 0 and L ∈ N. Suppose first that p • = 0. By Lemma 4.10 and Proposition 4.11, there exist v < 0, c > 0 independent of L such that Note now that, since X L is supported in a finite space-time box, the probability in the left-hand side of (4.68) is a continuous function of p • . Thus we can find p > 0 such that, if p • ≤ p , then (4.68) holds with c replaced by 2c, concluding the proof.

5 Regeneration: proof of Theorem 1.4

s:reg˙lowdensity

In this section, we extend the results of Section 4 of [START_REF] Hilário | Random walk on random walks[END_REF] to the case v • < v • and give the proof of Theorem 1.4 under the conditions of item a). Fix ρ > 0. We assume that (1.5) holds with v > 0 and some γ > 1. We assume additionally that p • > 0. In the sequel, we abbreviate P = P ρ . 

and ∠ (x, n) the cone in the third quadrant based at (x, n) with angle v, i.e.,

(See Figure 2.) Note that (0, 0) belongs to ∠(0, 0) but not to ∠ (0, 0).

Fixed y ∈ Z 2 , define the following sets of trajectories in W :

W y = trajectories that intersect both ∠(y) and ∠ (y).

(5.3)

Note that W ∠ y , W ∠ y and W y form a partition of W . We write Y n to denote Y 0 n . For y ∈ Z 2 , define the sigma-algebras

) e:sigmaalgebrastra and note that these are jointly independent under P. Define also the sigma-algebras

) e:sigmaalgebrauni and set

(5.6) e:sigmaalgebraFxt

Next, define the record times

) e:records i.e., the time when the walk first enters the cone 

Define a filtration F = (F k ) k∈N by setting

Finally, define the event

) e:Axt in which the walker remains inside the cone ∠(y), the probability measure 

12) e:regrec and the regeneration time τ = R I .

(5.13) e:regtime

The following two theorems are our key results for the regeneration time.

t:regeneration

Theorem 5.1. Almost surely on the event {τ < ∞}, the process

) has the same distribution as that of (Y i ) i∈Z + under P ∠ (•).

c:tailreg t:tailregeneration Theorem 5.2. There exists a constant c 0 > 0 such that

and the same holds under P ∠ .

Theorem 5.1 is proved exactly as in [START_REF] Hilário | Random walk on random walks[END_REF]. Theorem 5.2 was proved in [START_REF] Hilário | Random walk on random walks[END_REF] in the non-nestling case and in the case v • ≥ v • . In the following section, we will fill the remaining gap by showing that it also holds when v

We may now conclude the:

Proof of Theorem 1.4. One may follow word for word the proof of Theorem 1.4 in [START_REF] Hilário | Random walk on random walks[END_REF] (Section 4.3 therein).

Proof of Theorem 5.2 ss:prooftail

In what follows, constants may depend on v • , v • , v and ρ. Define the influence field at a point y ∈ Z 2 as Define the local influence field at (x, n) as

19) e:hxt˙local

Then we have the following.

l:locinfl Lemma 5.4 (Lemma 4.4 of [START_REF] Hilário | Random walk on random walks[END_REF]). For all T > 1 it holds P-a.s. that 

and its right boundary

.23) defrightbound

We say that "Y y exits P t (y) through the right" when the first time i at which

In order to adapt the argument in [START_REF] Hilário | Random walk on random walks[END_REF], we will need to modify the definition of good record times given there. For this, we need some additional definitions.

For y ∈ Z 2 , let

24) e:tildeW and, for y 1 , y 2 ∈ Z 2 , denote by T y 1 ,y 2 the trace of all trajectories in ω that do not belong to W y 1 or intersect ∠ (y 2 ). Let Y y 1 ,y 2 be the analogous of Y y 2 defined using T y 1 ,y 2 instead of T . Note that, since v • > v • , by monotonicity we have X y 1 ,y 2 t ≥ X y 2 t for all y 1 , y 2 ∈ Z 2 and t ∈ Z + .

We say that R k is a good record time (g.r.t.) when where

The main differences with respect to the analogous definition in [START_REF] Hilário | Random walk on random walks[END_REF] are:

1. In (5.25), we require a small local field not exactly at Y R k but in every point of

, a set to which Y R k belongs with large probability.

2. We do not require (5.28) for Y but only for Y ; we will see that, if the record time is good, then the same holds for Y with large probability.

We will need the following consequence of (1.5).

l:neverreturn Lemma 5.5. P (X n ≥ nv ∀ n ∈ Z + ) > 0.

(5.29)

Proof. Fix L > 1 large enough such that

which is possible by (1.5). If t > L, then

as desired.

As in [START_REF] Hilário | Random walk on random walks[END_REF], the following proposition is the main step to control the tail of the regeneration time. c:manygrts p:manygrts Proposition 5.6. There exists a constant c 3 > 0 such that, for all T > 1 large enough,

(5.32)

Proof. First we claim that there exists a c > 0 such that, for any k ≥ T , (5.34): Fix B ∈ F k-T . Summing over the values of Y R k-T and using a union bound we may write P ((5.25) e:manygrts1 c , B) ≤

(5.38) e:manygrts1

Noting that y 2 -( (1 -v) )T , 0) -y 1 ∈ Z 2 + for large enough T , we may use Lemma 5.4 and |∂ + P t (y)| ≤ t/v to further bound (5.38) by

where the last inequality uses the definition of . Thus, for T large enough, (5.34) is satisfied with e.g. c = 1/2.

(5.35): This follows from the fact that (U Y R k +(l,l) ) l∈N 0 is independent of the sigma-

) ∨ F k with respect to which (5.25) is measurable.

(5.36): We may ignore the conditioning on (5.26) since this event is independent of the others. Since (5.25) is equivalent to ω( W Y R k-T ) = 0, for B ∈ F k-T we may write P ((5.27) e:manygrts3 , (5.25) e:manygrts3 , B) where the second equality uses the independence between σ(ω(A) : A ⊂ W ∠ y 2 \ W y 1 ) and F y 2 ∨ σ(ω(A) : A ⊂ W y 1 ), and the last step uses the monotonicity and translation invariance of ω.

(5.37): We may again ignore (5.26) in the conditioning since this event is independent of all the others. Note that ( 5 Since Y y,z is independent of F z ∨ σ(ω(A) : A ⊂ W y ), the last line equals y 1 ,y 2 ∈Z 2 : where for the last step we use X y,z t ≥ X z t and translation invariance. Now (5.37) follows from (5.42) and Lemma 5.5.

Thus, (5.33) is verified. To conclude, note that {R k is a g.r.t.} ∈ F k+cT for some c ∈ N independent of T . Indeed, this can be verified for each (5.25)-(5.28) using the observation that, if an event A ∈ F ∞ satisfies A ∩ {Y R k = y} = A y ∩ {Y R k = y} with A y ∈ F y+(t,t) , then A ∈ F k+t+1 . Hence we obtain P (R k is not a g.r.t. for any k ≤ T ) ≤ P R (c+1)kT is not a g.r.t. for any k ≤ T (c + 1)T ≤ exp -c c + 1

(5.43) e:manygrts6 by our choice of and δ.

To prove Theorem 5.2, we can now proceed as in the proof of Theorem 4.2 in [START_REF] Hilário | Random walk on random walks[END_REF], with a few modifications as follows. Defining the events E 1 and E 2 as in equation (4.52) therein, we may assume that R vT +T +T ≤ T and that R k is a g.r.t. with k ≤ vT . To show that ω(W Y R k+T ) = 0, we may use the same arguments therein once we note that, on E c 2 , Y R k ∈ ∂ + P T (Y R k-T ). From this together with (5.25) it follows that T y,z coincides with T inside ∠(z), where y = Y R k-T and z = Y R k+T . On E c 2 this implies that Y z t = Y k t ∈ ∠(z) for all t ∈ Z + , i.e., A Y R k+T occurs. Thus τ ≤ R k+T ≤ T , and the proof is concluded as before.