
HAL Id: hal-01616232
https://hal.science/hal-01616232v1

Submitted on 13 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning from User Workflows for the Characterization
and Prediction of Software Crashes

Chloé Adam, Antoine Aliotti, Paul-Henry Cournède

To cite this version:
Chloé Adam, Antoine Aliotti, Paul-Henry Cournède. Learning from User Workflows for the Char-
acterization and Prediction of Software Crashes. 2016 IEEE 16th International Conference on Data
Mining Workshops (ICDMW), 2016, pp.1023 - 1030. �10.1109/ICDMW.2016.0148�. �hal-01616232�

https://hal.science/hal-01616232v1
https://hal.archives-ouvertes.fr

Learning from User Workflows
for the Characterization and Prediction

of Software Crashes

Chloé ADAM1,2, Antoine ALIOTTI2, and Paul-Henry COURNÈDE1

1Laboratory MICS, CentraleSupélec, 92290 Châtenay-Malabry, France
2GE Healthcare, 78530 Buc, France

Abstract: Reducing as much as possible the rate of software crashes is cru-
cial especially in medical applications. In this paper, we make the assumption
that crashes result from the user workflow, that is to say the sequence of user
actions. Our objective is thus to identify root causes of crashes and to antici-
pate them in real-time, based on the analysis of the sequences of user actions.
For these purposes, we introduce two methods. The first one consists in us-
ing graph-based representations to detect combinations of user actions having a
high probability to provoke a software crash, thus identifying crash signatures
and helping for problem resolution. The second one, based on clustering of user
sessions, is a real-time monitoring method, computing a crash probability at
each new user action. Test cases show promising results for both methods. Our
representation of user session as ‘Graph-of-Actions’ enabled the identification of
some significant crash signatures while revealing the impact of successive actions
dependence on crash causes. Likewise, our clustering based method for session
monitoring resulted in promising values of sensitivity and specificity for some
specific clustering configurations.

Keywords: Medical Applications; Software Crash; Graph-Of-Word; Graph-
Of-Actions; Hierarchical Clustering.

1 Introduction
Radiologists use medical imaging solutions on a daily basis for diagnosis, surgery
preparation or follow-up treatment, covering a large variety of pathologies. To-
day’s imaging modalities (CT, MR, 3D X-ray, PET and PET/CT) present a
huge challenge for the physician workflow: the number of patient exams in-
creases while the time for exam data analysis and reporting decreases. Log files
enable to record the evolution of the various software and system parameters
during their use as well as the sequence of practitioner actions. A specific prob-
lem potentially occurring in the process is the crash of the analysis software

1

with severe consequences on the practitioner workflow. This is all the more
true in the case of interventional applications, in which patient safety is put at
stake. Therefore, reducing or annulling the crash rate of medical applications is
a major line of the continuous improvement effort regarding the global quality
and usability of medical software products. The aim of this study is to analyze
the log file data for a better management of this crash risk. More specifically,
we aim at identifying the root causes of the crashes and anticipate them in
real-time.

Several factors such as user actions in the software interface (moves, selected
tool, mouse clicks, etc.) or the system status (number of applications running,
memory availability, dataset type, etc.) are likely to cause crashes. In this paper
we will specifically focus on the user workflow. Thus, we will try to characterize
and predict crashes based on the sequences of user actions. No real off-the-shelf
solution currently exists, even though there are some comparable methodologies
in other sequence learning tasks [1].

Numerous questions concerning the root causes of the crashes need to be
addressed. Indeed, we do not know if crashes result from individual actions or
from combinations of successive actions, if the order of actions has an impact...
Similarly, we have no information about the exact moment in the session at
which the crash is triggered. Answering these questions is even more challenging
given the very high variability in the user sequences leading to crashes. To tackle
these issues, the first objective of this paper is to propose a method enabling to
detect patterns of user actions having a high crash probability. The motivation
is here to help the software development teams enabling them to focus on specific
program functions.

For this purpose, we will propose graph-based representations of the succes-
sive actions recorded in log files. We were greatly inspired by research works in
the domain of information retrieval in text document. We used in particular the
principle of the traditional bag-of-words filters, comparing relative frequencies
of independent terms to detect spam emails or mobile messages [2]. We then
moved to graph-based representations which have been widely investigated and
applied in a large range of fields due to their powerful properties. Indeed, they
enable to catch the direct dependencies between events. We based a part of our
work on the representation used in [3], where user web sessions are transformed
into weighted paths. To allow more flexibility to our representation, we also
adapted the graph-of-words model proposed by [4] to our data.

The second objective of this paper is to introduce a real-time monitoring
method, computing a crash probability at each new user action, based on the
identification of clusters of user session queues (with the underlying assumption
that the actions causing a crash are among the last ones before it happens).
The motivation here is more related to risk management for the benefit of the
users, imagining for example an automatic backup system triggered as soon as
the crash probability exceeds a certain threshold. The research questions bear
similarities with problems arising in the field of anomaly detection which is very
used in the area of computer security, in particular for intrusion detection. A
comparison of different approaches of anomaly detection was done in [5]. Several

2

similar methods were developed to detect intrusion using sequences of system
calls. The principle is to build up a profile of normal behavior traces, treating
deviations from this profile as anomalies [6, 7]. These techniques slightly vary
in the definition of the dissimilarity measure used to compute how much a
new sequence differs from existing normal sequences. Given the format of our
data, we will in particular use the Hamming distance as in [6]. An interesting
extrapolation of the same concept to detect network intrusions is based on
clustering and classifies each new session as normal or as an attack depending
on the dissimilarity measure between this session and the existing clusters [8].
Although not dedicated to anomaly detection, [9] is interesting since it uses a
customized Levenshtein metric to cluster web sessions of variable lengths, this
metric will also be tested for the application of our proposed method.

The paper first introduces a formal grammar enabling to translate the se-
quences of actions in log files into computational objects. We then propose in
section III different representations enabling to detect combinations of user ac-
tions having a high probability to provoke crashes, and we compare the different
representations on a test case. Section IV finally introduces our real-time mon-
itoring method, computing a crash probability at each new user action, based
on hierarchical clustering. Different configurations are tested.

2 Formalism

2.1 Data
In our application, a user session, which will be our reference measurement,
corresponds to one patient images analysis by a physician. In other words,
each session contains all the necessary mouse clicks to the radiologist to provide
relevant medical recommendation to one patient. The sequence of user actions
during this session is chronologically recorded in log files.

The dataset we used to test our both methods contains 5598 user sessions of
variable lengths (minimal length of 3) and were obtained from identical hardware
systems during a two-week radiology congress. 97 of them were prematurely
interrupted by a software crash, that is, a crash rate amounting to 1.73%.

These crash sessions are characterized by a high variability in their sequences
of actions and no obvious crash signature can be easily identified, making their
characterization and prediction a difficult task. Figure 1 shows for each length
of crash session, the total number of crash sessions (dark blue) and the number
of different crash sequences (light blue). As can be seen, all the crash sessions
being longer than or equal to 8 actions are different.

Moreover, regulations in medical applications impose many privacy restric-
tions regarding patient data, thus making the retrieval of this type of data even
more difficult. Indeed, confidential data protection requires relatively complex
and time-consuming procedures to ensure that the recovery process of log files
is completely secure and that they provide no critical information.

The user mouse clicks recorded in log files actually refer to the corresponding

3

Figure 1: Number of different crash sessions per length.

function calls from the software source code. Therefore, the successive actions
appear in the log files as strings of different lengths. To facilitate computations
and analysis, we introduce a formal language to normalize actions representation
into strings of the same length.

2.2 Formal Language and Definitions
Let Σ be an alphabet, that is to say a finite set of symbols, and D the dictionary
assigning one user action to a symbol of Σ. Let X be a session of N actions,
it will thus be represented as a word on the alphabet Σ, that is to say a finite
sequence of N symbols in Σ, X = x1x2...xN .

LetX be such sequence and consider a set ofK symbols in Σ, Ω = {α1, α2, . . . , αK}.
We will define below different types of inclusion relationships of the set of sym-
bols Ω into the sequence X. It will prove useful to extract the significant actions
(in terms of probable cause of crashes) from the sequence of actions.
Notations:

1. We will denote: {α1, α2, . . . , αK} ⊂ X if for all 1 ≤ k ≤ K, αk ∈ X −
{α1, α2, . . . , αk−1}. It simply implies that all symbols in Ω belong to X,
irrespective of the order. If αi = αj = α with i 6= j, and Ω ⊂ X, then it
means that α appears twice in X.

2. We will denote: α1α2 . . . αK ⊂ X if there exists i such that:
α1α2 . . . αK = xixi+1 . . . xi+K−1, that is to say that X contains the exact
sequence α1α2 . . . αK .

3. Finally, we will denote [α1α2 . . . αK]
W ⊂ X if there exists i, i1, i2, . . . , iK−1,

with ik < W for all 1 ≤ k ≤ K − 1, such that:
α1α2 . . . αK = xixi+i1xi+i1+i2 . . . xi+i1+i2+···+iK−1

. Here, it means that
X contains the sequence α1α2 . . . αK , but the consecutive terms αi, αi+1

may be separated by up to W − 2 symbols. For example, if X = α1ββα2,

4

[α1, α2]4 ⊂ X. W is the maximal length of the “window” containing the
symbols of interest.

In practice, considering the number of potential actions in the medical soft-
ware of interest in this study, we choose without loss of generality to work with
symbols composed of three letters, Σ = {<<<,>>>, aaa, aba, ..., zzz}.

The symbol <<< stands for the beginning of a session, thus for all sessions
x1 =<<<. Likewise, >>> stands for a clean exit of the software application, that
is to say the end of a session without crash. All the other symbols represent
actions.

With these notations we can easily distinguish normal sessions from crashes:
a session of length N is a normal session when xN =>>>, while if xN 6=>>>, it
is a crash. The set of normal sessions will be denoted S while C will represent
the the set of crash sessions.

Beside, we will denote by QT the queue of length T of a session, correspond-
ing to the T last symbols of a session different from >>>.

Finally, for a finite set Ω, |Ω| will denote its cardinal.

3 Detection of Sequences of Actions with High
Crash Probability

This section is dedicated to the detection of actions or sequences of actions which
may cause the crash of a session with a high probability. For this purpose, we
propose representations largely inspired by methods developed for information
retrieval in text document. A review of the main graph-based representations
of document is given in [10].

We will first compute the frequency of actions or groups of actions in crashes,
with the underlying assumption that each action is independent from the oth-
ers, as in the traditional bag-of-words model [2]. We will then use two graph-
based representations, with elementary actions as graph nodes. The first one
represents the sequences of actions as paths [3], the second one relies on the
graph-of-words representation principle [4]. This last formalism allows capturing
dependencies between actions while not being affected by potential transparent
actions.

The computation of crash probability will remain the same in each of the
following approaches, being simply equal to the number of times the studied
actions or sequences of actions occur in crash sessions divided by the number of
occurrences of these actions in both normal and crash sessions.

The three proposed representations will be described below. They will be
illustrated on the specific case of the identification of couples of actions.

3.1 Representation 1 - Independent Actions

The first method consists in calculating the crash probability given a set of K
independent actions {α1,α2,. . . ,αK} in a user session X, as follows:

5

PCrash({α1, α2, ..., αK}) :=P (X ∈ C | {α1, α2, . . . , αK}⊂X)

=
|Cα1,α2,...,αK

|
|Cα1,α2,...,αK

|+ |Sα1,α2,...,αK
|

Where:

• Cα1,α2,...,αK
denotes {X ∈ C | {α1, α2, . . . , αK} ⊂ X} and thus |Cα1,α2,...,αK

|
is the number of crash sessions containing simultaneously all the symbols
in {α1, α2, . . . , αK}.

Likewise:

• Sα1,α2,...,αK
denotes {X ∈ S | {α1, α2, . . . , αK} ⊂ X} and |Sα1,α2,...,αK

| is
the number of normal sessions containing simultaneously all the symbols
in {α1, α2, . . . , αK}.

This representation does not take into account the connection between the
different actions. This is probably not relevant, especially in the case of long
user sessions. Indeed, the combination of actions occurring at the beginning and
at the end of the session have probably no real interaction, contrary to actions
occurring close to each other. This representation does not allow the distinction
between the two cases.

3.2 Representation 2 - Graph-of-Actions

We propose a graph-based representation in which the dependence between user
actions is captured via paths in the graph. We construct a directed and weighted
graph from all the user sessions available in our database. Each directed edge uv
will represent an occurrence of the sequence composed of the action u followed by
the action v. We will use bidimensional weights, corresponding to (|Cuv| , |Suv|)
where:

• Cuv := {X ∈ C |uv ⊂ X} is the set of crash sessions containing the edge
uv and |Cuv| is their number,

• Suv := {X ∈ S |uv ⊂ X} is the set of normal sessions containing the edge
uv and |Suv| is their number.

Each session will be successively added to the graph with the following pro-
cess: the whole session is browsed, making an edge from every pair of successive
actions. If the edge already exists, the bidimensional weight of the respective
edge is updated, otherwise a new edge is created [3]. Edge occurrences in crash
sessions will be distinguished from edge occurrences in normal sessions. The fi-
nal graph vertices will represent all elementary actions available in the dataset.
The principle of transformation of one user session into a path is illustrated in
Figure 2.

This representation enables to capture proximity and order between actions.

6

Figure 2: Graph construction from the example sequence of actions on the left
side.

The aim is then to detect in the final graph, patterns or sequences of actions,
which may lead to a high probability of crash. When we consider the detection of
an ordered pair of actions, this problem simply corresponds to the computation
of the crash probability per edge with the bidimensional weights as follows:

PCrash(uv) =
|Cuv|

|Cuv|+ |Suv|
For sequences of length strictly greater than 2, the method is less direct since

it is the probability of the path itself which needs to be computed and it can
become very greedy from a computational point of view.

3.3 Representation 3 - Graph-of-Actions with Sliding Win-
dow

As there is a high variability in the sequences of actions leading to crash sessions,
we make the assumption that there exist transparent actions in the sequences
with no impact on crashes even if they appear in these sessions. To take this
phenomenon into account, we take advantage of an idea proposed in [4] for
graph-of-words in which they need to cope with meaningless words, in a situation
very similar to our transparent actions.

The principle of construction of the graph is the same as in the previous
method, except that one action will be linked by an edge to the W − 1 next
following actions in the sequence,W being the length of the sliding window used
to browse the user sessions. The Figure 3 shows an example of the construction
principle with a sliding window of length equal to 3, meaning that each action
will be directly linked to the first following action but also to the second one.
These soft links enable to bypass eventual non influential actions that might
skew the previous probability computations.

7

Figure 3: Graph construction with a sliding windows of length 3 from the ex-
ample sequence of actions on the left side.

As in section 3.2, will use bidimensional weights adapted to this new graph,
corresponding to

(∣∣C[uv]W ∣∣ , ∣∣S[uv]W ∣∣) where
• C[uv]W :=

{
X ∈ C | [uv]W ⊂ X

}
is the set of crash sessions containing the

‘soft’ edge uv,

• S[uv]W :=
{
X ∈ S | [uv]W ⊂ X

}
is the set of normal sessions containing

the ‘soft’ edge uv.

The computation of the crash probability per edge thus adapts accordingly:

PCrash([uv]W) =

∣∣C[uv]W ∣∣∣∣C[uv]W ∣∣+
∣∣S[uv]W ∣∣

3.4 Performance Evaluation
We test the different representations on the dataset introduced in Section 2.1.
The aim is to detect pairs of actions having a high probability to cause a session
crash, but also which occur several times, giving this way more weight and more
significance to the results. The Table 1 provides for each method the number of
detected couples of actions having a crash probability of 1 (N) and the number
of times these couples occurred in crashes (O). Only the couples that occurred
at least twice in crashes are recorded in the table.

The first method, Independent Actions enables to highlight 13 couples of
actions, each of these couples occurred only twice and systematically the session
in which they appeared ended with a crash. However, the very low number of
occurrences prevents any significant analysis. In practice, the couple of actions
thus determined did not help in understanding the causes of the crashes.

The second method, Graph-of-Actions, provides better results. 10 couples
of actions among the 13 couples outlined by the first method are also detected,

8

Table 1: Detection of couples systematically leading to a session crash and
occurring more than twice

Number of couples N Occurrences O

Independent Actions 13 2

Graph-of-Actions
10 2
1 3
1 9

Graph-of-Actions
with Sliding Window

7 3
1 4
1 6
1 24

but also occurring only twice. More interestingly, 2 additional couples are de-
tected, one also occurring twice, but the other one occurring 9 times, which
clearly becomes significant. Taking into account the dependence between action
clearly improves the capacity of detection. The couple of actions when occur-
ring independently appear more often in normal sessions, and consequently their
associated crash probability is reduced with the first mode of representation.

The third method, Graph-of-Actions with Sliding Window enables to further
improve the results: 7 couples occurring 3 times are detected. In addition, two
other couples occurring respectively 4 and 6 times are detected. Finally, a pair
of ordered actions leading 24 times to a crash is identified.

A crucial result is that the best detected pairs with the second and the third
method, in bold in Table 4, actually correspond to the same couple of actions.
This result provides precious information on the signature of the related crash.
Let us note this couple {α, β}, representing the succession of actions α and β in a
user workflow. The second method shows that this combination when occurring,
is systematically leading to a crash, it happened 9 times in this dataset. The
third method, reveals that in 15 additional cases, the combination α - γ - β
leads to a crash, γ being a non influential action.

For our specific application, two remarkable results were thus obtained: first,
there is an impact of the combination of dependent actions to cause session
crashes, and second there exist actions that are non-influential in terms of session
crash and can be inserted in sequences of dependent (influential) actions without
interfering. The representation of the sequences of actions as a graph with soft
links obtained from a sliding window as in [4] seems a proper description of the
software sessions for this purpose. A direct consequence was the identification
of some significant crash signatures on our dataset, thus providing keys to the
application developers to understand and solve the crash causes.

Beside this crash characterization, it would be particularly useful if we could
provide a way to anticipate crash risks, in order for example to save automat-

9

ically the session, notify the user or force a clean exit of the application. The
next session will propose such method, monitoring the crash risk resulting from
the sequence of actions.

4 Real-Time Monitoring

4.1 Principle
The principle of our method is to use hierarchical clustering to define groups
of sessions from our training dataset based on some similarity measure and to
compute crash probabilities for the resulting clusters from the observations. Af-
terwards, during a working session, a crash probability is computed at each new
user action based on the session assignment to the predefined clusters. Should
this probability exceed a predetermined threshold, the current working session
would be automatically saved and the user notified. The proposed method is
largely inspired by [8], the main difference lies in the fact that we dispose of
labeled sessions. We are thus able to compute a crash probability per cluster
during the training step.

4.2 Hierarchical Session Clustering
To perform hierarchical clustering, three specifications have to be chosen:

• The metric that will be used to compute distances between observations,

• The linkage method,

• The dendrogram cutting height, determining the number of resulting clus-
ters.

Each of these specifications will be detailed below and different configurations
will be compared in the test section.

4.2.1 Metric

We make the assumption that crashes occur at the end of the sessions and we
will cluster only the queues QT of the sessions (last T symbols of the session).
To group the queues of the sessions into clusters, we need to compute a distance
between the sequences of symbols contained in the queues. Considering our
research problem and the remaining uncertainties, we have tested two existing
measures of dissimilarity between strings (Hamming and Levenshtein) and a
third metric that we have proposed (Intersection). These three measures are
defined below, note that we will work with sequences of the same length.

• Hamming : the number of positions at which the corresponding symbols
differ [6].

10

• Levenshtein: the minimum number of edition operations (insertions, dele-
tions, substitutions) to transform one sequence of symbols into the other
[9], [11].

• Intersection: the difference between the length of the studied sequences
and the number of common symbols between both sequences.

Each of these metrics provides more or less flexibility regarding the position
and the dependence of the user actions in the sequences. The Hamming measure
imposes the strongest constraints in terms of similarity while the Intersection
measure is the most permissive.

4.2.2 Linkage Method

Hierarchical clustering merges at each construction step the closest pair of clus-
ters. Let G and H represent two clusters and dii′ the pairwise observation
dissimilarities between an element i in cluster G and an element i′ in cluster H.
We recall the three classical main linkage methods to compute the dissimilarity
d(G,H) between G and H [12].

• Single linkage:
dSingle(G,H) = min

i∈G,i′∈H
dii′

• Average linkage:

dAverage(G,H) =
1

NGNH

∑
i∈G

∑
i′∈H

dii′

Where NG and NH are the respective number of observations in each group.

• Complete linkage:

dComplete(G,H) = max
i∈G,i′∈H

dii′

4.2.3 Number of Clusters

Rather than computing the optimal number of clusters for each dendrogram, we
have chosen to empirically determine the best cutting height for our problem.

4.3 Crash Probability per Cluster
For a given cutting height H of the dendrogram, we obtain KH different clusters
Ωi of session queues, for 1 6= i 6= KH . Each cluster Ωi is partitioned into Ci,
corresponding to the crash sessions, and Si, for the normal sessions. The crash
probability will be computed for each of these clusters, as follows:

PCrash(Ωi) =
|Ci|

|Ci|+ |Si|

11

Figure 4: Real-Time Monitoring example on a user session

4.4 Crash Probability at each New User Action
The aim is then to go through an unlabeled session, crash or normal session,
using a sliding window of length T , the same length as the clustered queues. At
each step or each new user action, we will be able to assign the current session
to a cluster and then derive a crash probability to the sequence contained in the
sliding window based on the previous clustering. An example of the described
process is given in Figure 4, using a sliding window of size 4.

At each new user action, a crash probability is computed for the sequence
contained in the sliding window (corresponding to the last T actions of the
current session). However, the corresponding sequence of T actions might be
assigned to several clusters. These potential clusters may have different crash
probabilities. Thus, we will consider the 3 following possibilities to assign the
crash probability to the current session queue:

• MinimumProba: the smallest crash probability of all the potential clusters
to which the sequence contained in the sliding window might be assigned.

• MaximumProba: the highest crash probability of all the potential clusters
to which the sequence contained in the sliding window might be assigned.

• AverageProba: the average crash probability over all the potential clusters
to which the sequence contained in the sliding window might be assigned.

4.5 Performance Evaluation
4.5.1 Crash Detection Threshold and Criteria

Let τ be the detection threshold, we list below the chosen classification criteria:

12

Table 2: Confusion Matrix
Predicted Negative Predicted Positive

Actual Negative TN FP

Actual Positive FN TP

• An actual crash will be considered as detected if the crash probability
value (Minimum, Maximum and Average will be tested) is above τ at
least at one position of the sliding window during the whole monitoring
of the user session.

• An actual normal session will be classified as a normal session if the crash
probability value (Minimum, Maximum and Average will be tested) never
exceeds τ .

4.5.2 Confusion Matrix

Given our binary problem, there are four possible outcomes (see Table 2):

• True Negative: an actual normal session which is predicted as normal.

• True Positive: an actual crash which is predicted as a crash.

• False Negative: an actual crash which is not detected.

• False Positive: an actual normal session which is detected as a crash.

4.5.3 Performance Metrics

Since we are in the case of highly imbalanced classes (around 2% of the sessions
ended by a crash), we will use Specificity (also known as the True Negative
Rate) and the Sensitivity (also known as the True Positive Rate), both defined
below, to evaluate our method. Indeed, unlike the accuracy, these metrics do
no depend on class distributions [13].

• Specificity = TN
TN+FP

• Sensitivity = TP
TP+FN

4.6 Results
4.6.1 Data Set Description

From the original dataset, we extract 1750 user sessions of length greater than
or equal to 7, containing 33 crashes. The sessions were randomly split into a
training set (80%), for the computation of the reference clusters, and a testing
set (20%) composed of sessions on which we will test our method.

13

Table 3: Tested values of the specifications
Specifications Tested Values

Metric Me = {Hamming, Levenshtein, Intersection}
Linkage Method L = {Single, Average, Complete}
Queues Length (QT) T = {3, 4, 5, 6}
Cutting Height (DM) M = {2, 3}
Probability Score P = {Minimum, Average, Maximum}
Detection Threshold τ = 0.2

4.6.2 Tested Configurations

As explained previously, three specifications have to be chosen for the hierarchi-
cal clustering (the metric, the linkage method and the cutting height) and two
additional specifications relative to our method have to be defined (the length of
the clustered queues and the probability score). All the possible configurations
for each of these five specifications (described in Table 3) were tested, providing
216 different configurations of the type {Me}_{L}_{QT }_{TM}_{P}.

Note that we decided to set the crash detection threshold to 0.2 to first
determine the most promising configurations. Further work consists in varying
this threshold value to build associated ROC curve. This representation will
enable us to determine a threshold and a configuration providing the best trade-
off between specificity and sensitivity given our initial problem.

4.6.3 Best Configurations Obtained

The best configurations we obtained are listed in the Table 4. Four of them,
printed in bold, outperform the others. Three of them, marked with an asterisk
(*), are very similar. Their specificities and sensitivities are both above 0.80.
The fourth one, marked with two asterisks (**) only provides a sensitivity of
0.77, however it ensures a specificity value of 0.91. From the user perspective,
this configuration is probably the best compromise between the true negative
rate and the true positive rate, avoiding too many false alerts and still detecting
77% of the crashes.

Concerning the best specifications, the Levenshtein metric, an intermediate
dissimilarity measure in terms of flexibility between Hamming and Intersection,
appears in two of the four best configurations. The most appropriate linkage
strategies seem to be the average and the complete linkage methods. The clus-
tering of the queues of length equal to 6 and a cutting height of 2 provided the
best performances, such as the choice of the minimum crash probability when
assigning the sequence contained in the sliding window to a cluster.

14

Table 4: Real-Time Monitoring Best Configurations
Configurations Specificity Sensitivity

HAM_COMPLETE_Q6D3_MIN 0.80 0.79

HAM_COMPLETE_Q6D2_MIN 0.84 0.82

HAM_AVERAGE_Q6D3_MIN 0.76 0.81

HAM_AVERAGE_Q6D2_MIN* 0.83 0.87

HAM_AVERAGE_Q6D2_AVE 0.77 0.89

HAM_AVERAGE_Q5D2_MIN 0.80 0.81

HAM_AVERAGE_Q5D2_AVE 0.75 0.82

INT_AVERAGE_Q6D2_MIN** 0.91 0.77

INT_AVERAGE_Q6D2_AVE 0.84 0.81

LEV_COMPLETE_Q6D2_MIN* 0.86 0.84

LEV_COMPLETE_Q6D2_AVE 0.73 0.84

LEV_AVERAGE_Q6D3_MIN 0.80 0.79

LEV_AVERAGE_Q6D2_MIN* 0.84 0.89

LEV_AVERAGE_Q6D2_AVE 0.78 0.89

LEV_AVERAGE_Q5D2_MIN 0.80 0.79

LEV_AVERAGE_Q5D2_AVE 0.73 0.81

4.6.4 ROC Curves

The ROC curves were computed for the 4 best configurations (see Figure 5).
Although the configuration (**) we initially identified as the most relevant one
does not provide the largest area under curve, it is still the one that best fits
our application needs: indeed, the proportion of crashes is very low (around 2
%), which means that having a high proportion of “false positive” predictions
would end up in interrupting normal sessions far too often. Moreover, this
configuration provides even better results with a detection threshold lowered to
0.125, increasing this way its sensitivity to 0.79 while maintaining a specificity
of 0.91.

5 Conclusion
In this paper we proposed two methods. The first one aims at identifying the
combination of actions with high probability to provoke crashes. The different
representations tested for this purpose allowed us to conclude that there is an
impact of the combination of successive actions to make sessions crash. More-
over, we showed that non-influential actions could be inserted in these sequences

15

Figure 5: ROC curves for the 4 best configurations obtained.

of dependent actions without interfering in the probability of session crash and
should thus be handled with in order to identify the proper crash signatures,
otherwise we would miss the connection between the influential actions. Graphs
with soft links to represent sequences of actions seem a proper description of
the software user sessions for this purpose. Further work in this direction will
concern the detection of longer paths.

The second method, real-time crash monitoring, provided promising results.
Indeed we detected clustering configurations ensuring a specificity of 91% while
still detecting 79% of the crashes. Another perspective of this work might be
replacing the clustering of the session queues by the clustering of their graph-
based representations based for example on the graph edit distance [14].

For both proposed approaches, we insisted on the methodology rather than
on the exploitation of the outcomes. Indeed, a deeper analysis of the high crash
probability couples detected in terms of software functions should be performed
on a larger database of user sessions. This also applies for the determination
of the optimal configuration in the case of the crash monitoring method based
on clustering. However, it is important to note that data recovery can be quite
complicated due to the regulations applied to medical devices.

Acknowledgment
We would like to thank the reviewers for their useful feed- backs which helped
us to improve the article clarity.

16

References
[1] T. Lane and C. E. Brodley, “Temporal sequence learning and data reduction

for anomaly detection,” ACM Transactions on Information and System
Security (TISSEC), vol. 2, no. 3, pp. 295–331, 1999.

[2] D. Sculley and G. M. Wachman, “Relaxed online svms for spam filtering,”
in Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 2007, pp.
415–422.

[3] M. Eirinaki, M. Vazirgiannis, and D. Kapogiannis, “Web path recommenda-
tions based on page ranking and markov models,” in Proceedings of the 7th
annual ACM international workshop on Web information and data man-
agement. ACM, 2005, pp. 2–9.

[4] F. Rousseau and M. Vazirgiannis, “Graph-of-word and tw-idf: new ap-
proach to ad hoc ir,” in Proceedings of the 22nd ACM international confer-
ence on Information & Knowledge Management. ACM, 2013, pp. 59–68.

[5] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using
system calls: Alternative data models,” in Security and Privacy, 1999.
Proceedings of the 1999 IEEE Symposium on. IEEE, 1999, pp. 133–145.

[6] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of computer security, vol. 6, no. 3, pp.
151–180, 1998.

[7] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of
self for unix processes,” in Security and Privacy, 1996. Proceedings., 1996
IEEE Symposium on. IEEE, 1996, pp. 120–128.

[8] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with unlabeled
data using clustering,” in In Proceedings of ACM CSS Workshop on Data
Mining Applied to Security (DMSA-2001. Citeseer, 2001.

[9] A. Scherbina and S. Kuznetsov, “Clustering of web sessions using leven-
shtein metric,” in Industrial Conference on Data Mining. Springer, 2004,
pp. 127–133.

[10] R. Blanco and C. Lioma, “Graph-based term weighting for information
retrieval,” Information retrieval, vol. 15, no. 1, pp. 54–92, 2012.

[11] E. S. Ristad and P. N. Yianilos, “Learning string-edit distance,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 5,
pp. 522–532, 1998.

[12] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Data Mining, Inference and Prediction, Springer, Ed., 2009.

17

[13] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[14] B. Cao, Y. Li, and J. Yin, “Measuring similarity between graphs based on
the levenshtein distance,” Appl. Math, vol. 7, no. 1L, pp. 169–175, 2013.

18

