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Abstract. It is known that the maximum independent set problem is
NP-complete for subcubic graphs, i.e. graphs of vertex degree at most
3. Moreover, the problem is NP-complete for H-free subcubic graphs
whenever H contains a connected component which is not a tree with
at most 3 leaves. We show that if every connected component of H is a
tree with at most 3 leaves and at most 7 vertices, then the problem can
be solved for H-free subcubic graphs in polynomial time.

Keywords: Independent set; Polynomial-time algorithm; Subcubic graph

1 Introduction

In a graph, an independent set is a subset of vertices no two of which are adja-
cent. The maximum independent set problem consists in �nding in a graph an
independent set of maximum cardinality. This problem is generally NP-complete
[3]. Moreover, it remains NP-complete even under substantial restriction, for in-
stance, for planar graphs or subcubic graphs (i.e. graphs of vertex degree at
most 3). In the present paper, we focus on subcubic graphs in the attempt to
identify further restrictions which may lead to polynomial-time algorithms to
solve the problem. One such restriction is known to be a bound on the chordal-
ity, i.e. on the length of a largest chordless cycle. Graphs of bounded degree
and bounded chordality have bounded tree-width [2], and hence the problem
can be solved in polynomial time for such graphs. In terms of forbidden induced
subgraphs bounded chordality means excluding large chordless cycles, i.e. cycles
Ck, Ck+1, . . . for a constant k. More generally, it was recently shown in [6] that
excluding large apples (all de�nitions can be found in the end of the introduc-
tion) together with bounded degree leads to a polynomial-time algorithm to solve
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the problem. In both cases (i.e. for graphs without large cycles and for graphs
without large apples) the restrictions are obtained by excluding in�nitely many
graphs. In the present paper, we study subclasses of subcubic graphs obtained
by excluding �nitely many graphs. A necessary condition for polynomial-time
solvability of the problem in such classes was given in [1] and can be stated as
follows: the maximum independent set problem can be solved in polynomial time
in the class of graphs de�ned by a �nite set Z of forbidden induced subgraphs
only if Z contains a graph every connected component of which is a tree with at
most three leaves. In other words, for polynomial-time solvability of the problem
we must exclude a graph every connected component of which has the form Si,j,k

represented in Figure 1. Whether this condition is su�cient for polynomial-time
solvability of the problem is a big open question.
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Fig. 1. Graphs Si,j,k (left) and A5 (right)

Without the restriction on vertex degree, polynomial-time solvability of the
problem in classes of Si,j,k-free graphs was shown only for very small values of
i, j, k. In particular, the problem can be solved for S1,1,1-free (claw-free) graphs
[11], S1,1,2-free (fork-free) graphs [5], and S0,1,1+S0,1,1-free (2P3-free) graphs [7].
The complexity of the problem in S0,2,2-free (P5-free) graphs remains an open
problem in spite of the multiple partial results on this topic (see e.g. [4, 8�10]).

With the restriction on vertex degree, we can do much better. In particular,
we can solve the problem for S1,j,k-free graphs of bounded degree for any j and k,
because by excluding S1,j,k we exclude large apples. However, nothing is known
about classes of Si,j,k-free graphs of bounded degree where all three indices i, j, k
are at least 2. To make a progress in this direction, we consider best possible
restrictions of this type, i.e. we study S2,2,2-free graphs of vertex degree at most
3, and show that the problem is solvable in polynomial time in this class. More
generally, we show that the problem is polynomial-time solvable in the class of
H-free subcubic graphs, where H is a graph every connected component of which
is isomorphic to S2,2,2 or to S1,j,k.

The organization of the paper is as follows. In the rest of this section, we
introduce basic de�nitions and notations. In Section 2 we prove a number of
preliminary results. Finally, in Section 3 we present a solution.

All graphs in this paper are simple, i.e. undirected, without loops and multiple
edges. The vertex set and the edge set of a graph G are denoted by V (G) and
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E(G), respectively. For a vertex v ∈ V (G), we denote by N(v) the neighborhood
of v, i.e., the set of vertices adjacent to v, and by N [v] the closed neighbourhood
of v, i.e. N [v] = N(v) ∪ {v}. For v, w ∈ V (G), we set N [v, w] = N [v] ∪ N [w].
The degree of v is the number of its neighbors, i.e., d(v) = |N(v)|. The subgraph
of G induced by a set U ⊆ V (G) is obtained from G by deleting the vertices
outside of U and is denoted G[U ]. If no induced subgraph of G is isomorphic to
a graph H, then we say that G is H-free. Otherwise we say that G contains H. If
G contains H, we denote by [H] the subgraph of G induced by the vertices of H
and all their neighbours. As usual, by Cp we denote a chordless cycle of length
p. Also, an apple Ap, p ≥ 4, is a graph consisting of a cycle Cp and a vertex f
which has exactly one neighbour on the cycle. We call vertex f the stem of the
apple. See Figure 1 for the apple A5. The size of a maximum independent set in
G is called the independence number of G and is denoted α(G).

2 Preliminary results

We start by quoting the following result from [6].

Theorem 1. For any positive integers d and p, the maximum independent set
problem is polynomial-time solvable in the class of (Ap, Ap+1, . . .)-free graphs
with maximum vertex degree at most d.

We solve the maximum independent set problem for S2,2,2-free subcubic
graphs by reducing it to subcubic graphs without large apples.

Throughout the paper we let G be an S2,2,2-free subcubic graph and K ≥ 1
a large �xed integer. If G contains no apple Ap with p ≥ K, then the problem
can be solved for G by Theorem 1. Therefore, from now on we assume that G
contains an induced apple Ap with p ≥ K formed by a chordless cycle C = Cp

of length p and a stem f . We denote the vertices of C by v1, . . . , vp (listed along
the cycle) and assume without loss of generality that the only neighbour of f on
C is v1 (see Figure 1 for an illustration).

If v1 is the only neighbour of f in G, then the deletion of v1 together with
f reduces the independence number of G by exactly 1. This can be easily seen
and also is a special case of a more general reduction described in Section 2.1.
The deletion of f and v1 destroys the apple Ap. The idea of our algorithm is
to destroy all large apples by means of other simple reductions that change
the independence number by a constant. Before we describe the reductions in
Section 2.1, let us �rst characterize the local structure of G in the case when the
stem f has a neighbor di�erent from v1.

Lemma 1. If f has a neighbor g di�erent from v1, then g has at least one
neighbor on C and the neighborhood of g on C is of one of the 8 types represented
in Figure 2.

Proof. First observe that g must have a neighbor among {vp−1, vp, v2, v3}, since
otherwise we obtain an induced S2,2,2. If g has only 1 neighbor on C, then clearly
we obtain con�guration (1) or (2).
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Now assume that g has two neighbors on C. Suppose �rst that g is adjacent
neither to v2 nor to vp. Then g must be adjacent to at least one of vp−1, v3.
Without loss of generality, we may assume that g is adjacent to vp−1 and denote
the third neighbor of g by vj . If 2 < j < p−3, then we clearly obtain an induced
S2,2,2 centered at g. Otherwise, we obtain con�guration (3) or (4).

Now assume g is adjacent to one of v2, vp, say to vp, and again denote the
third neighbor of g by vj . If j ∈ {p− 2, p− 1}, then we obtain con�guration (5)
or (6). If j ∈ {2, 3}, then we obtain con�guration (7) or (8). If 3 < j < p − 2,
then G contains an S2,2,2 induced by {vj−2, vj−1, vj , vj+1, vj+2, g, f}. ut
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Fig. 2. Ap + g

2.1 Graph reductions

H-subgraph reduction Let H be an induced subgraph of G.

Lemma 2. If α(H) = α([H]), then α(G− [H]) = α(G)− α(H).

Proof. Since any independent set of G contains at most α([H]) vertices in [H],
we know that α(G− [H]) ≥ α(G)− α([H]). Now let S be an independent set in
G−[H] and A an independent set of size α(H) inH. Then S∪A is an independent
set in G and hence α(G) ≥ α(G− [H]) + α(H). Combining the two inequalities
together with α(H) = α([H]), we conclude that α(G− [H]) = α(G)−α(H). ut

The deletion of [H] in the case when α(H) = α([H]) will be called the H-
subgraph reduction. For instance, if a vertex v has degree 1, then the deletion of
v together with its only neighbour is the H-subgraph reduction with H = {v}.
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Φ-reduction Let us denote by Φ the graph represented on the left of Figure 3.
The transformation replacing Φ by Φ′ as shown in Figure 3 will be called Φ-
reduction.

t t t tt t t t t tt t
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Fig. 3. Φ-reduction

Lemma 3. By applying the Φ-reduction to an S2,2,2-free subcubic graph G, we
obtain an S2,2,2-free subcubic graph G′ such that α(G′) = α(G)− 2.

Proof. Let S be an independent set in G. Clearly it contains at most two vertices
in {a, b, c, d} and at most two vertices in {1, 2, 3, 4}. Denote X = S ∩{1, 2, 3, 4}.
If the intersection S ∩ {a, b, c, d} contains at most one vertex or one of the
pairs {a, d}, {b, c}, then S − X is an independent set in G′ of size at least
α(G) − 2. If S ∩ {a, b, c, d} = {a, b}, then X contains at most one vertex and
hence S−(X∪{b}) is an independent set in G′ of size at least α(G)−2. Therefore,
α(G′) ≥ α(G)− 2.

Now let S′ be an independent set in G′. Then the intersection S′∩{a, b, c, d}
contains at most two vertices. If S′ ∩ {a, b, c, d} = {a, d}, then S′ ∪ {2, 3} is an
independent set of size α(G′) + 2 in G. Similarly, if S′ ∩ {a, b, c, d} contains at
most one vertex, then G contains an independent set of size at least α(G′) + 2.
Therefore, α(G) ≥ α(G′) + 2. Combining the two inequalities, we conclude that
α(G′) = α(G)− 2.

Now let us show that G′ is an S2,2,2-free subcubic graph. The fact that G
′ is

subcubic is obvious. Assume to the contrary that it contains an induced subgraph
H isomorphic to S2,2,2. If H contains none of the edges ab and cd, then clearly
H is also an induced S2,2,2 in G, which is impossible. If S contains both edges ab
and cd, then it contains C4 = (a, b, c, d), which is impossible either. Therefore,
H has exactly one of the two edges, say ab. If vertex b has degree 1 in H, then
by replacing b by vertex 1 we obtain an induced S2,2,2 in G. By symmetry, a
also is not a vertex of degree 1 in H. Therefore, we may assume, without loss of
generality, that a has degree 3 and b has degree 2 in H. Let us denote by x the
only neighbour of b in H. Then (H − {b, x}) ∪ {1, 2} is an induced S2,2,2 in G.
This contradiction completes the proof. ut

AB-reduction The AB-reduction deals with two graphs A and B represented
in Figure 4. We assume that the vertices vi belong to the cycle C = Cp, and the
vertices pj are outside of C.

Lemma 4. If G contains an induced subgraph isomorphic to A, then
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Fig. 4. Induced subgraphs A (left) and B (right)

� either A can be extended to an induced subgraph of G isomorphic to B in
which case pj+2 can be deleted without changing α(G)

� or the deletion of N [vi] ∪N [pj ] reduces the independence number by 2.

Proof. Assume �rst that A can be extended to an induced B (by adding vertex
pj+3). Consider an independent set S containing vertex pj+2. Then S contains
neither pj+1 nor pj+3 nor vi+2. If neither pj nor vi belongs to S, then pj+2

can be replaced by pj+1 in S. Now assume, without loss of generality, that vi
belongs to S. Then vi+1 6∈ S and therefore we may assume that vi+3 ∈ S, since
otherwise pj+2 can be replaced by vi+2 in S. If pj+3 has one more neighbour
x in S (di�erent from pj+2), then vertices vi, vi+2, vi+3, pj+1, pj+2, pj+3 and x
induce an S2,2,2 in G (because the 3 endpoints are in S and the internal vertices
have degree 3 in A). Therefore, we conclude that pj+2 is the only neighbour
of pj+3 in S, in which case pj+2 can be replaced by pj+3 in S. Thus, for any
independent S in G containing vertex pj+2, there is an independent set of size
|S| which does not contain pj+2. Therefore, the deletion of pj+2 does not change
the independence number of G.

Now let us assume that A cannot be extended to B. Clearly, every indepen-
dent set S in G−N [vi, pj ] can be extended to an independent set of size |S|+2
in G by adding to S vertices vi and pj . Therefore, α(G) ≥ α(G−N [vi, pj ]) + 2.

Conversely, consider an independent set S in G. If it contains at most 2 ver-
tices inN [vi, pj ], then by deleting these vertices from S we obtain an independent
set of size at least |S| − 2 in G−N [ci, pj ].

Suppose now that S contains more than 2 vertices in N [vi, pj ]. Let us show
that in this case it must contain exactly three vertices in N [vi, pj ], two of which
are vi+1 and pj+1. Indeed, N [vi, pj ] contains at most 6 vertices: vi−1, vi, vi+1, pj ,
pj+1 and possibly some vertex x. Moreover, if x exists, then it is adjacent to vi−1,
since otherwise an S2,2,2 arises induced either by vertices x, pj , pj+1, pj+2, vi+2,
vi−1, vi (if pj+2 is not adjacent to vi−1) or by vertices pj , vi+1, vi+2, vi+3, vi+4,
vi−1, pj+2 (if pj+2 is adjacent to vi−1). Therefore, S cannot contain more than
three vertices in N [vi, pj ], and if it contains tree vertices, then two of them are
vi+1 and pj+1. As a result, S contains neither vi+2 nor pj+2. If each of vi+2

and pj+2 has one more neighbour in S (di�erent from vi+1 and pj+1), then A
can be extended to B, which contradicts our assumption. Therefore, we may
assume without loss of generality that pj+1 is the only neighbour of pj+2 in S.
In this case, the deletion from N [vi, pj ] of the three vertices of S and adding
to it vertex pj+2 results in an independent set of size |S| − 2 in G − N [vi, pj ].
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Therefore, α(G−N [vi, pj ]) ≥ α(G)− 2. Combining with the inverse inequality,
we conclude that α(G−N [vi, pj ]) = α(G)− 2. ut

Other reductions Two other reductions that will be helpful in the proof are
the following.

� The A∗-reduction applies to an induced A∗ (Figure 5) and consists in deleting
vertex pj+2.

� The House-reduction applies to an induced House (Figure 5) and consists
in deleting the vertices of the triangle vi+2, vi+3, pj+2.

t t tt t t t
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pj pj+1 pj+2

vi+3 t tt t t
�
�

vi+1 vi+2

pj+1 pj+2

vi+3

Fig. 5. Induced subgraphs A∗ (left) and House (right)

Lemma 5. The A∗-reduction does not change the independence number, and
the House-reduction reduces the independence number by exactly 1.

Proof. Assume G contains an induced A∗ and let S be an independent set con-
taining pj+2. If S does not contain vi+1, then pj+2 can be replaced by vi+2,
and if S contains vi+1, then pj+2 can be replaced by pj+1. Therefore, G has an
independent set of size |S| which does not contain pj+2 and hence the deletion
of pj+2 does not change the independence number.

Assume G contains an induced House and let S be a maximum independent
set in G. Then obviously at most one vertex of the triangle vi+2, vi+3, pj+2 be-
longs to S. On the other hand, S must contain at least one vertex of this triangle.
Indeed, if none of the three vertices belong to S, then each of them must have
a neighbour in S (else S is not maximum), but then both vi+1 and pj+1 belong
to S, which is impossible. Therefore, every maximum independent set contains
exactly one vertex of the triangle, and hence the deletion of the triangle reduces
the independence number by exactly 1. ut

3 Solving the problem

In the subgraph of G induced by the vertices having at least one neighbor on
C = Cp, every vertex has degree at most 2 and hence every connected component
in this subgraph is either a path or a cycle. Let F be the component of this
subgraph containing the stem f . In what follows we analyze all possible cases
for F and show that in each case the apple Ap can be destroyed by means of
graph reductions described above or by other simple reductions.
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Lemma 6. If F is a cycle, then Ap can be destroyed by graph reductions that
change the independence number by a constant.

Proof. If F is a triangle, then, according to Lemma 1, the neighbors of F in C
are three consecutive vertices of C. In this case, F together with two consecutive
vertices of C form a House and hence the deletion of F reduces the independence
number of G by exactly one.

Assume F is a cycle of length 4 induced by vertices f1, f2, f3, f4. With the
help of Lemma 1 it is not di�cult to see that the neighbors of F in C must
be consecutive vertices, say vi, . . . , vi+3, and the only possible con�guration, up
to symmetry, is this: vi is a neighbor of f1, vi+1 is a neighbor of f2, vi+2 is
a neighbor of f4, vi+3 is a neighbor of f3. In this case, the deletion of vertex
vi+1 does not change the independence number of G. To show this, consider an
independent set S containing vertex vi+1. Then S does not contain 2, vi, vi+2. If
f4 ∈ S, then f1, f3 6∈ S, in which case vi+1 can be replaced by f2 in S. So, assume
f4 6∈ S. If f3 6∈ S, then we can assume that vi+3 ∈ S (else vi+1 can be replaced
by f3 in S), in which case vi+1, vi+3 can be replaced by vi+2, f3. So, assume
f3 ∈ S, and hence vi+3 6∈ S. But now vi+1 can be replaced by vi+2 in S. This
proves that for every independent set S containing vi+1, there is an independent
set of the same size that does not contain vi+1. Therefore, the deletion of vi+1

does not change the independence number of G.
Assume F is a cycle of length 5 induced by vertices f1, f2, f3, f4, f5. With the

help of Lemma 1 it is not di�cult to verify that the neighbors of F in C must be
consecutive vertices, say vi, . . . , vi+4, and the only possible con�guration, up to
symmetry, is this this: f1 is adjacent to vi, f2 is adjacent to vi+1, f3 is adjacent
to vi+3, f4 is adjacent to vi+4, f5 is adjacent to vi+2. But then the vertices
f2, f3, f4, f5, vi+2, vi+4, vi+5 induce an S2,2,2.

If F is a cycle of length more than 5, then an induced S2,2,2 can be easily
found. ut

Lemma 7. If F is a path with at least 5 vertices, then Ap can be destroyed by
graph reductions that change the independence number by a constant.

Proof. Assume F has at least 5 vertices f1, . . . , f5. Denote the neighbour of f3
on C by vi. Assume vi−1 has a neighbour in {f1, f5}, say f1 (up to symmetry).
By Lemma 1, f2 is adjacent either to vi−2 or vi+1.

Let �rst f2 be adjacent to vi+1. Then either f1 is not adjacent to vi−2, in
which case the vertices vi−2, . . . , vi+1, f1, f2, f3 induce an A, or f1 is adjacent to
vi−2, in which case f4 is adjacent to vi+2 (by Lemma 1) and hence the vertices
vi, . . . , vi+3, f2, f3, f4 induce an A. In either case, we can apply Lemma 4.

Suppose now that f2 is adjacent to vi−2. Then f1 is not adjacent to vi+1,
since otherwise f4 is adjacent to vi+2 (by Lemma 1), in which case the vertices
vi+1, . . . , vi+4, f1, f3, f4 induce an S2,2,2. As a result, vertices vi−2, . . . , vi+1, f1,
f2, f3 induce an A and we can apply Lemma 4.

The above discussion shows that vi−1 has no neighbour in {f1, f5}. By sym-
metry, vi+1 has no neighbour in {f1, f5}. Then each of vi−1 and vi+1 has a
neighbour in {f2, f4}, since otherwise f1, . . . , f5, vi together with vi−1 or with



On the maximum independent set problem in subclasses of subcubic graphs 9

vi+1 induce an S2,2,2. Up to symmetry, we may assume that vi−1 is adjacent to
f2, while vi+1 is adjacent to f4.

If f1 is adjacent to vi−2 or f5 is adjacent to vi+2, then an induced Φ arises,
in which case we can apply the Φ-reduction. Therefore, we can assume that f1
is adjacent to vi−3, while f5 is adjacent to vi+3.

We may assume that vertex vi−2 has no neighbour x di�erent from vi−3, vi−1,
since otherwise x must be adjacent to f1 (else vertices x, vi−2, vi−1, vi, vi+1, f1, f2
induce an S2,2,2), in which case vi−3, . . . , vi, x, f1, f2 induce an A and we can ap-
ply the AB-reduction. Similarly, we may assume that vertex f1 has no neighbour
x di�erent from vi−3, f2. But then d(f1) = d(vi−2) = 2 and we can apply the
H-subgraph reduction with H = {vi−2, f1}. ut

Lemma 8. If F is a path with 4 vertices, then Ap can be destroyed by graph
reductions that change the independence number by a constant.

Proof. Let F be a path (f1, f2, f3, f4). Without loss of generality we assume that
f2 is adjacent to vi and f3 to vj with j > i. By Lemma 1, j = i+1 or j = i+2.

Case j = i+1. Assume f1 is adjacent to vi+2. Then vertices vi, vi+1, vi+2, vi+3,
f1, f2, f3 induce either the graph A (if f1 is not adjacent to vi+3) or the graph
A∗ (if f1 is adjacent to vi+3), in which case we can apply either Lemma 4
or Lemma 5. Therefore, we may assume that f1 is not adjacent to vi+2, and
by symmetry, f4 is not adjacent to vi−1. Then by Lemma 1, f1 must have a
neighbour in {vi−2, vi−1} and f4 must have a neighbour in {vi+2, vi+3}.

Assume that f4 is adjacent to vi+3. If vi+2 has a neighbour x outside of the
cycle C, then x is not adjacent to f4 (else F has more than 4 vertices) and hence
vi−1, vi, vi+1, vi+2, x, f3, f4 induce an S2,2,2. Therefore, the degree of vi+2 in G is
2. Similarly, the degree of f4 in G is two. But now we can apply the H-subgraph
reduction with H = {vi+2, f4}. This allows us to assume that f4 is not adjacent
to vi+3, and by symmetry, f1 is not adjacent to vi−2. But then f1 is adjacent to
vi−1 and f4 is adjacent to vi+2, in which case we can apply the Φ-reduction to
the subgraph of G induced by vi−1, vi, vi+1, vi+2, f1, f2, f3, f4.

Case j = i + 2. If f1 or f4 is adjacent to vi+1, then an induced graph A
arises, in which case we can apply Lemma 4. Then f1 must be adjacent to
vi−1, since otherwise it adjacent to vi−2 (by Lemma 1), in which case vertices
vi−2, f1, f2, f3, f4, vi, vi+1 induce an S2,2,2. By symmetry, f4 is adjacent to vi+3.

If f1 is adjacent to vi−2, then we can apply the House-reduction to the
subgraph of G induced by vi−2, vi−1, vi, f1, f2, and if f1 is adjacent to vi−3, then
vertices vi−3, f1, f2, f3, f4, vi, vi+1 induce an S2,2,2. Therefore, we may assume
by Lemma 1 that f1 has degree 2 in G. By symmetry, f4 has has degree 2. Also,
to avoid an induced S2,2,2, we conclude that vi+1 has degree 2. But now we
apply the H-subgraph reduction with H = {f1, vi, vi+2, f4}, which reduces the
independence number of G by 4. ut

Lemma 9. If F is a path with 3 vertices, then Ap can be destroyed by graph
reductions that change the independence number by a constant.
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Proof. Assume F is a path (f1, f2, f3). Without loss of generality let f2 be ad-
jacent to v1. Since G is S2,2,2-free, each of f1 and f3 must have at least one
neighbor in {vp−1, vp, v2, v3}. Denote L = {vp−1, vp} and R = {v2, v3}.

Case (a): f1 and f3 have both a neighbor in R. Due to the symmetry, we may
assume without loss of generality that f1 is adjacent to v2, while f3 is adjacent
to v3. Then we may further assume that f1 is adjacent to v4, since otherwise
vertices v1, v2, v3, v4, f1, f2, f3 induced either an A (if f3 is not adjacent to v4)
or an A∗ (if f3 is adjacent to v4), in which case we can apply either Lemma 4 or
Lemma 5. But now the deletion of f3 does not change the independence number
of G. Indeed, let S be an independent set containing f3. If f1 ∈ S, then f3 can
be replaced by v3. If f1 6∈ S, then we can assume that v1 ∈ S (else f3 can be
replaced by f2), in which case f3, v1 can be replaced by f2, v2.

The above discussion allows us to assume, without loss of generality, that f1
has no neighbor in R, while f3 has no neighbor in L.

Case (b): f3 is adjacent to v3. Then we may assume that f3 is not adjacent
to v2, since otherwise we can apply the House-reduction to the subgraph of G
induced by v1, v2, v3, f3, f2. Let us show that in this case

� the degree of v2 is 2. Assume to the contrary v2 has a third neighbour x.
Then x is not adjacent to vp−1, since otherwise G contains an S2,2,2 in-
duced either by vp−1, x, v2, v1, f2, v3, v4 (if x is not adjacent to v4) or by
vp−2, vp−1, x, v2, v1, v4, v5 (if x is adjacent to v4). This implies that x is ad-
jacent to vp, since otherwise x, v2, v1, f2, f3, vp, vp−1 induced an S2,2,2. As
a result, f1 is adjacent to vp−1. Due to the degree restriction, x may have
at most one neighbour in {vp−3, vp−2, v4, v5}. By symmetry, we may as-
sume without loss of generality that x has no neighbour in {v4, v5}. Also, f3
has no neighbour in {v4, v5}, since otherwise this neighbour together with
vp−1, f1, f2, f3, v1, v2 would induce an S2,2,2. But now x, v2, v3, v4, v5, f3, f2
induce an S2,2,2. This contradiction complete the proof of the claim.

If f3 also has degree two, then we can apply the H-subgraph reduction with H =
{v3, f3}. Therefore, may assume that f3 has one more neighbour, which must be,
by Lemma 1, either v4 or v5. If f3 is adjacent to f5, then f1, f2, f3, v5, v6, v3, v2
induce an S2,2,2. Therefore, f3 is adjacent to v4. But now v3 can be deleted
without changing the independence number. Indeed, let S be an independent
set containing v3. If S does not contain v1, then v3 can be replaced by v2, and
if S contains v1, then v1, v3 can be replaced by v2, f3.

Cases (a) and (b) reduce the analysis to the situation when f1 is adjacent
to vp and non-adjacent to vp−1, while f3 is adjacent to v2 and non-adjacent to
v3. If f3 is adjacent to v4, then vertices vp, v1, v2, v3, v4, f1, f2, f3 induced the
graph Φ, in which case we can apply Lemma 3. Therefore, we can assume by
Lemma 1 that the degree of f3 is 2, and similarly the degree of f1 is 2. But now
we can apply the H-subgraph reduction with H = {f1, v1, f3}, which reduces
the independence number of G by 3. ut



On the maximum independent set problem in subclasses of subcubic graphs 11

Lemma 10. If F is a path with 2 vertices, then Ap can be destroyed by graph
reductions that change the independence number by a constant.

Proof. If F is a path with 2 vertices, we deal with the eight cases represented in
Figure 2. It is easy to see that in cases (1) and (7), every maximum independent
set must contain exactly one of f, g and thus by deleting f, g we reduce the
independence number by exactly 1.

In case (5), the deletion of f, g also reduces the independence number by
exactly 1. Indeed, let S be a maximum independent set containing neither f nor
g. Since S is maximum it must contain v1, vp−2 and hence it does not contain
vp, vp−1. But then (S \ {v1}) ∪ {vp, f} is an independent set larger than S, con-
tradicting the choice of S. Therefore, every maximum independent set contains
exactly one of f and g and hence α(G− {f, g}) = α(G)− 1.

In case (2), the deletion of the set X = {vp−1, vp, v1, f, g} reduces the inde-
pendence number of the graph by exactly 2. Indeed, any independent set of G
contains at most two vertices in X, and hence α(G −X) ≥ α(G) − 2. Assume
now that S is a maximum independent set in G−X. If v2 6∈ S, then S∪{v1, g} is
an independent set in G of size α(G−X)+2. Now assume v2 ∈ S. By symmetry,
vp−2 ∈ S. Assume vp has a neighbour x in S. Then x is adjacent neither to vp−2
nor to v2, as all three vertices belong to S. Also, x cannot be adjacent to both
vp−3 and v3, since otherwise an induced S2,2,2 can be easily found. But if x is not
adjacent, say, to v3, then x, vp, v1, v2, v3, f, g induce an S2,2,2. This contradiction
shows that vp has no neighbours in S. Therefore, S ∪ {vp, f} is an independent
set in G of size α(G−X) + 2, and hence α(G) ≥ α(G−X) + 2. Combining the
two inequalities, we conclude that α(G−X) = α(G)− 2.

In case (3), we may delete g without changing the independence number,
because in any independent set S containing g, vertex g can be replaced either
by vp−1 (if S does not contain vp) or by f (if S contains vp). In case (6), we
apply the House-reduction.

In cases (4) and (8), we �nd another large apple A′ whose stem f ′ belongs
to a path F ′ with at least 3 vertices. In case (4), A′ is induced by the cycle
v1, . . . , vp−3, g, f with stem f ′ = vp−1, and in case (8) the apple is induced by
the cycle v3, . . . , vp, g with stem f ′ = v1. In both cases, the situation can be
handled by one of the previous lemmas. ut

Theorem 2. Let H be a graph every connected component of which is isomor-
phic either to S2,2,2 or to S1,j,k. The maximum independent set problem can be
solved for H-free graphs of maximum vertex degree at most 3 in polynomial time.

Proof. First, we show how to solve the problem in the case when H = S2,2,2. Let
G = (V,E) be an S2,2,2-free subcubic graph and let K be a large �xed constant.
We start by checking if G contains an apple Ap with p ≥ K. To this end, we
detect every induced S1,k,k with k = K/2, which can be done in time nK . If G is
S1,k,k-free, then it is obviously Ap-free for each p ≥ K. Assume a copy of S1,k,k

has been detected and let x, y be the two vertices of this copy at distance k from
the center of S1,k,k. We delete from G all vertices of V (S1,k,k) − {x, y} and all
their neighbours, except x and y, and determine if in the resulting graph there
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is a path connecting x to y. It is not di�cult to see that this procedure can be
implemented in polynomial time.

Assume G contains an induced apple Ap with p ≥ K. If the stem of the apple
has degree 1 in G, we delete it together with its only neighbour, which destroys
the apple and reduces the independence number of G by exactly one. If the stem
has degree more than 1, we apply one of the lemmas of Section 3 to destroy Ap

and reduce the independence number of G. It is not di�cult to see that all the
reductions used in the lemmas can be implemented in polynomial time.

Thus in polynomial time we reduce the problem to a graph G′ which does
not contain any apple Ap with p ≥ K, and then we �nd a maximum independent
set in G′ with the help of Theorem 1. This also shows that in polynomial time
we can compute α(G), since we know the di�erence between α(G) and α(G′). To
�nd a maximum independent set in G, we take an arbitrary vertex v ∈ V (G). If
α(G− v) = α(G), then there is a maximum independent set in G that does not
contain v and hence v ignored (deleted). Otherwise, v belongs to every maximum
independent set in G and hence it must be included in the solution. Therefore, in
polynomial time we can �nd a maximum independent set in G. This completes
the proof of the theorem in the case when H = S2,2,2.

By Theorem 1 we also know how to solve the problem in the case when
H = S1,j,k. Now we assume that H contains s > 1 connected components.
Denote by S any of the components of H and let H ′ be the graph obtained from
H by deleting S. Consider an H-free graph G. If G does not contain a copy of
S, the problem can be solved for G by the �rst part of the proof. So, assume G
contains a copy of S. By deleting from G the vertices of [S] we obtain a graph
G′ which is H ′-free and hence the problem can be solved for G′ by induction on
s. The number of vertices in [S] is bounded by a constant independent of |V (G)|
(since |V (S)| < |V (H)| and every vertex of S has at most three neighbours in
G), and hence the problem can be solved for G in polynomial time as well, which
can be easily seen by induction on the number of vertices in [S]. ut

4 Conclusion

Unless P = NP , the maximum independent set problem can be solved in poly-
nomial time for H-free subcubic graphs only if every connected component of H
has the form Si,j,k represented in Figure 1. Whether this condition is su�cient
for polynomial-time solvability of the problem is a challenging open question.
In this paper, we contributed to this topic by solving the problem in the case
when every connected component of H is isomorphic either to S2,2,2 or to S1,j,k.
Our poof also shows that, in order to answer the above question, one can be
restricted to H-free subcubic graphs where H is connected. In other words, one
can consider Si,j,k-free, or more generally, Sk,k,k-free subcubic graphs. We be-
lieve that the answer is positive for all values of k and hope that our solution
for k = 2 can base a foundation for algorithms for larger values of k.
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