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It is known that the maximum independent set problem is NP-complete for subcubic graphs, i.e. graphs of vertex degree at most 3. Moreover, the problem is NP-complete for H-free subcubic graphs whenever H contains a connected component which is not a tree with at most 3 leaves. We show that if every connected component of H is a tree with at most 3 leaves and at most 7 vertices, then the problem can be solved for H-free subcubic graphs in polynomial time.

Introduction

In a graph, an independent set is a subset of vertices no two of which are adjacent. The maximum independent set problem consists in nding in a graph an independent set of maximum cardinality. This problem is generally NP-complete [START_REF] Garey | Computers and Intractability: A Guie to the Theory of NP-Completeness[END_REF]. Moreover, it remains NP-complete even under substantial restriction, for instance, for planar graphs or subcubic graphs (i.e. graphs of vertex degree at most 3). In the present paper, we focus on subcubic graphs in the attempt to identify further restrictions which may lead to polynomial-time algorithms to solve the problem. One such restriction is known to be a bound on the chordality, i.e. on the length of a largest chordless cycle. Graphs of bounded degree and bounded chordality have bounded tree-width [START_REF] Bodlaender | Treewidth for graphs with small chordality[END_REF], and hence the problem can be solved in polynomial time for such graphs. In terms of forbidden induced subgraphs bounded chordality means excluding large chordless cycles, i.e. cycles C k , C k+1 , . . . for a constant k. More generally, it was recently shown in [START_REF] Lozin | Graphs Without Large Apples and the Maximum Weight Independent Set Problem[END_REF] that excluding large apples (all denitions can be found in the end of the introduction) together with bounded degree leads to a polynomial-time algorithm to solve The rst author gratefully acknowledges support from DIMAP -the Center for Discrete Mathematics and its Applications at the University of Warwick, and from EPSRC, grant EP/I01795X/1. the problem. In both cases (i.e. for graphs without large cycles and for graphs without large apples) the restrictions are obtained by excluding innitely many graphs. In the present paper, we study subclasses of subcubic graphs obtained by excluding nitely many graphs. A necessary condition for polynomial-time solvability of the problem in such classes was given in [START_REF] Alekseev | On the local restrictions eect on the complexity of nding the graph independence number[END_REF] and can be stated as follows: the maximum independent set problem can be solved in polynomial time in the class of graphs dened by a nite set Z of forbidden induced subgraphs only if Z contains a graph every connected component of which is a tree with at most three leaves. In other words, for polynomial-time solvability of the problem we must exclude a graph every connected component of which has the form S i,j,k represented in Figure 1. Whether this condition is sucient for polynomial-time solvability of the problem is a big open question. Without the restriction on vertex degree, polynomial-time solvability of the problem in classes of S i,j,k -free graphs was shown only for very small values of i, j, k. In particular, the problem can be solved for S 1,1,1 -free (claw-free) graphs [START_REF] Minty | On maximal independent sets of vertices in claw-free graphs[END_REF], S 1,1,2 -free (fork-free) graphs [START_REF] Lozin | A polynomial algorithm to nd an independent set of maximum weight in a fork-free graph[END_REF], and S 0,1,1 +S 0,1,1 -free (2P 3 -free) graphs [START_REF] Lozin | Maximum regular induced subgraphs in 2P3-free graphs[END_REF]. The complexity of the problem in S 0,2,2 -free (P 5 -free) graphs remains an open problem in spite of the multiple partial results on this topic (see e.g. [START_REF] Gerber | P5-free augmenting graphs and the maximum stable set problem[END_REF]810]).

With the restriction on vertex degree, we can do much better. In particular, we can solve the problem for S 1,j,k -free graphs of bounded degree for any j and k, because by excluding S 1,j,k we exclude large apples. However, nothing is known about classes of S i,j,k -free graphs of bounded degree where all three indices i, j, k are at least 2. To make a progress in this direction, we consider best possible restrictions of this type, i.e. we study S 2,2,2 -free graphs of vertex degree at most 3, and show that the problem is solvable in polynomial time in this class. More generally, we show that the problem is polynomial-time solvable in the class of H-free subcubic graphs, where H is a graph every connected component of which is isomorphic to S 2,2,2 or to S 1,j,k .

The organization of the paper is as follows. In the rest of this section, we introduce basic denitions and notations. In Section 2 we prove a number of preliminary results. Finally, in Section 3 we present a solution.

All graphs in this paper are simple, i.e. undirected, without loops and multiple edges. The vertex set and the edge set of a graph G are denoted by V (G) and E(G), respectively. For a vertex v ∈ V (G), we denote by N (v) the neighborhood of v, i.e., the set of vertices adjacent to v, and by

N [v] the closed neighbourhood of v, i.e. N [v] = N (v) ∪ {v}. For v, w ∈ V (G), we set N [v, w] = N [v] ∪ N [w].
The degree of v is the number of its neighbors, i. p. Also, an apple A p , p ≥ 4, is a graph consisting of a cycle C p and a vertex f which has exactly one neighbour on the cycle. We call vertex f the stem of the apple. See Figure 1 for the apple A 5 . The size of a maximum independent set in G is called the independence number of G and is denoted α(G).

Preliminary results

We start by quoting the following result from [START_REF] Lozin | Graphs Without Large Apples and the Maximum Weight Independent Set Problem[END_REF].

Theorem 1. For any positive integers d and p, the maximum independent set problem is polynomial-time solvable in the class of (A p , A p+1 , . . .)-free graphs with maximum vertex degree at most d.

We solve the maximum independent set problem for S 2,2,2 -free subcubic graphs by reducing it to subcubic graphs without large apples.

Throughout the paper we let G be an S 2,2,2 -free subcubic graph and K ≥ 1 a large xed integer. If G contains no apple A p with p ≥ K, then the problem can be solved for G by Theorem 1. Therefore, from now on we assume that G contains an induced apple A p with p ≥ K formed by a chordless cycle C = C p of length p and a stem f . We denote the vertices of C by v 1 , . . . , v p (listed along the cycle) and assume without loss of generality that the only neighbour of f on C is v 1 (see Figure 1 for an illustration).

If v 1 is the only neighbour of f in G, then the deletion of v 1 together with f reduces the independence number of G by exactly 1. This can be easily seen and also is a special case of a more general reduction described in Section 2.1. The deletion of f and v 1 destroys the apple A p . The idea of our algorithm is to destroy all large apples by means of other simple reductions that change the independence number by a constant. Before we describe the reductions in Section 2.1, let us rst characterize the local structure of G in the case when the stem f has a neighbor dierent from v 1 . Lemma 1. If f has a neighbor g dierent from v 1 , then g has at least one neighbor on C and the neighborhood of g on C is of one of the 8 types represented in Figure 2.

Proof. First observe that g must have a neighbor among {v p-1 , v p , v 2 , v 3 }, since otherwise we obtain an induced S 2,2,2 . If g has only 1 neighbor on C, then clearly we obtain conguration (1) or [START_REF] Bodlaender | Treewidth for graphs with small chordality[END_REF]. Now assume that g has two neighbors on C. Suppose rst that g is adjacent neither to v 2 nor to v p . Then g must be adjacent to at least one of v p-1 , v 3 . Without loss of generality, we may assume that g is adjacent to v p-1 and denote the third neighbor of g by v j . If 2 < j < p -3, then we clearly obtain an induced S 2,2,2 centered at g. Otherwise, we obtain conguration (3) or [START_REF] Gerber | P5-free augmenting graphs and the maximum stable set problem[END_REF]. Now assume g is adjacent to one of v 2 , v p , say to v p , and again denote the third neighbor of g by v j . If j ∈ {p -2, p -1}, then we obtain conguration [START_REF] Lozin | A polynomial algorithm to nd an independent set of maximum weight in a fork-free graph[END_REF] or [START_REF] Lozin | Graphs Without Large Apples and the Maximum Weight Independent Set Problem[END_REF]. If j ∈ {2, 3}, then we obtain conguration [START_REF] Lozin | Maximum regular induced subgraphs in 2P3-free graphs[END_REF] or [START_REF] Lozin | Maximum independent sets in subclasses of P5-free graphs[END_REF]

. If 3 < j < p -2, then G contains an S 2,2,2 induced by {v j-2 , v j-1 , v j , v j+1 , v j+2 , g, f }. t t t t t t f t g v1 vp v2 vp-1 (1)
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Graph reductions

H-subgraph reduction Let H be an induced subgraph of G. Lemma 2. If α(H) = α([H]), then α(G -[H]) = α(G) -α(H). Proof. Since any independent set of G contains at most α([H]) vertices in [H], we know that α(G -[H]) ≥ α(G) -α([H]). Now let S be an independent set in G-[H] and A an independent set of size α(H) in H. Then S∪A is an independent set in G and hence α(G) ≥ α(G -[H]) + α(H). Combining the two inequalities together with α(H) = α([H]), we conclude that α(G -[H]) = α(G) -α(H).

The deletion of [H] in the case when α(H) = α([H]

) will be called the Hsubgraph reduction. For instance, if a vertex v has degree 1, then the deletion of v together with its only neighbour is the H-subgraph reduction with H = {v}.

Φ-reduction

Let us denote by Φ the graph represented on the left of Figure 3. The transformation replacing Φ by Φ as shown in Figure 3 will be called Φreduction. Proof. Let S be an independent set in G. Clearly it contains at most two vertices in {a, b, c, d} and at most two vertices in {1, 2, 3, 4}. Denote X = S ∩ {1, 2, 3, 4}.

If the intersection S ∩ {a, b, c, d} contains at most one vertex or one of the pairs {a, d}, {b, c}, then S -

X is an independent set in G of size at least α(G) -2. If S ∩ {a, b, c, d} = {a, b}, then X contains at most one vertex and hence S-(X ∪{b}) is an independent set in G of size at least α(G)-2. Therefore, α(G ) ≥ α(G) -2.
Now let S be an independent set in G . Then the intersection S ∩ {a, b, c, d} contains at most two vertices. If S ∩ {a, b, c, d} = {a, d}, then S ∪ {2, 3} is an independent set of size α(G ) + 2 in G. Similarly, if S ∩ {a, b, c, d} contains at most one vertex, then G contains an independent set of size at least α(G ) + 2. Therefore, α(G) ≥ α(G ) + 2. Combining the two inequalities, we conclude that

α(G ) = α(G) -2.
Now let us show that G is an S 2,2,2 -free subcubic graph. The fact that G is subcubic is obvious. Assume to the contrary that it contains an induced subgraph H isomorphic to S 2,2,2 . If H contains none of the edges ab and cd, then clearly H is also an induced S 2,2,2 in G, which is impossible. If S contains both edges ab and cd, then it contains C 4 = (a, b, c, d), which is impossible either. Therefore, H has exactly one of the two edges, say ab. If vertex b has degree 1 in H, then by replacing b by vertex 1 we obtain an induced S 2,2,2 in G. By symmetry, a also is not a vertex of degree 1 in H. Therefore, we may assume, without loss of generality, that a has degree 3 and b has degree 2 in H. Let us denote by x the only neighbour of b in H.

Then (H -{b, x}) ∪ {1, 2} is an induced S 2,2,2 in G.
This contradiction completes the proof.

AB-reduction

The AB-reduction deals with two graphs A and B represented in Figure 4. We assume that the vertices v i belong to the cycle C = C p , and the vertices p j are outside of C. in G (because the 3 endpoints are in S and the internal vertices have degree 3 in A). Therefore, we conclude that p j+2 is the only neighbour of p j+3 in S, in which case p j+2 can be replaced by p j+3 in S. Thus, for any independent S in G containing vertex p j+2 , there is an independent set of size |S| which does not contain p j+2 . Therefore, the deletion of p j+2 does not change the independence number of G. Now let us assume that A cannot be extended to B. Clearly, every independent set S in G -N [v i , p j ] can be extended to an independent set of size |S| + 2 in G by adding to S vertices v i and p j . Therefore,

Lemma 4. If G contains an induced subgraph isomorphic to

α(G) ≥ α(G -N [v i , p j ]) + 2.
Conversely, consider an independent set S in G. If it contains at most 2 vertices in N [v i , p j ], then by deleting these vertices from S we obtain an independent set of size at least |S| -

2 in G -N [c i , p j ].
Suppose now that S contains more than 2 vertices in N [v i , p j ]. Let us show that in this case it must contain exactly three vertices in N [v i , p j ], two of which are v i+1 and p j+1 . Indeed, N [v i , p j ] contains at most 6 vertices: v i-1 , v i , v i+1 , p j , p j+1 and possibly some vertex x. Moreover, if x exists, then it is adjacent to v i-1 , since otherwise an S 2,2,2 arises induced either by vertices x, p j , p j+1 , p j+2 , v i+2 ,

v i-1 , v i (if p j+2 is not adjacent to v i-1 ) or by vertices p j , v i+1 , v i+2 , v i+3 , v i+4 , v i-1 , p j+2 (if p j+2 is adjacent to v i-1
). Therefore, S cannot contain more than three vertices in N [v i , p j ], and if it contains tree vertices, then two of them are v i+1 and p j+1 . As a result, S contains neither v i+2 nor p j+2 . If each of v i+2 and p j+2 has one more neighbour in S (dierent from v i+1 and p j+1 ), then A can be extended to B, which contradicts our assumption. Therefore, we may assume without loss of generality that p j+1 is the only neighbour of p j+2 in S. In this case, the deletion from N [v i , p j ] of the three vertices of S and adding to it vertex p j+2 results in an independent set of size |S| -

2 in G -N [v i , p j ]. Therefore, α(G -N [v i , p j ]) ≥ α(G) -2. Combining with the inverse inequality, we conclude that α(G -N [v i , p j ]) = α(G) -2.
Other reductions Two other reductions that will be helpful in the proof are the following.

The A * -reduction applies to an induced A * (Figure 5) and consists in deleting vertex p j+2 .

The House-reduction applies to an induced House (Figure 5) and consists in deleting the vertices of the triangle v i+2 , v i+3 , p j+2 . Proof. Assume G contains an induced A * and let S be an independent set containing p j+2 . If S does not contain v i+1 , then p j+2 can be replaced by v i+2 , and if S contains v i+1 , then p j+2 can be replaced by p j+1 . Therefore, G has an independent set of size |S| which does not contain p j+2 and hence the deletion of p j+2 does not change the independence number. Assume G contains an induced House and let S be a maximum independent set in G. Then obviously at most one vertex of the triangle v i+2 , v i+3 , p j+2 belongs to S. On the other hand, S must contain at least one vertex of this triangle. Indeed, if none of the three vertices belong to S, then each of them must have a neighbour in S (else S is not maximum), but then both v i+1 and p j+1 belong to S, which is impossible. Therefore, every maximum independent set contains exactly one vertex of the triangle, and hence the deletion of the triangle reduces the independence number by exactly 1.

t

Solving the problem

In the subgraph of G induced by the vertices having at least one neighbor on C = C p , every vertex has degree at most 2 and hence every connected component in this subgraph is either a path or a cycle. Let F be the component of this subgraph containing the stem f . In what follows we analyze all possible cases for F and show that in each case the apple A p can be destroyed by means of graph reductions described above or by other simple reductions. Lemma 6. If F is a cycle, then A p can be destroyed by graph reductions that change the independence number by a constant.

Proof. If F is a triangle, then, according to Lemma 1, the neighbors of F in C are three consecutive vertices of C. In this case, F together with two consecutive vertices of C form a House and hence the deletion of F reduces the independence number of G by exactly one.

Assume F is a cycle of length 4 induced by vertices f 1 , f 2 , f 3 , f 4 . With the help of Lemma 1 it is not dicult to see that the neighbors of F in C must be consecutive vertices, say v i , . . . , v i+3 , and the only possible conguration, up to symmetry, is this:

v i is a neighbor of f 1 , v i+1 is a neighbor of f 2 , v i+2 is a neighbor of f 4 , v i+3 is a neighbor of f 3 .
In this case, the deletion of vertex v i+1 does not change the independence number of G. To show this, consider an independent set S containing vertex v i+1 . Then S does not contain 2, v i , v i+2 . If f 4 ∈ S, then f 1 , f 3 ∈ S, in which case v i+1 can be replaced by f 2 in S. So, assume f 4 ∈ S. If f 3 ∈ S, then we can assume that v i+3 ∈ S (else v i+1 can be replaced by f 3 in S), in which case v i+1 , v i+3 can be replaced by v i+2 , f 3 . So, assume f 3 ∈ S, and hence v i+3 ∈ S. But now v i+1 can be replaced by v i+2 in S. This proves that for every independent set S containing v i+1 , there is an independent set of the same size that does not contain v i+1 . Therefore, the deletion of v i+1 does not change the independence number of G.

Assume F is a cycle of length 5 induced by vertices f 1 , f 2 , f 3 , f 4 , f 5 . With the help of Lemma 1 it is not dicult to verify that the neighbors of F in C must be consecutive vertices, say v i , . . . , v i+4 , and the only possible conguration, up to symmetry, is this this:

f 1 is adjacent to v i , f 2 is adjacent to v i+1 , f 3 is adjacent to v i+3 , f 4 is adjacent to v i+4 , f 5 is adjacent to v i+2 . But then the vertices f 2 , f 3 , f 4 , f 5 , v i+2 , v i+4 , v i+5 induce an S 2,2,2 .
If F is a cycle of length more than 5, then an induced S 2,2,2 can be easily found. Lemma 7. If F is a path with at least 5 vertices, then A p can be destroyed by graph reductions that change the independence number by a constant.

Proof. Assume F has at least 5 vertices f 1 , . . . , f 5 . Denote the neighbour of f 3 on C by v i . Assume v i-1 has a neighbour in {f 1 , f 5 }, say f 1 (up to symmetry). By Lemma 1, f 2 is adjacent either to v i-2 or v i+1 .

Let rst f 2 be adjacent to v i+1 . Then either f 1 is not adjacent to v i-2 , in which case the vertices v i-2 , . . . , v i+1 , f 1 , f 2 , f 3 induce an A, or f 1 is adjacent to v i-2 , in which case f 4 is adjacent to v i+2 (by Lemma 1) and hence the vertices v i , . . . , v i+3 , f 2 , f 3 , f 4 induce an A. In either case, we can apply Lemma 4.

Suppose now that f 2 is adjacent to v i-2 . Then f 1 is not adjacent to v i+1 , since otherwise f 4 is adjacent to v i+2 (by Lemma 1), in which case the vertices v i+1 , . . . , v i+4 , f 1 , f 3 , f 4 induce an S 2,2,2 . As a result, vertices v i-2 , . . . , v i+1 , f 1 , f 2 , f 3 induce an A and we can apply Lemma 4.

The above discussion shows that v i-1 has no neighbour in {f 1 , f 5 }. By symmetry, v i+1 has no neighbour in {f 1 , f 5 }. Then each of v i-1 and v i+1 has a neighbour in {f 2 , f 4 }, since otherwise f 1 , . . . , f 5 , v i together with v i-1 or with v i+1 induce an S 2,2,2 . Up to symmetry, we may assume that v i-1 is adjacent to f 2 , while v i+1 is adjacent to f 4 .

If f 1 is adjacent to v i-2 or f 5 is adjacent to v i+2 , then an induced Φ arises, in which case we can apply the Φ-reduction. Therefore, we can assume that f 1 is adjacent to v i-3 , while f 5 is adjacent to v i+3 .

We may assume that vertex v i-2 has no neighbour x dierent from v i-3 , v i-1 , since otherwise x must be adjacent to

f 1 (else vertices x, v i-2 , v i-1 , v i , v i+1 , f 1 , f 2 induce an S 2,2,2
), in which case v i-3 , . . . , v i , x, f 1 , f 2 induce an A and we can apply the AB-reduction. Similarly, we may assume that vertex f 1 has no neighbour

x dierent from v i-3 , f 2 . But then d(f 1 ) = d(v i-2 ) = 2 and we can apply the H-subgraph reduction with H = {v i-2 , f 1 }. Lemma 8.
If F is a path with 4 vertices, then A p can be destroyed by graph reductions that change the independence number by a constant.

Proof. Let F be a path (f 1 , f 2 , f 3 , f 4 ). Without loss of generality we assume that f 2 is adjacent to v i and f 3 to v j with j > i. By Lemma 1,

j = i + 1 or j = i + 2. Case j = i+1. Assume f 1 is adjacent to v i+2 . Then vertices v i , v i+1 , v i+2 , v i+3 , f 1 , f 2 , f 3 induce either the graph A (if f 1 is not adjacent to v i+3 ) or the graph A * (if f 1 is adjacent to v i+3
), in which case we can apply either Lemma 4 or Lemma 5. Therefore, we may assume that f 1 is not adjacent to v i+2 , and by symmetry,

f 4 is not adjacent to v i-1 . Then by Lemma 1, f 1 must have a neighbour in {v i-2 , v i-1 } and f 4 must have a neighbour in {v i+2 , v i+3 }.
Assume that f 4 is adjacent to v i+3 . If v i+2 has a neighbour x outside of the cycle C, then x is not adjacent to f 4 (else F has more than 4 vertices) and hence v i-1 , v i , v i+1 , v i+2 , x, f 3 , f 4 induce an S 2,2,2 . Therefore, the degree of v i+2 in G is 2. Similarly, the degree of f 4 in G is two. But now we can apply the H-subgraph reduction with H = {v i+2 , f 4 }. This allows us to assume that f 4 is not adjacent to v i+3 , and by symmetry, f 1 is not adjacent to v i-2 . But then f 1 is adjacent to v i-1 and f 4 is adjacent to v i+2 , in which case we can apply the Φ-reduction to the subgraph of G induced by

v i-1 , v i , v i+1 , v i+2 , f 1 , f 2 , f 3 , f 4 .
Case j = i + 2. If f 1 or f 4 is adjacent to v i+1 , then an induced graph A arises, in which case we can apply Lemma 4. Then f 1 must be adjacent to v i-1 , since otherwise it adjacent to v i-2 (by Lemma 1), in which case vertices

v i-2 , f 1 , f 2 , f 3 , f 4 , v i , v i+1 induce an S 2,2,2 . By symmetry, f 4 is adjacent to v i+3 .
If f 1 is adjacent to v i-2 , then we can apply the House-reduction to the subgraph of G induced by

v i-2 , v i-1 , v i , f 1 , f 2 , and if f 1 is adjacent to v i-3 , then vertices v i-3 , f 1 , f 2 , f 3 , f 4 , v i , v i+1 induce an S 2,2,2
. Therefore, we may assume by Lemma 1 that f 1 has degree 2 in G. By symmetry, f 4 has has degree 2. Also, to avoid an induced S 2,2,2 , we conclude that v i+1 has degree 2. But now we apply the H-subgraph reduction with H = {f 1 , v i , v i+2 , f 4 }, which reduces the independence number of G by 4. Lemma 9. If F is a path with 3 vertices, then A p can be destroyed by graph reductions that change the independence number by a constant. Lemma 10. If F is a path with 2 vertices, then A p can be destroyed by graph reductions that change the independence number by a constant.

Proof. If F is a path with 2 vertices, we deal with the eight cases represented in Figure 2. It is easy to see that in cases ( 1) and ( 7), every maximum independent set must contain exactly one of f, g and thus by deleting f, g we reduce the independence number by exactly 1.

In case [START_REF] Lozin | A polynomial algorithm to nd an independent set of maximum weight in a fork-free graph[END_REF], the deletion of f, g also reduces the independence number by exactly 1. Indeed, let S be a maximum independent set containing neither f nor g. Since S is maximum it must contain v 1 , v p-2 and hence it does not contain v p , v p-1 . But then (S \ {v 1 }) ∪ {v p , f } is an independent set larger than S, contradicting the choice of S. Therefore, every maximum independent set contains exactly one of f and g and hence α(G -{f, g}) = α(G) -1.

In case [START_REF] Bodlaender | Treewidth for graphs with small chordality[END_REF], the deletion of the set X = {v p-1 , v p , v 1 , f, g} reduces the independence number of the graph by exactly 2. Indeed, any independent set of G contains at most two vertices in X, and hence α(G -X) ≥ α(G) -2. Assume now that S is a maximum independent set in G-X. If v 2 ∈ S, then S ∪{v 1 , g} is an independent set in G of size α(G -X) + 2. Now assume v 2 ∈ S. By symmetry, v p-2 ∈ S. Assume v p has a neighbour x in S. Then x is adjacent neither to v p-2 nor to v 2 , as all three vertices belong to S. Also, x cannot be adjacent to both v p-3 and v 3 , since otherwise an induced S 2,2,2 can be easily found. But if x is not adjacent, say, to v 3 , then x, v p , v 1 , v 2 , v 3 , f, g induce an S 2,2,2 . This contradiction shows that v p has no neighbours in S. Therefore, S ∪ {v p , f } is an independent set in G of size α(G -X) + 2, and hence α(G) ≥ α(G -X) + 2. Combining the two inequalities, we conclude that α(G -X) = α(G) -2.

In case (3), we may delete g without changing the independence number, because in any independent set S containing g, vertex g can be replaced either by v p-1 (if S does not contain v p ) or by f (if S contains v p ). In case [START_REF] Lozin | Graphs Without Large Apples and the Maximum Weight Independent Set Problem[END_REF], we apply the House-reduction.

In cases ( 4) and ( 8), we nd another large apple A whose stem f belongs to a path F with at least 3 vertices. In case (4), A is induced by the cycle v 1 , . . . , v p-3 , g, f with stem f = v p-1 , and in case (8) the apple is induced by the cycle v 3 , . . . , v p , g with stem f = v 1 . In both cases, the situation can be handled by one of the previous lemmas. Theorem 2. Let H be a graph every connected component of which is isomorphic either to S 2,2,2 or to S 1,j,k . The maximum independent set problem can be solved for H-free graphs of maximum vertex degree at most 3 in polynomial time.

Proof. First, we show how to solve the problem in the case when H = S 2,2,2 . Let G = (V, E) be an S 2,2,2 -free subcubic graph and let K be a large xed constant. We start by checking if G contains an apple A p with p ≥ K. To this end, we detect every induced S 1,k,k with k = K/2, which can be done in time n K . If G is S 1,k,k -free, then it is obviously A p -free for each p ≥ K. Assume a copy of S 1,k,k has been detected and let x, y be the two vertices of this copy at distance k from the center of S 1,k,k . We delete from G all vertices of V (S 1,k,k ) -{x, y} and all their neighbours, except x and y, and determine if in the resulting graph there is a path connecting x to y. It is not dicult to see that this procedure can be implemented in polynomial time.

Assume G contains an induced apple A p with p ≥ K. If the stem of the apple has degree 1 in G, we delete it together with its only neighbour, which destroys the apple and reduces the independence number of G by exactly one. If the stem has degree more than 1, we apply one of the lemmas of Section 3 to destroy A p and reduce the independence number of G. It is not dicult to see that all the reductions used in the lemmas can be implemented in polynomial time.

Thus in polynomial time we reduce the problem to a graph G which does not contain any apple A p with p ≥ K, and then we nd a maximum independent set in G with the help of Theorem 1. This also shows that in polynomial time we can compute α(G), since we know the dierence between α(G) and α(G ). To nd a maximum independent set in G, we take an arbitrary vertex v ∈ V (G). If α(G -v) = α(G), then there is a maximum independent set in G that does not contain v and hence v ignored (deleted). Otherwise, v belongs to every maximum independent set in G and hence it must be included in the solution. Therefore, in polynomial time we can nd a maximum independent set in G. This completes the proof of the theorem in the case when H = S 2,2,2 .

By Theorem 1 we also know how to solve the problem in the case when H = S 1,j,k . Now we assume that H contains s > 1 connected components. Denote by S any of the components of H and let H be the graph obtained from H by deleting S. Consider an H-free graph G. If G does not contain a copy of S, the problem can be solved for G by the rst part of the proof. So, assume G contains a copy of S. By deleting from G the vertices of 

Conclusion

Unless P = N P , the maximum independent set problem can be solved in polynomial time for H-free subcubic graphs only if every connected component of H has the form S i,j,k represented in Figure 1. Whether this condition is sucient for polynomial-time solvability of the problem is a challenging open question. In this paper, we contributed to this topic by solving the problem in the case when every connected component of H is isomorphic either to S 2,2,2 or to S 1,j,k . Our poof also shows that, in order to answer the above question, one can be restricted to H-free subcubic graphs where H is connected. In other words, one can consider S i,j,k -free, or more generally, S k,k,k -free subcubic graphs. We believe that the answer is positive for all values of k and hope that our solution for k = 2 can base a foundation for algorithms for larger values of k.
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 1 Fig. 1. Graphs S i,j,k (left) and A5 (right)

  e., d(v) = |N (v)|. The subgraph of G induced by a set U ⊆ V (G) is obtained from G by deleting the vertices outside of U and is denoted G[U ]. If no induced subgraph of G is isomorphic to a graph H, then we say that G is H-free. Otherwise we say that G contains H. If G contains H, we denote by [H] the subgraph of G induced by the vertices of H and all their neighbours. As usual, by C p we denote a chordless cycle of length

Fig. 2 .

 2 Fig. 2. Ap + g
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 3 Fig. 3. Φ-reduction

Fig. 5 .

 5 Fig. 5. Induced subgraphs A * (left) and House (right)

  [S] we obtain a graph G which is H -free and hence the problem can be solved for G by induction on s. The number of vertices in [S] is bounded by a constant independent of |V (G)| (since |V (S)| < |V (H)| and every vertex of S has at most three neighbours in G), and hence the problem can be solved for G in polynomial time as well, which can be easily seen by induction on the number of vertices in [S].

  A, then Induced subgraphs A (left) and B (right) either A can be extended to an induced subgraph of G isomorphic to B in which case p j+2 can be deleted without changing α(G) or the deletion of N [v i ] ∪ N [p j ] reduces the independence number by 2.Proof. Assume rst that A can be extended to an induced B (by adding vertex p j+3 ). Consider an independent set S containing vertex p j+2 . Then S contains neither p j+1 nor p j+3 nor v i+2 . If neither p j nor v i belongs to S, then p j+2 can be replaced by p j+1 in S. Now assume, without loss of generality, that v i belongs to S. Then v i+1 ∈ S and therefore we may assume that v i+3 ∈ S, since otherwise p j+2 can be replaced by v i+2 in S. If p j+3 has one more neighbour x in S (dierent from p j+2 ), then vertices v i , v i+2 , v i+3 , p j+1 , p j+2 , p j+3 and x induce an S 2,2,2
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Proof. Assume F is a path (f 1 , f 2 , f 3 ). Without loss of generality let f 2 be adjacent to v 1 . Since G is S 2,2,2 -free, each of f 1 and f 3 must have at least one neighbor in {v p-1 , v p , v 2 , v 3 }. Denote L = {v p-1 , v p } and R = {v 2 , v 3 }.

Case (a): f 1 and f 3 have both a neighbor in R. Due to the symmetry, we may assume without loss of generality that f 1 is adjacent to v 2 , while f 3 is adjacent to v 3 . Then we may further assume that

, in which case we can apply either Lemma 4 or Lemma 5. But now the deletion of f 3 does not change the independence number of G. Indeed, let S be an independent set containing

The above discussion allows us to assume, without loss of generality, that f 1 has no neighbor in R, while f 3 has no neighbor in L.

Case (b): f 3 is adjacent to v 3 . Then we may assume that f 3 is not adjacent to v 2 , since otherwise we can apply the House-reduction to the subgraph of G induced by v 1 , v 2 , v 3 , f 3 , f 2 . Let us show that in this case the degree of v 2 is 2. Assume to the contrary v 2 has a third neighbour x.

Due to the degree restriction, x may have at most one neighbour in {v p-3 , v p-2 , v 4 , v 5 }. By symmetry, we may assume without loss of generality that x has no neighbour in {v 4 , v 5 }. Also, f 3 has no neighbour in {v 4 , v 5 }, since otherwise this neighbour together with v p-1 , f 1 , f 2 , f 3 , v 1 , v 2 would induce an S 2,2,2 . But now x, v 2 , v 3 , v 4 , v 5 , f 3 , f 2 induce an S 2,2,2 . This contradiction complete the proof of the claim.

If f 3 also has degree two, then we can apply the H-subgraph reduction with H = {v 3 , f 3 }. Therefore, may assume that f 3 has one more neighbour, which must be, by Lemma 1, either v 4 or v 5 . If f 3 is adjacent to f 5 , then f 1 , f 2 , f 3 , v 5 , v 6 , v 3 , v 2 induce an S 2,2,2 . Therefore, f 3 is adjacent to v 4 . But now v 3 can be deleted without changing the independence number. Indeed, let S be an independent set containing v 3 . If S does not contain v 1 , then v 3 can be replaced by v 2 , and if S contains v 1 , then v 1 , v 3 can be replaced by v 2 , f 3 .

Cases (a) and (b) reduce the analysis to the situation when f 1 is adjacent to v p and non-adjacent to v p-1 , while f 3 is adjacent to v 2 and non-adjacent to

induced the graph Φ, in which case we can apply Lemma 3. Therefore, we can assume by Lemma 1 that the degree of f 3 is 2, and similarly the degree of f 1 is 2. But now we can apply the H-subgraph reduction with H = {f 1 , v 1 , f 3 }, which reduces the independence number of G by 3.