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Closed-form and numerical computations of actuarial

indicators in ruin theory and claim reserving

Alexandre BROUSTE 1, 2

Christophe DUTANG1, 2, 3

Abstract

Insurance reserving is a key topic for both actuaries and academics. In the present paper, we
present an efficient way to compute all the key indicators in a unified approach of the ruin theory and
claim reserving methods. The proposed framework allows to derive closed-form formulas for both
ruin theory and claim reserves indicators. A numerical illustration of these indicators is carried out
on a real dataset from a private insurer.
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Résumé

Le provisionnement en assurance non-vie est un sujet clé pour les actuaires et les académiques.
Dans le présent article, nous présentons une méthode efficace pour calculer les indicateurs par une
approche unifiée de la théorie de la ruine et du provisionnement non-vie. Le cadre proposé permet de
déduire des formules fermées pour les indicateurs de provisionnement et de ruine. Une illustration de
ces indicateurs est réalisée sur un jeu de données réellles.
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1 Introduction

Insurance reserving is a well-known topic for both actuaries and academics, whereas the ruin theory
remains mainly the field of academics. The computation of insurance reserves being mandatory whereas
ruin-related indicators are not is one of the main reasons to explain why practitioners neglect the use of
ruin theory in their daily business. Nevertheless, with the upcoming risk-based regulatory requirements,
the computation of solvency probabilities at different levels and different time horizons is increasingly
popular in the past ten years. In the present paper, we propose a new efficient way to compute numerous
key indicators in a unified approach of ruin theory and claim reserving.

Another important factor explaining the disaffection of practitioners for ruin theory when assessing
reserves is the type of data to be used: the data granularity for classic reserving methods is line-of-
business aggregated datasets whereas in ruin theory, individual loss level is needed, see Asmussen and
Albrecher (2010) and the references therein. Reserving methods are in fact mainly for aggregated data
triangles, see Wuethrich and Merz (2008) and the references therein. As pointed out by Wuethrich and
Merz (2008), “most of the classical claims reserving methods do not distinguish reported claims from
not-reported claims.” However, there is a growing literature for micro-level or individual claim-level
reserving methods.

Loss payments ClosureNotificationOccurrence

IBNR

RBNP

RBNS

Figure 1 – Claim development process (IBNR: incurred but not reported, RBNP: reported but not paid,
RBNS: reported but not settled)

Reserving in a continuous time perspective dates back to pioneer works of Karlsson (1976), Jewell
(1989) and Arjas (1989). Few years after these papers, Norberg (1993) first formulates the reserving
problem in a continuous time probabilistic setting by considering marked Poisson processes, see e.g. sub-
sequent extensions Haastrup and Arjas (1996). That is, the full claim process described in Figure 1 is
considered. The time between occurrence and notification corresponds to the reporting delay (IBNR in
Figure 1) by the policyholder and is assumed to equal zero in this study.

The ith claim is characterized by a 4-tuple (Ti, Vi, Yi, Y
′
i (v)v∈[0,Vi]) where Ti denotes the occurrence

time, Vi the settlement time, Yi the total claim amount and Y ′i (.) the payment process. The time between
notification and closure (i.e. t ∈ [Ti, Ti + Vi)) corresponds to the settlement time, which can be further
subdivided into the waiting time of first payment (RBNP in Figure 1) and the payment process (RBNS in
Figure 1). The claim process (T1, T2, . . . ) is governed by a non-homogeneous Poisson process (Nt, t ≥ 0).
Other recent papers in that direction are Larsen (2007), Antonio and Plat (2014) for continuous time
setting and Pigeon et al. (2013), Drieskens et al. (2012) for discrete time setting which provide estimation
procedures with explanatory variables.

Currently, there exists almost only one alternative to marked Poisson processes in the actuarial liter-
ature: the Poisson shot noise processes of Klueppelberg and Mikosch (1995), further developed in Matsui
and Mikosch (2010) and Matsui (2015, 2014). They consider that the ith claim is a couple (Ti, Li(.))
where Li may represent the loss process, typically independent Lévy processes.
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In this paper, we follow the probabilistic framework of Norberg (1993), which is an extension of
the classical Cramér-Lundberg ruin model by considering settlement times and reporting delays. The
paper is structured as follows. Section 2 presents our unified-approach extended framework used in the
subsequent sections. Section 3 focuses on the (un)conditional moments of the aggregate claim process
and examples of settlement times. Section 4 follows with unified-approach indicators of reserving and
ruin topics. Finally, Section 5 illustrates the ruin and reserving indicators on a real insurance dataset,
before Section 6 concludes.

2 An extended Cramér-Lundberg framework

In this section, we consider a process closed to the marked Poisson process of Norberg (1993). Indeed,
we introduce an extension of the classical Cramér-Lundberg framework (e.g. Asmussen and Albrecher
(2010)) and state the model assumptions.

2.1 Notation

The surplus of an insurance company at time t is represented by the risk process Rt = u + ct − St,
where St denotes the aggregate claim amount, u is the initial surplus, c is the premium rate. Traditionally,
the aggregate claim amount St is the sum of claim amounts X1, X2, . . . arrived before time t, i.e. St =∑Nt

i=1Xi. By considering settlement times and reporting delays, we assume that

St =

Nt∑
i=1

Zi(t), with Zi(t) =
Xi

Vi
(t− Ti)1[Ti,Ti+Vi)(t) +Xi1[Ti+Vi,∞)(t),

where Vi, Ti denote respectively the settlement time and the occurence of the ith claim.

In other words, Zi(t) corresponds to the claim amount paid at time t and Xi−Zi(t) is the outstanding
claim amount. As the ith claim is represented by (Ti, Vi, Xi) and the implicit assumption that the payment
process is an affine function of time t, we have a simplified version of Norberg’s model.

Comparing risk process Rt and the no-delay-no-settlement risk process

R̃t = u+ ct−
Nt∑
i=1

Xi,

we remark that Rt ≥ R̃t a.s.. Therefore, the corresponding ruin probability of the considered model is
always lower than the classical setting.

For the following study, we introduce the settlement function

g(t, w, v) =
t− w
v

1[w,w+v)(t) + 1[w+v,∞)(t). (1)

representing the percentage of the claim paid at time t. Thus, we have Zi(t) = Xig(t, Ti, Vi).

2.2 Model assumptions

Keeping in mind that we want to derive explicit formulas, we make the following assumptions
A1. the claim arrival process (Nt, t ≥ 0) is a homogeneous Poisson process with intensity λ,

A2. the settlement times are independent and identically distributed ((Vi)i
i.i.d.∼ V ),

A3. the claim amounts are independent and identically distributed ((Xi)i
i.i.d.∼ X with finite variance),
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A4. there is independence between waiting times, settlement times and claim amounts (Ti − Ti−1 ⊥
Vi ⊥ Xi).

Note that (A1) leads to exponential occurrence times (Ti)i
i.i.d.∼ E(λ).

3 Main results

In this section, we present the main results of the (un-)conditional first two moments of the aggregate
claim process (St, t ≥ 0). We will also focus on an efficient numerical procedure to compute these
indicators in Section 5.1. Those results will then be used in the subsequent sections. In the sequel, we
will need claim index sets defined as follows

Cnst = {i ∈ {1, . . . , Nt}, Ti ≤ t < Ti + Vi}, Cst = {i ∈ {1, . . . , Nt}, Ti + Vi ≤ t}.

They represent respectively not-settled claims and settled claims. These sets are a disjoint partition of
claims occurred before time t, i.e. Cnst , Cst ⊂ {1, . . . , Nt}. We introduce filtrations depending for the claim
arrival process and the knowledge up to time t

FNt = σ (Ns, 0 ≤ s ≤ t) , FN,Vt = σ ((Ns, 0 ≤ s ≤ t), V1, . . . , VNt
) ,

FN,Ct = σ
(
(Ns, 0 ≤ s ≤ t), (Vi)i∈Cs

t

)
,FN,C,Xt = σ

(
(Ns, 0 ≤ s ≤ t), (Vi)i∈Cs

t
, X1, . . . , XNt

)
.

In the following, we suppose that at time t the claim amount is known when reported. Only the time of
settlement is assumed random.

3.1 Closed-form formulas on the aggregate claim distribution

We present here an efficient procedure to compute the (un-)conditional first two moments of the
aggregate claim process (St, t ≥ 0).

Proposition 3.1. The conditional expectation at time t of the aggregate claim amount knowing the
information up to time s < t is

E
(
St | FN,C,Xs

)
=

Ns∑
i=1,i∈Css

Xi +

Ns∑
i=1,i∈Cns

s

XiG(t, Ti) + E(X)e−λ(t−s)
∞∑
k=1

λkAk(G)(s, t), (2)

where Ak(·)(s, t) is defined as

Ak(G)(s, t) =

k∑
j=1

∫ tk+1

s

. . .

∫ tj+1

s

G(t, tj)
(tj − s)j−1

(j − 1)!
dtj . . . dtk, tk+1 = t, s < t, (3)

and G is the bivariate function defined as

G(t, w) = E(g(t, w, V )). (4)

Proof. Direct computation leads to

E
(
St | FN,C,Xs

)
= E

(
Ns∑
i=1

Zi(t) | FN,C,Xs

)
+ E

(
Nt∑

i=Ns+1

Zi(t) | FN,C,Xs

)

=

Ns∑
i=1

E
(
Zi(t) | FN,C,Xs

)
+ E

(
Nt∑

i=Ns+1

Zi(t) |Ns

)
.
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Using Css ∪ Cnss = {1, . . . , Ns} and Zi(t) = Xig(t, Ti, Vi), we split the first sum between settled and
not-settled claims

E
(
Zi(t) | FN,C,Xs

)
= XiE

(
g(t, Ti, Vi)| FN,C,Xs

)
= Xig(t, Ti, Vi)E

(
1i∈Css | F

N,C,X
s

)
+XiE

(
g(t, Ti, Vi)1i∈Cns

s
| FN,C,Xs

)
= Xig(t, Ti, Vi)1i∈Css +Xi1i∈Cns

s
E
(
g(t, Ti, Vi)| FN,C,Xs

)
= Xi1i∈Css +Xi1i∈Cns

s
E
(
g(t, Ti, Vi)| FNs

)
,

since Xi, 1i∈Css and 1i∈Cns
s

are mesurable with respect to FN,C,Xs . Using E
(
g(t, Ti, Vi)| FNs

)
= G(t, Ti),

we obtain

E
(
St | FN,C,Xs

)
=

Ns∑
i=1,i∈Css

Xi +

Ns∑
i=1,i∈Cns

s

XiG(t, Ti) + E

(
Nt∑

i=Ns+1

Zi(t) |Ns

)
.

For the second term, using Ns + 1 ≤ i, (Ti < t),

E

(
Nt∑

i=Ns+1

Zi(t) |Ns

)
= E

(
E

(
Nt∑

i=Ns+1

Zi(t) | FN,Vt

)
|Ns

)

= E (X)E

(
Nt∑

i=Ns+1

E (g(t, Ti, Vi) |Ns, Nt) |Ns

)

= E (X)

∞∑
`=k

∑̀
i=Ns+1

E (g(t, Ti, Vi) |Ns, Nt = `)P (Nt = `|Ns)

= E (X)

∞∑
k=1

Ns+k∑
i=Ns+1

E (g(t, Ti, Vi) |Ns, Nt −Ns = k)P (Nt −Ns = k|Ns)

= E(X)

∞∑
k=1

(λ(t− s))k

k!
e−λ(t−s)

Ns+k∑
i=Ns+1

E (g(t, Ti, Vi) |Ns, Nt −Ns = k) .

Denoting by H̃k the distribution function of TNs+1, . . . , TNs+k conditionally on Nt − Ns = k, the inner
sum gives

Ns+k∑
i=Ns+1

E (g(t, Ti, Vi) |Ns, Nt −Ns = k) =

∫
Rk

Ns+k∑
i=Ns+1

E (g(t, ti, Vi)) dH̃k(tNs+1, . . . , tNs+k).

For a Poisson process, the conditional distribution of occurrence times is perfectly known to be the order
statistic of k i.i.d. uniformly distributed random variables (see e.g. Kingman (1992)), i.e. the density is
h̃k(t1, . . . , tk) = k!

(t−s)k1{s<tNs+1<···<tNs+k<t}. Then,

Ns+k∑
i=Ns+1

E (g(t, Ti, Vi) |Ns, Nt −Ns = k)

=
k!

(t− s)k

∫
Rk

Ns+k∑
i=Ns+1

E (g(t, ti, Vi))1{s<tNs+1<···<tNs+k<t}dtNs+1 . . . dtNs+k

=
k!

(t− s)k

∫
Rk

k∑
i=1

E (g(t, ti, V ))1{s<t1<···<tk<t}dt1 . . . dtk,

with tk+1 = t. Using Appendix A, the previous sum is Ak(G)(s, t). Hence,

E

(
Nt∑

i=Ns+1

Zi(t) |Ns

)
= E(X)e−λ(t−s)

∞∑
k=1

λkAk(G)(s, t). (5)
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Proposition 3.2. The conditional second-order moment at time t of the aggregate claim amount knowing
the information up to time s < t is

E
(
S2
t | FN,C,Xs

)
=

Ns∑
i=1

Ns∑
j=1

XiXj1i,j∈Css + 2

Ns∑
i=1

Ns∑
j=1

XiXjG(t, Ti)1i∈Cns
s ,j∈Css

+

Ns∑
i=1

Ns∑
j=1

XiXjG(t, Ti)G(t, Tj)1i,j∈Cns
s

+2E(X)e−λ(t−s)
∞∑
k=1

λkAk(G)(s, t)

Ns∑
i=1

(
Xi1i∈Css +Xi1i∈Cns

s
G(t, Ti)

)
+e−λ(t−s)

∞∑
k=1

λk
(
E(X2)Ak(G2)(s, t) + 2E(X)2A∗k(G)(s, t)

)
,

where G(t, w) = E(g(t, w, V )), G2(t, w) = E(g(t, w, V )2). Here Ak(·) is defined in (3) and A∗k(·)(s, t) is

A∗k(G)(s, t) =

k−1∑
i=1

∫ tk+1

s

. . .

∫ ti+1

s

(ti − s)i−1

(i− 1)!
Gi,k(t, ti, . . . , tk)dti . . . dtk tk+1 = t, s < t, (6)

with G = (G1,k, . . . , Gk,k) and Gi,k(t, wi, .., wk) =
k∑

m=i+1

G(t, wi)G(t, wm).

It is worth emphasizing that Ak(G)(s, t) defined in (3) is only a particular case of the operator

A∗k(G)(s, t) with a family of bivariate functions, namely G = Gbi = (G1,k
bi , . . . , G

k,k
bi ) = (G(t, t1), . . . , G(t, tk)).

From the first two moments, the computation of the conditional variance is immediate:

Var
(
St | FN,C,Xs

)
= E

(
(St)

2 | FN,C,Xs

)
−E

(
St | FN,C,Xs

)2
.

Proof. Direct computation leads to

E
(
(St)

2 | FN,C,Xs

)
= E

 Ns∑
i=1

Ns∑
j=1

Zi(t)Zj(t) | FN,C,Xs

+ E

 Nt∑
i=Ns+1

Ns∑
j=1

Zi(t)Zj(t) | FN,C,Xs


+E

 Ns∑
i=1

Nt∑
j=Ns+1

Zi(t)Zj(t) | FN,C,Xs

+ E

 Nt∑
i=Ns+1

Nt∑
j=Ns+1

Zi(t)Zj(t) | FN,C,Xs


=

Ns∑
i=1

Ns∑
j=1

E
(
Zi(t)Zj(t) | FN,C,Xs

)
+ 2

Ns∑
j=1

E

(
Nt∑

i=Ns+1

Zi(t)Zj(t) | FN,C,Xs

)

+E

 Nt∑
i=Ns+1

Nt∑
j=Ns+1

Zi(t)Zj(t) |Ns

 .

Using Css ∪ Cnss = {1, . . . , Ns} and Zi(t) = Xi1i∈Css + Xig(t, Ti, Vi)1i∈Cns
s
, we split the first three sums.

The first sum simplifies to

Ns∑
i=1

Ns∑
j=1

E
(
Zi(t)Zj(t) | FN,C,Xs

)
=

Ns∑
i=1

Ns∑
j=1

XiXj1i,j∈Css + 2

Ns∑
i=1

Ns∑
j=1

XiXjG(t, Ti)1i∈Cns
s ,j∈Css +

Ns∑
i=1

Ns∑
j=1

XiXjG(t, Ti)G(t, Tj)1i,j∈Cns
s
,

since E
(
g(t, Ti, Vi)g(t, Tj , Vj) | FN,C,Xs

)
= E

(
g(t, Ti, Vi) | FN,C,Xs

)
E
(
g(t, Tj , Vj) | FN,C,Xs

)
with 1 ≤ i, j ≤

Ns.
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Since for i > Ns, Zi(t) = Xig(t, Ti, Vi) while for j ≤ Ns, claims are reported (yet settled or not)
Zj(t) = Xj1j∈Css +Xjg(t, Tj , Vj)1j∈Cns

s
, the second sum simplifies to

Ns∑
j=1

E

(
Nt∑

i=Ns+1

Zi(t)Zj(t) | FN,C,Xs

)

=

Ns∑
j=1

E

(
Nt∑

i=Ns+1

Xig(t, Ti, Vi)Xj1j∈Css +Xig(t, Ti, Vi)Xjg(t, Tj , Vj)1j∈Cns
s
| FN,C,Xs

)

=

Ns∑
j=1

Xj1j∈CssE

(
Nt∑

i=Ns+1

Xig(t, Ti, Vi) | FN,C,Xs

)
+

Ns∑
j=1

Xj1j∈Cns
s
E

(
Nt∑

i=Ns+1

Xig(t, Ti, Vi)g(t, Tj , Vj) | FN,C,Xs

)
.

The first term E
(∑Nt

i=Ns+1Xig(t, Ti, Vi) | FN,C,Xs

)
corresponds to the last term of Equation (5). For the

second term, since j ∈ Cnss , we obtain

E

(
Nt∑

i=Ns+1

Xig(t, Ti, Vi)g(t, Tj , Vj) | FN,C,Xs

)

= E

(
E

(
Nt∑

i=Ns+1

Xig(t, Ti, Vi)g(t, Tj , Vj) | FN,Vt

)
| FN,Cs

)

= E

(
Nt∑

i=Ns+1

g(t, Ti, Vi)g(t, Tj , Vj)E
(
Xi | FN,Vt

)
| FN,Cs

)

= E(X)

∞∑
`=Ns+1

E

( ∑̀
i=Ns+1

g(t, Ti, Vi)g(t, Tj , Vj) | FN,Cs , Nt = `

)
P (Nt = ` |Ns)

= E(X)

∞∑
`=Ns+1

∑̀
i=Ns+1

E
(
g(t, Ti, Vi)g(t, Tj , Vj) | FN,Cs , Nt = `

)
P (Nt = ` |Ns).

However

E
(
g(t, Ti, Vi)g(t, Tj , Vj) | FN,Cs , Nt = `

)
= E

(
g(t, Ti, Vi) | FN,Cs , Nt = `

)
E (g(t, Tj , Vj))

= E
(
g(t, Ti, Vi) | FNs , Nt = `

)
E (g(t, Tj , V )) .

This yields

= E(X)

∞∑
k=1

Ns+k∑
i=Ns+1

E
(
g(t, Ti, Vi) | FNs , Nt −Ns = k

)
E (g(t, Tj , V ))P (Nt −Ns = k |Ns)

= E(X)

∞∑
k=1

(λ(t− s))k

k!
e−λ(t−s)

Ns+k∑
i=Ns+1

E
(
g(t, Ti, Vi) | FNs , Nt −Ns = k

)
E (g(t, Tj , V ))

= E(X)G(t, Tj)

∞∑
k=1

(λ(t− s))k

k!
e−λ(t−s)

Ns+k∑
i=Ns+1

E (g(t, Ti, Vi) |Ns, Nt −Ns = k) .

The inner term has been already computed in the proof of Proposition 3.1.

Ns+k∑
i=Ns+1

E (g(t, Ti, Vi) |Ns, Nt −Ns = k) =
k!

(t− s)k
Ak(G)(s, t).
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Finally, the second sum is

Ns∑
j=1

E

(
Nt∑

i=Ns+1

Zi(t)Zj(t) | FN,C,Xs

)

=

Ns∑
j=1

Xj1j∈CssE(X)e−λ(t−s)
∞∑
k=1

λkAk(G)(s, t) +

Ns∑
j=1

Xj1j∈Cns
s
E(X)G(t, Tj)e

−λ(t−s)
∞∑
k=1

λkAk(G)(s, t)

= E(X)

Ns∑
j=1

(
Xj1j∈Css +Xj1j∈Cns

s
G(t, Tj)

)
e−λ(t−s)

∞∑
k=1

λkAk(G)(s, t).

Using Appendices B and C, the third sum is

E

 Nt∑
i=Ns+1

Nt∑
j=Ns+1

Zi(t)Zj(t) |Ns

 =

∞∑
k=1

λke−λ(t−s) (E(X2)Ak(G2)(s, t) + 2E(X)2A∗k(G)(s, t)
)
,

where G = (G1,k, . . . , Gk,k) and Gi,k(t, wi, .., wk) =
∑k
m=i+1G(t, wi, wm). Here

G(t, wi, wm) = E (g(t, wi, Vi)g(t, wk, Vm)) = E(g(t, wi, Vi))E(g(t, wk, Vm)) = G(t, wi)G(t, wm).

From the conditional moments, the corresponding unconditional moments can be derived. From the
first two moments, the computation of the unconditional variance is also immediate:

Var (St) = E
(
(St)

2
)
−E (St)

2
.

Proposition 3.3. The expectation of the aggregate claim amount is

E (St) = E(X)e−λt
∞∑
k=1

λkAk(G)(0, t), (7)

where Ak(G)(0, t) is Ak is defined in (3) and G is the bivariate function defined as G(t, w) = E(g(t, w, V )).

Proposition 3.4. The second-order moment of the aggregate claim amount is

E(S2
t ) = e−λt

∞∑
k=1

λk
(
E(X2)Ak(G2)(0, t) + 2E(X)2A∗k (G) (0, t)

)
,

where Ak, A∗k are defined in (3) and (6) respectively and G2 is previously defined.

Proof. The proof of Propositions 3.3 and 3.4 are obtained by setting s = 0 (i.e. Css = Cnss = ∅) in
Propositions 3.1 and 3.2 respectively.

3.2 Relevant examples of settlement-linked functions

In this subsection, we present two examples of settlement functions g. Direct computation of (4) leads
to

G(t, w) = E(g(t, w, V )) = (t− w)

∫ ∞
t−w

dFV (x)

x
+ FV (t− w),

for t ≥ w ≥ 0. In order to compute the second order moment, similar computations lead to

G2(t, w) = E(g(t, w, V )2) = (t− w)2

∫ ∞
t−w

dFV (x)

x2
+ FV (t− w).
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The ith component of G = (G1,k, . . . , Gk,k) consists in summing G functions, namely

Gi,k(t, wi, .., wk) =

k∑
m=i+1

G(t, wi)G(t, wm).

Let us start with the usual case of immediate settlement. If V = 0 a.s., then G(t, w) = 1{w≤t}, leading

to Ak(G)(t) = tk/(k − 1)!. Therefore, Proposition 3.3 gets back to a well known result E(St) = λtE(X).
Consequently, we also have G2(t, w) = 1{w≤t}. Then, Ak(G2)(t) = tk/(k − 1)!. Furthermore,

Gi,k,Σ(t, wi, .., wk) = 1{wi≤t}

k∑
m=i+1

1{wm≤t} ⇒ A∗k (G) (0, t) =

k−1∑
i=1

(k − i) t
k

k!
=

tk

2(k − 2)!
.

Thus Proposition 3.4 gives another well-known result of a compound Poisson process

E(S2
t ) = e−λt

∞∑
k=1

λk
(
E(X2)

tk

(k − 1)!
+ E(X)2 tk

(k − 2)!

)

= E(X2)λte−λt
∞∑
k=1

(λt)k−1

(k − 1)!
+ e−λtE(X)2(λt)2

∞∑
k=1

λk−2 tk−2

(k − 2)!

= E(X2)λt+ E(X)2(λt)2.

Short-tailed business (such as material damages for motor and household insurance with settlement
generally within four or five years) corresponds to line of business where the settlement time is either
quick or immediate. As the opposite, long-tailed business such as third-party liability (especially medical
malpractice or liability for lawyers) experiences very long development of claims (generally more than to
20 years, see e.g. Partrat et al. (2008)). Hence, modeling the settlement process depends heavily on the
studied guarantee. This paper first attempt to model such a process using the zero-inflated exponential
distribution. In the numerical section, we will split the dataset between long and short tailed guarantees
leading to distinct values of parameters of the two situations. We postpone the use of more complex
distributions (such as Gamma or Weibull and their zero-inflated version) to future research.

Considering a zero-inflated exponential distribution for V (i.e. a mixture of a geometric distribution
and a Dirac distribution at 0) yields to

FZIE(x) = (p+ (1− p)(1− e−µx))1[0,+∞)(x).

In other words with probability p, the claim is settled immediately, otherwise (with probability 1 − p)
the settlement time is strictly positive. Hence, for t > w,

GZIE(t, w) = p+ (1− p)(t− w)

∫ ∞
t−w

µe−µx

x
dx+ (1− p)(1− exp(−µ(t− w)))

= 1− (1− p) exp(−µ(t− w)) + (1− p)µ(t− w)E1(µ(t− w)),

where E1 denotes the exponential integral, see e.g. (Olver et al., 2010, Chap. 6).

GZIE,2(t, w) = p+ (1− p)(t− w)2

∫ ∞
t−w

µe−µxdx

x2
+ (1− p)(1− exp(−µ(t− w)))

= 1− (1− p) exp(−µ(t− w)) + (1− p)µ(t− w)E2(µ(t− w)),

where E2 denotes the generalized exponential integral, see e.g. (Olver et al., 2010, Chap. 8). Finally,

Gi,k,ΣZIE (t, wi, .., wk) =

k∑
m=i+1

GZIE(t, wi)GZIE(t, wm).

Of course, the case of the exponential distribution is obtained by setting p = 0 in the previous expressions
of GZIE and GZIE,2.
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4 Computing classic actuarial indicators

In this section, we present different indicators starting with insurance reserving and then ruin theory.

4.1 Reserving topics

From a reserving perspective, we now ignore the initial capital u and the premium rate c and focus
on the aggregate claim amount St at time t. Classical methods for claim reserving are designed for
aggregated data for which claim amounts are aggregated per accident year and per development year,
see e.g. Wuethrich and Merz (2008). Therefore, claims are sorted per accident year and cumulated per
development year to get a so-called claims development triangle.

At individual claim level, the accident year k of a claim occurred at time T is the year of occurrence,
i.e. k = bT c (where b.c denotes the integer part). The jth development year of a claim occurred at time
T corresponds to payments done in interval (bT c+ j − 1, bT c+ j). Let k = 0, . . . ,K be an accident year
and j = 0, . . . , J a development year. As before, we want to deal with reserving topics, and we introduce
the claim set of accident year k reported at time t

Ct,k = {i ∈ {1, . . . , Nt}, k = bTic}.

Note that the current time is k + j + 1 since both k and j starts from 0. Let us define the aggregate
(paid) claim amount for accident year k and development year j

Sk,j =
∑

i∈Ck+j+1,k

Zi(j + k + 1) =

Nj+k+1∑
i=1

Zi(j + k + 1)1i∈Ck+j+1,k
.

The sum can be expressed as in the previous subsection using Zi(t) = Xig(t, Ti, Vi)

Sk,j =

Nj+k+1∑
i=1

Xig(j + k + 1, Ti, Vi)1{k≤Ti<k+1}.

Denoting g̃k(y, t, v) = g(y, t, v)1{k≤t<k+1}, we get back to a sum similar the aggregate claim St at time
t = j + k + 1 with a new settlement function g̃k(y, t, v). This leads to the following property.

In order to deal with conditional expectation, we split the claim set into two subsets

Cnst,k = {i ∈ {1, . . . , Nj+k+1}, k = bTic, Ti ≤ t < Ti + Vi},

Cst,k = {i ∈ {1, . . . , Nj+k+1}, k = bTic, Ti + Vi ≤ t}.

They represent claims of accident year k not-settled and settled at time t.

Let us define the aggregate (paid) claim amount for accident year k and development year j+m given
that the current time is k + j + 1

Sk,j+m =

Nj+k+1∑
i=1

Xig(j +m+ k + 1, Ti, Vi)1{k≤Ti<k+1}.

Corollary 4.1. The conditional expectation of the aggregate claim after j+m development years amount
knowing the information up to time s = k + j + 1 is

E
(
Sk,j+m | FN,C,Xs

)
=

Nk+j+1∑
i=1,i∈Css,k

Xi +

Nk+j+1∑
i=1,i∈Cns

s,k

XiG̃k(s+m,Ti) (8)

where G̃k(t, u) = E
(
g(y, t, V )1{k≤t<k+1}

)
.
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Proof. Immediate by taking s = j + k + 1, t = j + k + 1 +m = s+m and g̃ in Proposition 3.1 in which
the term An(G̃k)(s, s+m) cancels.

Within this notation, a reserving triangle looks like (for s = 3)

AY k \ DY j 0 1 2
0 S0,0 S0,1 S0,2

1 S1,0 S1,1 E
(
S1,2 | FN,C,X3

)
2 S2,0 E

(
S2,1 | FN,C,X3

)
E
(
S2,2 | FN,C,X3

)
Corollary 4.2. The conditional second-order moment of the aggregate claim after j + m development
years amount knowing the information up to time s = k + j + 1 is

E
(
S2
k,j+m | FN,C,Xs

)
=

Ns∑
i=1

Ns∑
j=1

(XiXj1i,j∈Css,k + 2XiXjG̃k(s+m,Ti)1i∈Cns
s,k,j∈C

s
s,k

)

+

Ns∑
i=1

Ns∑
j=1

XiXjG̃k(s+m,Ti)G̃k(s+m,Tj)1i,j∈Cns
s,k
, (9)

where G̃k(t, u) = E
(
g(y, t, V )1{k≤t<k+1}

)
.

Proof. Immediate by taking s = j + k + 1, t = j + k + 1 +m = s+m and g̃ in Proposition 3.2 in which
the terms An(G̃k)(s, s+m), An(G̃2,k)(s, s+m), A∗m(Gk)(s, s+m) cancel.

4.2 Ruin topics

Within regulatory frameworks, the computation of solvency probabilities for different line of business
and different time horizons are increasingly studied. Generally, the solvency probability at time t is
defined as

φt(u) = P (Rt > 0 | R0 = u).

This quantity depends on the initial capital u, the premium rate c and the probability law of Rt. This
indicator allows to calibrate the premium rate c for a risk management perspective.

The computation of the solvency or equivalently of the ruin probability has been studied for decades
in the literature, see Asmussen and Albrecher (2010). In the case of independence between claim arrivals
and claim amounts, there are mainly two cases to distinguish depending on the tail heaviness of the
claim distribution. In the light-tailed case, exact formulas are available when the claim distribution is an
exponential distribution or a phase-type distribution (which includes the Erlang distribution and mixtures
of Erlang distributions), see e.g. Asmussen and Rolski (1991). In the heavy-tailed case, exact formulas are
rare and we must rely on integrated tail approximation or bounds of the ruin probability. Furthermore in
the light-tailed case, the solvency probability can be approximated by a normal distribution (Asmussen
and Albrecher, 2010, Chap. 16) or a translated gamma distribution ((Dickson, 2005, Chap. 4)) based on
two or more moments of the claim distribution.

In this paper, we simply use the two-moment normal approximation of the distribution of the risk pro-
cessRt at time t. That is, the solvency probability is approximating only through the mean E(Rt |R0 = u)
and the variance Var(Rt | R0 = u). These previous characteristics can be computed in our model via
Propositions 3.3 and 3.4. Indeed,

E(Rt | R0 = u) = u+ ct−E(St), Var(Rt | R0 = u) = Var(St).

In this context, the solvency probability can be expressed as

φt(u) ≈ 1− Φ

(
0− (u+ ct−E(St))√

Var(St)

)
, (10)
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where Φ denotes the cumulative distribution function of the standard Gaussian distribution.

5 Numerical illustrations

In this section, we will present the numerical illustrations of the previous results and we compare them
with the classical ruin theory model and chain-ladder method for claim reserving. On a real dataset, we
show the numerical computation of the ruin probability and claim reserving. In this example, we choose
to model settlement times with zero-inflated exponential distribution of parameter p and µ.

We consider an actuarial dataset from an unknown private insurer on a portfolio of general third-
party liability policies for private individuals. 332,892 claims were reported between January 1990 and
December 1999, which are all closed on December 31 2008. We distinguish two types of claims: material
damage (material) and bodily injuries (injury). We randomly select 6000 claims in the previous dataset.
Then, we prepare the training set with claims reported before December 1997.

Parameters of the model are calibrated with classical statistical methods. We estimate the parameters
λ, ν = E(X), p and µ with the estimators λ̂ = Ns

s , ν̂ = 1
n

∑n
i=1Xi, p̂ = 1

n

∑N
i=1 1{Vi=0} and µ̂ =(

1
n

∑n
i=1 Vi

)−1
(1−p̂) respectively. p̂, µ̂ are maximum likelihood estimators, whereas λ̂ and ν̂ are moment-

based estimators.

ν λ p µ (1− p)/µ
material 1178 498.6 0.032 0.269 3.606

body 21520 105.5 0.004 0.233 4.272

Table 1 – Fitted parameters of the training set

In Table 1, we can observe the key characteristics of each type of claims. The mean value of the claim
amount is much bigger for bodily injuries (νinjury > νmaterial). On this dataset, material damages are
more frequent than bodily injuries (λmaterial > λinjury). Furthermore with our model, we can see that
bodily injuries are rarely paid immediately compared to material damages, since pinjury is much smaller
than pmaterial. By direct computation (using (1− p̂)/µ̂), the expected settlement time of bodily injuries
is bigger than for material damages (see corresponding column in Table 1).

In Figure 2, we plot the distribution function (both the empirical and the fitted functions respectively
in solid and dashed lines) for the two claim types (left for material and right for injury). We also observe
that the zero-inflated exponential distribution, considered in our model (see section 3.2), fits reasonably
well the settlement times, yet distributions with more parameters will better fit the empirical distribution.

Figure 2 – Settlement delays (Vi)i (left for material and right for injury)
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5.1 Computational aspects

In this numerical section, we use the statistical software R (R Core Team (2016)), a personal library of
dedicated functions hosted on a git repository at https://portail.math.cnrs.fr/, the ChainLadder and the
fitdistrplus packages (see Gesmann et al. (2015) and Delignette-Muller and Dutang (2015)). We use
numerical and/or Monte-Carlo approaches in order to compute the key indicators previously presented
in Sections 3 and 4.

Firstly, for the numerical approach we fully used the efficient formulation of indicators. In fact, those
formulations of the indicators rely on the inversion of sums and multiple integrals which simplifies the
computation (see Appendices A, B and C). These multiple integrals can be approximated via the rectangle
rule, see Appendix D for details. Benchmarks of the computation of theses indicators have been carried
out in the case of immediate settlement (that is G(t, w) = 1{w≤t}).

Secondly, the Monte-Carlo approach consists in simulating both the claim occurence times (Ti) and
the settlement time (Vi), then mean and variance are replaced by their empirical versions. There is no
issue to simulate Ti as they are i.i.d. uniformly distributed between [s, t] knowing Nt and to simulate Vi
since they are zero-inflated exponentially distributed. In the following subsections, we choose a number
of simulations equals to 1000.

For large values of λt, we prefer the Monte-Carlo approach because the numerical approach needs a
sharp discretization grid in time combined with a dedicated library. Indeed, computing large binomial
sums needs the use high precision floating-point arithmetic libraries such as the GMP library of Grandlund
Torbjoern & the GMP Devel. Team (2015), or the MPFR library of Fousse et al. (2007). These libraries
are available thanks to the R package Rmpfr of Maechler (2016). This makes the numerical approach
slow even with parallel computations.

5.2 Reserving

For illustration purposes, the reserving triangles (with cumulative incurred amounts) are displayed in
Tables 5 and 6 in Appendix E. The predicted claim charge has been computed by the numerical approach
using Equation (8) in Table 2 for damage cover and Table 3 for bodily injury cover. Each table contains
the latest known value in the first column, the predicted claim charge by the numerical approach and the
Chain Ladder method (see e.g. Wuethrich and Merz (2008)) in the second and third columns, the claim
reserves denoted by IBNR corresponding to the numerical approach and the Chain Ladder method in
the fourth and fifth columns.

Accident year Latest Ultimate CL Ultimate New IBNR CL IBNR New
1990 602 261 602 261 602 261 0 0
1991 774 350 800 779 861 315 26 429 86 965
1992 580 910 648 991 593 044 68 081 12 134
1993 419 019 519 118 484 517 100 099 65 498
1994 568 651 840 366 642 925 271 715 74 274
1995 285 542 529 908 348 506 244 366 62 964
1996 331 037 866 481 644 304 535 444 313 267
1997 93 018 499 976 427 523 406 958 334 507

Total 3 654 788 5 307 880 4 604 394 1 653 091 949 609

Table 2 – Results for damage cover

In Table 2, we observe that the numerical approach proposed in this paper mostly underestimate the
ultimate predicted claim charge for both guarantees for all accident year (except for 1991). This leads to
an underestimation of the total claim charge (5 307 880 vs. 4 604 394). Obviously, when subtracting the
latest known claim value, the claim reserve (IBNR columns) are also lower for the numerical approach
than for the Chain Ladder method.
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Accident year Latest Ultimate CL Ultimate New IBNR CL IBNR New
1990 4 365 142 4 365 142 4 365 142 0 0
1991 3 466 759 3 639 763 3 518 086 173 004 51 327
1992 2 474 422 2 779 462 2 530 368 305 040 55 946
1993 797 925 1 007 187 906 636 209 262 108 711
1994 1 047 918 1 608 889 1 246 146 560 972 198 228
1995 626 053 1 269 117 995 574 643 064 369 521
1996 819 551 2 542 603 1 764 573 1 723 052 945 021
1997 404 867 3 045 051 1 552 357 2 640 184 1 147 490

Total 14 002 636 20 257 213 16 878 881 6 254 577 2 876 246

Table 3 – Results for body cover

In Table 3, we observe that this effect is even more pronounced. For the bodily injury cover, the
ultimate predicted claim is lower with the numerical approach than with the Chain Ladder method for
every accident year without exception. Chain Ladder reserve’s estimate are generally two times or three
times bigger than the numerical approach.

These results must be taken with care (especially for the bodily injury cover) because the presented
estimation do not take into account development after the seventh year. For long-tail business such as
bodily injury cover, this is not recommended to do so. Furthermore, the claim triangles (see Appendix E)
present some accident year effect probably due to the portfolio size under exposure: for the damage cover,
accident year 1994’s claim charges are particularly large, whereas for the bodily injury cover, accident
years 1990-91’s claim charge are heavy.

However, these two effects probably do not explain all differences. The remaining differences may be
explained by two reasons: the proposed model has less parameters than the Chain Ladder method (2 vs.
7); the numerical approach does not take into account claims that are incurred but not year reported
(IBNYR).

These differences reduce when looking to a smaller time horizon. In fact using the 1998’s claim
information (for validation), we compare the claim charges observed for accident years 1991-1997 with
the prediction by the numerical approach and the Chain Ladder method. For the damage cover, the
numerical approach and the Chain Ladder method produce similar estimates: the numerical approach is
even better. For the bodily injury cover, the predictions for the numerical approach are dubious especially
for the most recent accident years where the uncertainty implied by IBNYR claims is prominent. This is
logical because there are almost no IBNYR claims for the damage guarantee but many late IBNYR for
the bodily injury guarantee.
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Figure 3 – Prediction of claim charge over one-year time horizon

5.3 Ruin

In this section, we consider the solvency probability approximation using Equation (10). As generally
in numerical illustrations of ruin-related quantities, φt(u) is plotted as a function of the initial capital u
for different time values t. On Figure 4, we plot the solvency probability in 8 situations by considering
(i) two time horizon t = 1 and t = 2, (ii) two variance values for the claim distribution V ar(X) = 1/2
and V ar(X) = 2 (whereas the mean is E(X) = 1) and (iii) two type of settlement Dirac and exponential.
We do not plot the zero-inflated case since it is an intermediate situation between these two situations.
Finally, the loading factor is assumed to be 1%, i.e. c = E(X)(1 + 1%).

For each situation, the solvency probability has an exponential convergence towards 1 since Equation
(10) use the distribution function of the standard normal distribution. As expected, increasing the time
horizon given a value of initial capital leads to a (sharp) decrease of the solvency probability. Also as
one would expect, increasing the variance of the claim amounts decrease the solvency probabilities: the
slopes are flatter in the right-hand graph.

Furthermore, the two types of settlements either immediate with a Dirac distribution or gradually
with an exponential distribution (of mean 1/2) have a large impact of the solvency probability. As the
ruin process in these two situations are stochastically ordered, having a random settlement time leads to
higher solvency probabilities.

In Table 4, we compute the solvency capital at 99.5% level, that is the difference between the quantile
at 99.5% level and the mean of the aggregate claim. Increasing the time horizon leads to a larger increase
of required capital when the settlement time are random: for the exponential distribution from 2.38 to
6.53 compared to the Dirac distribution from 3.14 to 7. However, the effect of random settlement times
is reduced as the time horizon increases.

6 Conclusion

We propose in this paper an efficient way to compute insurance indicators in a unified framework
of ruin theory and claim reserving. In an extended Cramér-Lundberg framework, we derive efficiently
computable closed-form formulas for the key indicators. We illustrate these methods on a real insurance
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Figure 4 – Solvency probability

V ar(X) = 1/2 V ar(X) = 2
Time horizon Dirac Exp Dirac Exp

t = 1 3.14 2.38 4.45 3.46
t = 2 4.44 3.84 6.29 5.51
t = 3 5.43 4.88 7.70 7.00
t = 4 6.27 5.73 8.88 8.25
t = 5 7.00 6.53 9.93 9.35

Table 4 – Solvency capital at 99.5% level

dataset. This numerical application reveals that the proposed framework underestimates the ultimate
claim charges (assuming the Chain-Ladder method is the most appropriate method). On a one-year
time horizon, the backtesting procedure shows that the new method to estimate claim charges performs
reasonably well. Regarding ruin-theory topics, we retrieve that taking into account settlement times
naturally increases solvency probabilities, yet this effect diminishes for longer time horizons.

This extended model is relatively simple and merits further research. Multiple directions can be
considered. The next step should attempt to take into account non-null reporting delays as well as random
claim charge in order to better assess the reserving risk. By considering random reporting delays, the
observed claim process is not a Poisson process, yet the unobserved claim settlement process and reporting
process are Poisson processes. This latent model could be better tackled in a general renewal process for
the claim process, see (Asmussen and Albrecher, 2010, Chap. 6) or with inhomogeneous Poisson process,
see (Wuethrich and Merz, 2008, Chap. 10). Other directions for future research may include the study
of more general settlement functions, uncertain claim charges, the dependence between claim sizes and
claim inter-arrival times, claim sizes and settlement times, and the asymptotic behavior of the proposed
estimators.
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A Simplification of operator Ak(G)(s, t)

Let tk+1 = t and 0 ≤ s < t. Iterating the following splitting procedure

∫ t2

0

k∑
i=1

G(t, ti)1]s,t[(t1, . . . , tk)dt1 =

∫ t2

s

G(t, t1)dt1 +

k∑
i=2

G(t, ti)1]s,t[(t2, . . . , tk)(t2 − s)

∫ t3

0

k∑
i=2

G(t, ti)1]s,t[(t2, . . . , tk)(t2 − s)dt2 =

∫ t3

s

G(t, t2)(t2 − s)dt2 +

k∑
i=3

G(t, ti)1]s,t[(t3, . . . , tk)
(t3 − s)2

2!
,

leads to

Ak(G)(s, t) =

∫ t

0

∫ tk

0

. . .

∫ t2

0

1{s<t1<···<tk<t}

k∑
i=1

G(t, ti)dt1 . . . dtk

=

∫ tk+1

s

. . .

∫ t2

s

G(t, t1)dt1 . . . dtk +

∫ tk+1

0

∫ tk

0

. . .

∫ t3

0

G(t, t2)1]s,t[(t2, . . . , tk)(t2 − s)dt2 . . . dtk

+

∫ tk+1

0

∫ tk

0

. . .

∫ t4

0

k∑
i=3

G(t, ti)1]s,t[(t3, . . . , tk)

∫ t3

s

(t2 − s)dt2 . . . dtk

=

∫ tk+1

s

. . .

∫ t2

s

G(t, t1)dt1 . . . dtk +

∫ tk+1

s

. . .

∫ t3

s

G(t, t2)(t2 − s)dt2 . . . dtk

+

∫ tk+1

0

∫ tk

0

. . .

∫ t4

0

k∑
i=3

G(t, ti)1]s,t[(t3, . . . , tk)
(t3 − s)2

2!
dt2 . . . dtk

=

k∑
j=1

∫ tk+1

s

. . .

∫ tj+1

s

G(t, tj)
(tj − s)j−1

(j − 1)!
dtj . . . dtk.

In other words, the operator Ak is

Ak(G)(s, t) =

k∑
j=1

Bj,k(G)(s, t) where Bj,k(G)(s, t) =

∫ tk+1

s

. . .

∫ tj+1

s

G(t, tj)
(tj − s)j−1

(j − 1)!
dtj . . . dtk.
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B Computation of the second order moment

Let us compute the following expectation which simplifies to E(S2
t ) when s = 0. Let Gi(t) =

g(t, Ti, Vi). Splitting the inner sum yields to

E

 Nt∑
i=Ns+1

Zi(t)

Nt∑
j=Ns+1

Zj(t) | Ns

 = E

(
Nt∑

i=Ns+1

Z2
i (t) | Ns

)
+ 2E

 Nt∑
i=Ns+1

Nt∑
j=j+1

Zi(t)Zj(t) | Ns

 .

The first sum can be computed as in Proposition 3.1. Consequently,

E

(
Nt∑

i=Ns+1

Z2
i (t) | Ns

)
= E(X2)e−λ(t−s)

∞∑
k=1

λkAk(G2)(s, t)

with the function G2 : (t, w) 7→ E(g(t, w, V )2). With similar conditioning, the second term is

2E

 Nt∑
i=Ns+1

Nt∑
j=i+1

Zi(t)Zj(t) | Ns


= 2E

(
X2
) ∞∑
`=Ns+2

`−1∑
i=Ns+1

∑̀
j=Ns+1

E (g(t, Ti, Vi)g(t, Tj , Vj) |Ns, Nt = `)P (Nt = ` | Ns)

= 2E
(
X2
) ∞∑
k=2

Ns+k−1∑
i=Ns+1

Ns+k∑
j=Ns+1

E (g(t, Ti, Vi)g(t, Tj , Vj) |Ns, Nt −Ns = k)P (Nt −Ns = k | Ns) .

With G(t, ti, tj) = E (g(t, ti, Vi)g(t, tj , Vj)) = G(t, ti)G(t, tj) (by assumption A3), the double sum is

Ns+k−1∑
i=Ns+1

Ns+k∑
j=i+1

E (g(t, ti, Vi)g(t, tj , Vj) |Ns, Nt −Ns = k)

=

∫
Rk

Ns+k−1∑
i=Ns+1

Ns+k∑
j=i+1

G(t, ti, tj)dH
s
k(tNs+1, . . . , tNs+k) =

k!

(t− s)k

∫ tk+1

s

. . .

∫ t2

s

k−1∑
n=1

k∑
m=n+1

G(t, tn, tm)dt1 . . . dtk,

with tk+1 = t. Using Appendix C, we have

∫ tk+1

s

. . .

∫ t2

s

k−1∑
n=1

k∑
m=n+1

G(t, tn, tm)dt1 . . . dtk,= A∗k(G)(s, t).

Combining with P (Nt = k|Ns) = (λ(t−s))k
k! e−λ(t−s) leads to the desired result.

C Simplification of operator A∗k(G)(s, t)

Still with tk+1 = t, we use similar reasoning as Appendix A

∫ t2

s

k−1∑
i=1

k∑
j=i+1

G(t, ti, tj)dt1 =

∫ t2

s

k∑
j=2

G(t, t1, tj)dt1 +

k−1∑
i=2

k∑
j=i+1

G(t, ti, tj)(t2 − s),

∫ t3

s

k−1∑
i=2

k∑
j=i+1

G(t, ti, tj)(t2 − s)dt2 =

∫ t3

s

k∑
j=3

G(t, t2, tj)(t2 − s)dt2 +

k−1∑
i=3

k∑
j=i+1

G(t, ti, tj)
(t3 − s)2

2!
,
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leads to ∫ tk+1

s

. . .

∫ t2

s

k−1∑
i=1

k∑
j=i+1

G(t, ti, tj)dt1 . . . dtk

=

∫ tk+1

s

. . .

∫ t2

s

k∑
j=2

G(t, t1, tj)dt1 . . . dtk +

∫ tk+1

s

. . .

∫ t3

s

(t2 − s)
k∑
j=3

G(t, t2, tj)dt2 . . . dtk

+

∫ tk+1

s

. . .

∫ t4

s

(t3 − s)2

2!

k−1∑
i=3

k∑
j=i+1

G(t, ti, tj)dt3 . . . dtk

=

k−1∑
i=1

∫ tk+1

s

. . .

∫ ti+1

s

(ti − s)i−1

(i− 1)!

k∑
j=i+1

G(t, ti, tj)dti . . . dtk = A∗k(G)(s, t)

The operator Ak is defined as

A∗k : C1
[s,t]k+1 7→Rk 7−→ A∗k(F) ∈ C0

R2
+

(t, t1, .., tk) 7→

F1(t, t1, .., tk)
...

Fk(t, tk)

 7−→ (s, t) 7→ 10<s<t

k∑
i=1

∫ tk+1

s
. . .
∫ ti+1

s
(ti−s)i−1

(i−1)! Fi(t, ti, .., tk)dti..dtk

Two functions are considered. For the conditional expectation

Gbi(t, t1, .., tk) =

G(t, t1)
...

G(t, tk)

 =

E(g(t, t1, V ))
...

E(g(t, tk, V ))

 .

For the conditional second-order moment

G(t, t1, .., tk) =


k∑
j=2

G(t, t1, tj)

...
G(t, tk−1, tk)

0

 =


k∑
j=2

E(g(t, t1, V ))E(g(t, tj , V ))

...
E(g(t, tk−1, V ))E(g(t, tk, V ))

0

 .

D Heuristic computation for Bjk =
∫ tk+1

s . . .
∫ tj+1

s f(tj)dtj..dtk

Let δ(s, t) = t−s
n , tl(s, t) = s + (l − 1)δ, l = 1, . . . , n. We consider an approximation of the successive

integral based on the rectangle rule.
— j = k: a sum approximation based on the rectangle rule

Bkk(f)(s, t) ≈ δ
n∑
i=1

f(ti)× 1,

— j = k − 1: a cumsum approximation

Bk−1,k(f)(s, t) ≈ δ2
n∑
l=1

l∑
i=1

f(ti) = δ2
n∑
i=1

f(ti)

n∑
l=i

1 = δ2
n∑
i=1

f(ti)c
1
i,n,

— j = k − 2: a double cumsum approximation

Bk−2,k(f)(s, t) ≈ δ3
n∑
l=1

l∑
i=1

f(ti)c
1
i,l = δ3

n∑
i=1

f(ti)

n∑
l=i

c1i,l = δ3
n∑
i=1

f(ti)c
2
i,n,
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— general j: multiple cumulative sum approximation

Bjk(f)(s, t) ≈ δk−i+1
n∑
i=1

f(ti)c
k−j
i,n where cji,n =

n∑
l=i

cj−1
i,l , c

0
i,n = 1.

Computing the first terms, we notice that

c0i,n = 1 =
(
n−l

0

)
, c1i,n =

∑n
l=i 1 = n− i+ 1 =

(
n−l+1

1

)
,

c2i,n =
∑n
l=i(n− l + 1) =

∑n−l+1
l=1 l = (n−i+1)(n−i+2)

2 =
(
n−i+2

2

)
,

c3i,n =
∑n
l=i

(n−l+1)(n−l+2)
2 =

∑n−l+1
l=1 l(l + 1)/2 = (n−i+1)(n−i+2)(n−i+3)

6 =
(
n−i+3

3

)
.

That is c1i,n is the sum of 1, c2i,n is the sum of integers, c3i,n is the sum of square integers. We now use

the well-known parallel summation identity
∑n
l=0

(
r+l
l

)
=
(
r+n+1
n

)
, e.g. from Graham et al. (1994). We

have c0i,n =
(
n−l+0

0

)
Assume that ck−1

i,n =
(
n−i+k−1
k−1

)
. Summing over l gives

cki,n =

n∑
l=i

(
n− l + k − 1

k − 1

)
=

n∑
l=i

(
n− l + k − 1

n− l

)
=

n−i∑
j=0

(
k − 1

j

)
=

(
n− i+ k − 1 + 1

n− l

)
=

(
n− i+ k

k

)
.

This ends the recurrence. So Bjk(f)(s, t) ≈ δk−j+1
∑n
i=1 f(ti)

(
n−i+k−j
k−j

)
. Therefore, an heuristic compu-

tation for Ak =
∑k
j=1

1
(j−1)!

∫ tk+1

s
. . .
∫ tj+1

s
f(tj)dtj ..dtk can be obtained. Using previous approximation, we

get

Ak(f)(s, t) ≈
k∑
j=1

1

(j − 1)!
δk−j+1

n∑
i=1

f(ti)

(
n− i+ k − j

k − j

)
=

n∑
i=1

f(ti)

k∑
j=1

δk−j+1

(j − 1)!

(
n− i+ k − j

k − j

)
yielding to

e−λ(t−s)
∑
k≥1

λkAk(f)(s, t) ≈
kmax∑
k=1

e−λ(t−s)λk
n∑
i=1

f(ti)

k∑
j=1

δk−j+1

(j − 1)!

(
n− i+ k − j

k − j

)
.

The Trapezoidal rule is obtained by replacing f(ti) by f(ti)+f(ti+1)
2 .

E Claim triangles

Development year
Accident year 0 1 2 3 4 5 6 7

1990 37482 139760 242037 344315 446593 534979 582384 602261
1991 67954 215479 363005 510531 643364 720880 774350
1992 114975 262831 410686 511030 566393 580910
1993 90355 202967 302796 373944 419019
1994 216343 442578 519775 568651
1995 178740 242198 285542
1996 188638 331037
1997 93015

Table 5 – Triangle for damage cover
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Development year
Accident year 0 1 2 3 4 5 6 7

1990 1141816 1836488 2531161 3225834 3796269 4157660 4365142 4480327
1991 1210060 1904389 2598718 3090223 3330113 3466759 3490643
1992 874032 1368811 1841729 2227655 2474422 2527571
1993 379682 577927 708582 797925 844412
1994 713520 922794 1047918 1143308
1995 409297 626053 805173
1996 819551 1332359
1997 915450

Table 6 – Triangle for bodily injury cover
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