
HAL Id: hal-01616187
https://hal.science/hal-01616187v1

Submitted on 13 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust and bias-corrected estimation of the probability
of extreme failure sets

Christophe Dutang, Yuri Goegebeur, Armelle Guillou

To cite this version:
Christophe Dutang, Yuri Goegebeur, Armelle Guillou. Robust and bias-corrected estimation of the
probability of extreme failure sets . Sankhya A, 2016, 78 (1), pp.52-86. �10.1007/s13171-015-0078-3�.
�hal-01616187�

https://hal.science/hal-01616187v1
https://hal.archives-ouvertes.fr


Robust and bias-corrected estimation

of the probability of extreme failure sets

Christophe Dutang ∗

Yuri Goegebeur †

Armelle Guillou ‡

January 6, 2015

Abstract

In multivariate extreme value statistics, the estimation of probabilities of extreme failure sets is

an important problem, with practical relevance for applications in several scientific disciplines.

Some estimators have been introduced in the literature, though so far the typical bias issues that

arise in application of extreme value methods and the non-robustness of such methods with re-

spect to outliers were not addressed. We introduce a bias-corrected and robust estimator for small

tail probabilities. The estimator is obtained from a second order model that is fitted to properly

transformed bivariate observations by means of the minimum density power divergence technique.

The asymptotic properties are derived under some mild regularity conditions and the finite sample

performance is evaluated through an extensive simulation study. We illustrate the practical appli-

cability of the method on a dataset from the actuarial context.
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1 Introduction

Multivariate extreme value statistics deals with the estimation of the joint tail of a distribution func-

tion based on a random sample. Within this area, the problem of estimating the probability of extreme

failure sets, i.e. regions of the sample space where one or several random variables are large, is of

practical relevance for applications in many scientific disciplines. For instance, financial institutions

are often interested in assessing the risk of simultaneous large negative returns on several stocks or
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other assets (Charpentier and Juri, 2006). In the design of coastal defence structures, engineers might

want to estimate the probability that a seawall fails due to a combination of high waves and high still

water levels (de Haan and de Ronde, 1998). The estimation of the probability of extreme failure sets

is the topic of the present paper.

The extremal dependence between the components of a continuous random vector (X,Y ) with unit

Fréchet margins (note that this can be assumed without loss of generality) can be analyzed with the

model of Ledford and Tawn (1997):

P(X > x, Y > y) = x−d1y−d2`(x, y), x, y > 0,

where d1, d2 > 0 and ` is a bivariate slowly varying function, i.e.

`(tx, ty)

`(t, t)
→ ς(x, y) as t→∞, for all x, y > 0,

and the function ς is homogeneous of order zero. The parameter η := (d1 + d2)
−1 is called the

coefficient of tail dependence. It satisfies η ∈ (0, 1], and larger values of it indicate a stronger extremal

dependence. As we can imagine, several attempts have been made to estimate η from data. Since

P(min(X,Y ) > z) = P(X > z, Y > z) = z−1/η`(z, z),

i.e. the transformed variable min(X,Y ) follows a Pareto-type model with index 1/η, one can estimate

η with classical estimators for the extreme value index like the Hill (Hill, 1975), Pickands (Pickands,

1975) or moment estimator (Dekkers et al., 1989). However, this type of estimators typically suffers

from bias and also they are not robust with respect to outliers. Moreover, since estimators for a

bivariate tail probability are typically based on such estimators for η, one can expect that they will

also be affected by bias and outliers. These specific issues will be addressed in the present paper.

In order to obtain a bias-corrected estimator we will, as usual in extreme value statistics, invoke a

second order condition. In particular we will work under the following condition from Draisma et al.

(2004), which can be seen as an extension of the above discussed Ledford and Tawn model.

Condition SO: Let (X,Y ) be a random vector with joint distribution function F and continuous

marginal distribution functions FX and FY such that

lim
t↓0

q1(t)
−1
(
P (1− FX(X) < tx, 1− FY (Y ) < ty)

P (1− FX(X) < t, 1− FY (Y ) < t)
− c(x, y)

)
=: c1(x, y) (1)

exists for all x ≥ 0, y ≥ 0 with x + y > 0, a function q1 tending to zero as t ↓ 0, and c1 a func-

tion neither constant nor a multiple of c. Moreover, we assume that the convergence is uniform on

{(x, y) ∈ [0,∞)2|x2 + y2 = 1}.
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Essentially, this condition is a second order multivariate regular variation condition on the function

R(x, y) := P (1− FX(X) < x, 1− FY (Y ) < y). It can be shown that R(t, t) is regularly varying at

zero with index 1/η, |q1| is regularly varying at zero with index τ ≥ 0, and that the function c is

homogeneous of order 1/η, that is c(tx, ty) = t1/ηc(x, y). Also, c1(x, x) = x1/η(xτ − 1)/τ .

Recently, several papers have addressed bias-corrected estimation of the coefficient of tail dependence

η, but not too much attention has been paid to the estimation of the probability of extreme failure sets.

Concerning η, we refer to Beirlant et al. (2011) and Goegebeur and Guillou (2013). Also, Dutang et al.

(2014) introduced a robust and bias-corrected estimator for the coefficient of tail dependence, based

on a submodel of (SO) that is fitted to the data by means of the minimum density power divergence

technique. The estimators of probabilities of extreme failure sets already proposed in the literature are

quite simple in nature, but their asymptotics is very difficult to handle and requires very technical con-

ditions. This is for instance the case of the estimator proposed by Draisma et al. (2004) where only the

convergence in probability is established. Peng (1999) also proposed an estimator but without showing

convergence nor asymptotic normality. Moreover, bias-correction and robustness were not considered

so far for estimators of probabilities of extreme regions. This constitutes the topic of the present paper.

The remainder of this paper is organised as follows. In the next section, we introduce the model and

the estimator for probabilities of extreme failure sets. The asymptotic results of the proposed estimator

are investigated in Section 3, and the finite sample performance is illustrated through an extensive

simulation study in Section 4. Section 5 contains an application of the proposed methodology on a

dataset from the actuarial context. The proofs of the main results can be found in the appendix.

2 Model assumptions and estimators

The robust and bias-corrected estimator for probabilities of extreme failure sets will be obtained from

a submodel of the second order condition (SO), that will be fitted to properly transformed bivariate

observations by means of the minimum density power divergence (MDPD) technique.

The density power divergence criterion was originally introduced by Basu et al. (1998) for the pur-

pose of developing a robust estimation method. In particular, the density power divergence between

arbitrary density functions f and h is given by

∆α(f, h) :=


∫
R
[
h1+α(z)−

(
1 + 1

α

)
hα(z)f(z) + 1

αf
1+α(z)

]
dz, α > 0,∫

R log f(z)
h(z)f(z)dz, α = 0.

Note that for α = 0 one recovers the Kullback-Leibler divergence, whereas setting α = 1 leads to the

L2 divergence. Assume that the density function h depends on a parameter vector θ, and let f be
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the true density function of the random variable under consideration. The idea is then to estimate θ

by minimizing an empirical version of ∆α based on a random sample Z1, . . . , Zn from f : if α > 0 one

considers

∆̂α(θ) :=

∫
R
h1+α(z)dz −

(
1 +

1

α

)
1

n

n∑
i=1

hα(Zi),

whereas for α = 0

∆̂0(θ) := − 1

n

n∑
i=1

log h(Zi).

For α = 0, one fits the model h to the data using the maximum likelihood method. The parameter

α controls the trade-off between efficiency and robustness of the MDPD estimator: the estimator be-

comes more efficient but less robust against outliers as α gets closer to zero, whereas for increasing α

the robustness increases and the efficiency decreases. The criterion has been applied in the univariate

extreme value context of heavy tailed distributions with the objective to obtain robust estimators

of tail parameters: Kim and Lee (2008) constructed a robust version of the Hill estimator based on

MDPD estimation, whereas Dierckx et al. (2013) fitted a second order model by this method in order

to achieve a tail index estimator that is both robust and bias-corrected. Recently, the MDPD criterion

was used by Dierckx et al. (2014) in the framework of conditional heavy tailed models and by Dutang

et al. (2014) in the multivariate framework.

Let (X,Y ) be a bivariate random vector with continuous marginal distributions satisfying

P (1− FX(X) < x, 1− FY (Y ) < y) = xd1yd2g(x, y)

(
1 +

1

η
δ(x, y)

)
, x ≥ 0, y ≥ 0, (2)

where d1, d2 are positive constants, η := (d1 + d2)
−1 ∈ (0, 1) is the tail dependence coefficient, g

is a continuous function that is homogeneous of order 0 and δ is a function of constant sign in the

neighbourhood of zero, with |δ| being a bivariate regularly varying function, that is, there exists a

function ξ such that

lim
t↓0

|δ|(tx, ty)

|δ|(t, t)
= ξ(x, y), (3)

for all x, y ≥ 0. We assume additionally that ξ is continuous, homogeneous of order τ > 0, and that

the convergence is uniform on {(x, y) ∈ [0,∞)2|x2 + y2 = 1}. Note that we exclude the case η = 1, as

was also done in Beirlant and Vandewalle (2002), Beirlant et al. (2011), and Goegebeur and Guillou

(2013).

Lemma 1 Model (2) satisfies assumption (SO) with

c(x, y) = xd1yd2
g(x, y)

g(1, 1)
, (4)

q1(t) =
τ

η
δ(t, t), (5)

c1(x, y) = c(x, y)
ξ(x, y)− 1

τ
. (6)
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Many commonly used joint distribution functions satisfy model (2), as for instance the Farlie Gumbel

Morgenstern or the Frank distributions, see Section 4.

For convenience we assume that the marginal distributions are unit Pareto. In this case model (2)

becomes

P (X > x, Y > y) = x−d1y−d2g∗(x, y)

(
1 +

1

η
δ∗(x, y)

)
(7)

where g∗(x, y) := g(1/x, 1/y) and δ∗(x, y) := δ(1/x, 1/y). Note that the choice of unit Pareto margins

is not only for convenience in order to use some results from Dutang et al. (2014) already established

under this assumption, but also, because as observed by Drees (1998a, 1998b) the classical estimators

of extreme value index have larger bias for Fréchet distributions than for Pareto distributions. Model

(7) is a slight generalization of the second order model that was considered in Beirlant et al. (2011),

and will form the basis for the estimation procedure to be developed in this paper. Note that one can

write

P(X > x, Y > y) = P
(
X > x,

ω

1− ω
Y > x

)
,

where ω := x/(x + y), ω ∈ (0, 1), can be interpreted as being a radial parameter and it has been

introduced in order to estimate probabilities in joint tail regions. This ray parametrization was also

used in Ramos and Ledford (2009). This parameter is of little practical relevance for estimation of the

coefficient of tail dependence, but it will play an important role for failure set probability estimation.

Thus, we consider the transformed variable Zω := min(X, ω
1−ωY ). For this variable one easily derives

the survival function, given by

FZω(z) := P(Zω > z) = Cω z
−1/η

(
1 +

1

η
δω(z)

)
, z > 0,

where Cω := (ω/(1− ω))d2g∗(1, (1− ω)/ω), and |δω| is a function of regular variation with index −τ .

This second order condition is identical to the one used in the univariate framework in Beirlant et

al. (2009) and Dierckx et al. (2013), and therefore, as shown in these papers, one can approximate

the distribution of Zω/u, conditionally on Zω > u, for large u, by the extended Pareto distribution.

Formally, using the common reparametrization ρ = −τη, for u large

P(Zω > uz)

P(Zω > u)
≈ H(z; η, δω(u), ρ) :=

 1, z ≤ 1,

[z(1 + δω(u)− δω(u)zρ/η)]−1/η, z > 1,
(8)

where H has the density function

h(z; η, δω(u), ρ) =

 0 z ≤ 1,

1
η z
−1/η−1[1 + δω(u)(1− zρ/η)]−1/η−1

[
1 + δω(u)

(
1−

(
1 + ρ

η

)
zρ/η

)]
, z > 1,

(η ∈ (0, 1), ρ < 0, and δω(u) > max{−1, η/ρ}). Using this property, one can estimate η by fitting

h to the relative excesses over some large threshold u. Approximation (8) means that the difference
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between the two sides is uniformly of order o(|δω(u)|) (see Proposition 2.3 in Beirlant et al., 2009)

and thus this new extended Pareto model can be fitted to a larger portion of the data. This is in line

with other approaches to bias-corrected estimation in the extreme value context. Indeed, in general,

by taking the second order structure of extreme value models explicitly into account in the estimation

stage, one obtains estimators with better bias properties than estimators based on first order models.

Specifically, for a sample (X1, Y1), . . . , (Xn, Yn) of independent random vectors from model (2), one

transforms into (approximate) unit Pareto margins by using the empirical distribution functions of

the X and Y observations. This gives

Z̃ω,i := min

(
n+ 1

n+ 1−RXi
,

ω

1− ω
n+ 1

n+ 1−RYi

)
with RXi and RYi denoting the rank of Xi and Yi, i = 1, . . . , n, in the respective samples. The

parameters η and δω of the extended Pareto distribution are estimated by fitting the density function

h to the relative excesses Zj := Z̃ω,n−m+j,n/Z̃ω,n−m,n, j = 1, . . . ,m, where 1 ≤ m ≤ n − 1, and

Z̃ω,1,n ≤ . . . ≤ Z̃ω,n,n are the order statistics of Z̃ω,1, . . . , Z̃ω,n, using the minimum density power

divergence criterion. Remember that the parameter δω reflects in fact the function δω(u), where

δω(u)→ 0 as u→∞, but we do not make this dependence on the threshold explicit in the notation.

The MDPD estimator for η and δω satisfies the estimating equations

0 =

∫ ∞
1

hα(z; η, δω, ρ)
∂h(z; η, δω, ρ)

∂η
dz − 1

m

m∑
j=1

hα−1(Zj ; η, δω, ρ)
∂h(Zj ; η, δω, ρ)

∂η
, (9)

0 =

∫ ∞
1

hα(z; η, δω, ρ)
∂h(z; η, δω, ρ)

∂δω
dz − 1

m

m∑
j=1

hα−1(Zj ; η, δω, ρ)
∂h(Zj ; η, δω, ρ)

∂δω
. (10)

Note that only the parameters η and δω are estimated with the MDPD method. The parameter ρ

will in this paper be fixed at the correct value, or fixed at some arbitrary value, usually the canonical

choice ρ = −1, and thus possibly mis-specified. Several estimators for ρ were proposed in the uni-

variate context, and we refer here to Fraga Alves et al. (2003), Ciuperca and Mercadier (2010) and

Goegebeur et al. (2010) for examples of estimators with a good practical performance. In the bivariate

context the estimation of ρ (or τ) is a challenging problem. Goegebeur and Guillou (2013) introduced

a consistent estimator for τ , based on the stochastic process results of Draisma et al. (2004) for the

empirical distribution function. However, this estimator does not seem to perform well in practice.

Therefore, these authors did not use it in their simulation experiment, and also resorted to fixing the

second order parameter at some value. We will address the estimation of second order parameters in

the bivariate extreme value context in future research.

Our goal in this paper is to estimate the tail probability pn := P(X > zn, Y > yn), with X and Y

being unit Pareto random variables, and where zn →∞ as n→∞, and yn = ω̃zn for some ω̃ > 0, i.e.
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we estimate a tail probability along a ray. We have thus that pn := FZω(zn), where ω = (1 + ω̃)−1.

To this aim, let m be an intermediate sequence, i.e. m→∞ as n→∞ with m = o(n). Assume that

pn satisfies

npn
m
−→ β ∈ [0, 1), n→∞. (11)

Using the estimators η̂n and δ̂ω,n satisfying the estimating equations (9)-(10), we can construct the

following estimator for pn based on (8), setting u = Z̃ω,n−m,n and replacing FZω(u) by the empirical

proportion m/n:

p̂n :=
m

n
H

(
zn

Z̃ω,n−m,n
; η̂n, δ̂ω,n, ρ̃

)
(12)

where ρ̃ is either the true value of ρ or a mis-specified one.

Note that, at first sight, once the minima Zω are being considered, our problem of estimation might

appear a standard problem of tail estimation in the classical univariate framework. However, this is

not the case: indeed, the Z̃ω,i, i = 1, ..., n, are not independent because of the rank transformation,

and hence the theoretical study of their order statistics is very complicated, involving convergence

results for stochastic processes. All subsequent results are proved in Section 3 using the stochastic

process representation, which requires arguments that are different from the univariate independent

and identically distributed (i.i.d.) case.

3 Asymptotic results

Consider the random variables Z̃ω,1, . . . , Z̃ω,n, with order statistics Z̃ω,1,n ≤ . . . ≤ Z̃ω,n,n. In order

to obtain the limiting distribution of p̂n, we need some preliminary results given in Theorems 1 and

2. These theorems are based on Theorem 1 in Dutang et al. (2014) which is for completeness re-

called in the appendix. In the following, we denote the tail quantile process as Qn(t) := Z̃ω,n−[mt],n,

0 < t < n/m. Set cω := c(1, ω/(1−ω)), ξω := ξ(1, ω/(1−ω)), q(t) := P(1−FX(X) < t, 1−FY (Y ) < t)

and let k/n = q←(m/n), where it is assumed that k →∞.

The estimating equations (9) and (10) depend only on the data through the following statistics
A

(1)
m,n(s1) := 1

m

∑m
j=1

(
Z̃ω,n−j+1,n

Z̃ω,n−m,n

)s1
=
∫ 1
0

(
Qn(t)
Qn(1)

)s1
dt

A
(2)
m,n(s2) := 1

m

∑m
j=1

(
Z̃ω,n−j+1,n

Z̃ω,n−m,n

)s2
log

Z̃ω,n−j+1,n

Z̃ω,n−m,n
=
∫ 1
0

(
Qn(t)
Qn(1)

)s2
log Qn(t)

Qn(1)
dt

A
(3)
m,n(s3) := 1

m

∑m
j=1

(
Z̃ω,n−j+1,n

Z̃ω,n−m,n

)s3 (
log

Z̃ω,n−j+1,n

Z̃ω,n−m,n

)2
=
∫ 1
0

(
Qn(t)
Qn(1)

)s3 (
log Qn(t)

Qn(1)

)2
dt

with s1, s2, s3 ≤ 0 whose joint asymptotic normality follows from Theorem A (cf. Appendix). How-

ever, in order to derive the limiting distribution of p̂n defined in (12), we need to add an additional
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component, Qn(1) = Z̃ω,n−m,n, correctly rescaled. The aim of Theorem 1 is thus to establish the joint

limiting distribution of the main statistics. Here and in the sequel the arrow  denotes convergence

in distribution.

Theorem 1 Let (X1, Y1), . . . , (Xn, Yn) be independent copies of the random vector (X,Y ) which has a

joint distribution satisfying (2) such that the function c given in (4) has continuous first order partial

derivatives. For m, k →∞ as n→∞ such that
√
mq1(k/n)→ λ ∈ R we have

√
m



k
nQn(1)− cηω

A
(1)
m,n(s1)− 1

1−ηs1

A
(1)
m,n(s′1)− 1

1−ηs′1

A
(2)
m,n(s2)− η

(1−ηs2)2

A
(3)
m,n(s3)− 2η2

(1−ηs3)3


 N5(λµ,Σ)

where

µ :=



−η2cηω cρωξω−1
ρ

−ξωcρω s1η2

(1−ηs1)(1−ρ−ηs1)

−ξωcρω
s′1η

2

(1−ηs′1)(1−ρ−ηs′1)

−ξωcρω
η2(1−ρ−η2s22)

(1−ηs2)2(1−ρ−ηs2)2

ξωc
ρ
ω

2η3

ρ

[
1

(1−ηs3)3 −
1−ρ

(1−ρ−ηs3)3

]



,
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and where Σ has elements given by

σ11 := η2 c2ηω

σ22 :=
η2s21

(1− s1η)2(1− 2s1η)

σ33 :=
η2s′21

(1− s′1η)2(1− 2s′1η)

σ44 := η2
{

2

(1− 2s2η)3
− 1

(1− s2η)4

}
σ55 := η4

{
4!

(1− 2s3η)5
− 4

(1− s3η)6

}
σ12 = σ13 = σ14 = σ15 := 0

σ23 :=
η2s1s

′
1

(1− s1η)(1− s′1η)[1− (s1 + s′1)η]

σ24 := η

{
1

[1− (s1 + s2)η]2
− 1

(1− s1η)(1− s2η)2

}
σ25 := 2η2

{
1

[1− (s1 + s3)η]3
− 1

(1− s1η)(1− s3η)3

}
σ34 := η

{
1

[1− (s′1 + s2)η]2
− 1

(1− s′1η)(1− s2η)2

}
σ35 := 2η2

{
1

[1− (s′1 + s3)η]3
− 1

(1− s′1η)(1− s3η)3

}
σ45 := 2η3

{
3

[1− (s2 + s3)η]4
− 1

(1− s2η)2(1− s3η)3

}
.

The proof of this Theorem 1 is an adaptation of the proof of Theorem 2 in Dutang et al. (2014) com-

bined with Theorem A. Note that the asymptotic independence between the random threshold (first

component of the (5×1)−vector in Theorem 1) and the other components has already been observed in

the univariate framework, see for instance Lemma 5.3 in Dekkers et al. (1989). Indeed in the univariate

case this property can be explained by the fact that for U1, . . . , Un i.i.d. U(0, 1) random variables, with

order statistics U1,n ≤ . . . ≤ Un,n, one has that Vj,k := Uj,n/Uk+1,n, j = 1, . . . , k, behave jointly as the

order statistics of a random sample of size k from the U(0, 1) distribution, independently from Uk+1,n.

Note however that the formal establishment of the asymptotic independence property in our situation

is different from the classical univariate i.i.d. framework since we work with the order statistics of the

(non-independent) variables Z̃ω,i, i = 1, . . . , n. In our situation, the independence can be intuitively

explained by the fact that the asymptotic distribution of (A
(1)
m,n(s1), A

(1)
m,n(s′1), A

(2)
m,n(s2), A

(3)
m,n(s3)) is

totally determined by that of
(

Z̃ω,n,n

Z̃ω,n−m,n
, ...,

Z̃ω,n−m+1,n

Z̃ω,n−m,n

)
whereas the asymptotic distribution of the

first component in our Theorem 1, Qn(1), is totally determined by that of Z̃ω,n−m,n.

From now on, we will denote the true value of η and ρ by η0 and ρ0, respectively. Let δω,n :=

δω(Z̃ω,n−m,n). In the next theorem, we establish the joint limiting distribution of Qn(1), η̂n and δ̂ω,n,

when properly normalised. The parameter ρ in the estimating equations (9) and (10) is denoted in

the sequel as ρ̃ and is either the true value ρ0 or a mis-specified one.
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Theorem 2 Under the conditions of Theorem 1 we have that

√
m


k
nQn(1)− cη0ω

η̂n − η0

δ̂ω,n − δω,n

 

Z

Γ

∆

 (13)

where 
Z

Γ

∆

 ∼ N3

(
λ[C−1(ρ̃)B(ρ̃)µ̃− δ∗], C−1(ρ̃)B(ρ̃)D(ρ̃)B′(ρ̃)C−1(ρ̃)

)
, (14)

with

µ̃ :=



−η20c
η0
ω

c
ρ0
ω ξω−1
ρ0

ξωc
ρ0
ω

αη0(1+η0)
(1+α(1+η0))(1−ρ0+α(1+η0))

ξωc
ρ0
ω

η0[α(1+η0)−ρ̃]
(1−ρ̃+α(1+η0))(1−ρ0−ρ̃+α(1+η0))

−ξωcρ0ω
η20 [1−ρ0−α2(1+η0)2]

(1+α(1+η0))2(1−ρ0+α(1+η0))2


,

δ′∗ := [0, 0,−η20ξωcρ0ω /ρ0],

B(ρ̃) :=


1 0 0 0

0 −η−α−10 0 η−α−20

0 −η−α−10 η−α−10 (1− ρ̃) 0

 ,
the symmetric matrix C(ρ̃) has elements

c11(ρ̃) := 1

c12(ρ̃) := 0

c13(ρ̃) := 0

c22(ρ̃) := η−α−20

1 + α2(1 + η0)
2

[1 + α(1 + η0)]3

c23(ρ̃) := η−α−20

ρ̃(1− ρ̃)[1 + α(1 + η0) + α2(1 + η0)
2] + α3ρ̃(1 + η0)

3

[1 + α(1 + η0)]2[1− ρ̃+ α(1 + η0)]2

c33(ρ̃) := η−α−20

(1− ρ̃)ρ̃2 + αρ̃2(1 + η0)[α(1 + η0)− ρ̃]

[1 + α(1 + η0)][1− ρ̃+ α(1 + η0)][1− 2ρ̃+ α(1 + η0)]

10



and the symmetric matrix D(ρ̃) has elements

d11(ρ̃) := η20c
2η0
ω

d12(ρ̃) = d13(ρ̃) = d14(ρ̃) := 0

d22(ρ̃) :=
α2(1 + η0)

2

[1 + α(1 + η0)]2[1 + 2α(1 + η0)]

d23(ρ̃) :=
α(1 + η0)[α(1 + η0)− ρ̃]

[1 + α(1 + η0)][1− ρ̃+ α(1 + η0)][1− ρ̃+ 2α(1 + η0)]

d33(ρ̃) :=
[α(1 + η0)− ρ̃]2

[1− ρ̃+ α(1 + η0)]2[1− 2ρ̃+ 2α(1 + η0)]

d24(ρ̃) := η0

(
1

[1 + 2α(1 + η0)]2
− 1

[1 + α(1 + η0)]3

)
d34(ρ̃) := η0

(
1

[1− ρ̃+ 2α(1 + η0)]2
− 1

[1 + α(1 + η0)]2[1− ρ̃+ α(1 + η0)]

)
d44(ρ̃) := η20

(
2

[1 + 2α(1 + η0)]3
− 1

[1 + α(1 + η0)]4

)
.

Note that if ρ̃ = ρ0 in (14), the mean of the limiting normal distribution is (−λη20c
η0
ω
c
ρ0
ω ξω−1
ρ0

, 0, 0)′.

Thus, the estimator η̂n is asymptotically unbiased in the sense that the mean of the limiting distribu-

tion is zero, whatever the value of λ. Obviously, if ρ̃ is not the true value, this property of unbiasedness

is lost. Nevertheless, despite the loss of asymptotic unbiasedness when fixing ρ̃ at a mis-specified value,

like e.g. -1, one has in the univariate context often observed that the resulting second order estimators

still have some bias-correcting effect and typically outperform estimators that are not corrected for

bias, both in terms of bias and mean squared error; see e.g. Gomes and Martins (2004), Feuerverger and

Hall (1999). A similar observation was made by Goegebeur and Guillou (2013) in the context of bias-

corrected estimation of η. Keep in mind that in Theorem 2, Z = η0c
η0
ω W (1/cω)−λη20c

η0
ω (cρ0ω ξω−1)/ρ0,

where W (1/cω) comes from Theorem A, and satisfies W (1/cω) ∼ N(0, 1).

Now we derive the asymptotic normality of the estimator p̂n. In first instance we consider the situation

where npn/m→ β ∈ (0, 1).

Theorem 3 Under the conditions of Theorem 1 and (11) with β ∈ (0, 1), we have

√
m

(
p̂n
pn
− 1

)
 W

(
1

cω

)
− lnβ

η0
Γ− 1− β−ρ̃

η0
∆ + λ

η0ξωc
ρ0
ω

ρ0
(β−ρ0 − β−ρ̃).

The result of Theorem 3 indicates that the tail probability estimator is asymptotically unbiased if one

uses the correct value for ρ. We now consider the case where npn/m → 0, corresponding to a more

extreme failure set. Let dn := m/(npn).

Theorem 4 Under the conditions of Theorem 1, and assuming additionally npn = o(m) and lnnpn =

o(
√
m) we have that

η0
√
m

ln dn

(
p̂n
pn
− 1

)
 Γ.

11



4 Simulation study

In this section, we illustrate the finite sample properties of our robust and bias-corrected estimator p̂n

through a simulation study. In order to make the dependence on the tuning parameter α explicit, we

use from now on the notation p̂n,α.

Note that model (2), under which our estimator has been constructed, is in fact a condition on the

copula function. Indeed

P (1− FX(X) < x, 1− FY (Y ) < y) = x+ y − 1 + C(1− x, 1− y).

As already mentioned, this condition is satisfied by many commonly used bivariate distribution func-

tions. In particular, we illustrate the behaviour of our estimator p̂n,α on the following two well-known

copulas:

• the Farlie Gumbel Morgenstern (FGM) copula function given by

C(x, y) = xy [1 + ζ(1− x)(1− y)] , (x, y) ∈ [0, 1]2, ζ ∈ [−1, 1].

We take two different values of ζ: ζ = 1 which implies η = 1/2, and ζ = −1 which leads to η = 1/3.

For the FGM copula τ = 1.

• the Frank copula function given by

C(x, y) = −1

2
log

[
1− (1− e−2x)(1− e−2y)

1− e−2

]
, (x, y) ∈ [0, 1]2.

In that case η = 1/2 and τ = 1.

In our simulation, the value of z is chosen such that the (theoretical) survival probability pz,ω̃ = P(X >

z, Y > ω̃z) is equal to 2%, 0.1% and 0.01%, see Table 1.

FGM Frank FGM

ζ = 1 ζ = −1 ζ = 1

ω = 0.45 10.486

ω = 0.5 9.488 4.461 9.828 44.219 140.92

ω = 0.55 8.579

pz,ω̃ 2% 0.1% 0.01%

Table 1: Value of z such that pz,ω̃ = P(X > z, Y > ω̃z) with ω = (1 + ω̃)−1.

The data are generated as follows. First, we simulate n pairs (Xi, Yi), i = 1, ..., n, independently from

a FGM copula with unit Fréchet marginals. Similarly, we simulate n pairs from a Frank copula. Each

12



time, we transform the margins into (approximately) unit Pareto using the empirical distribution

functions. This gives us Z̃ω,i, i = 1, ..., n. Finally, we minimize the empirical density power divergence

∆̂α.

In each setting (FGM or Frank copulas), we also contaminate the sample as follows:

• we simulate independently X̆j and Y̆j , j = 1, ..., n0 := bnεc, from a unit Fréchet distribution;

• all our above methodology is applied to our new n+n0 pairs (X1, Y1), ..., (Xn, Yn), (X̆1 +Xn,n, Y̆1 +

Yn,n), ..., (X̆n0+Xn,n, Y̆n0+Yn,n), where Xn,n and Yn,n are sample maxima of the X and Y observations,

respectively.

The percentage of contamination is set to ε = 0, 2, 5%, while n = 100, thus n0 = 0, 2, 5. The procedure

is repeated 210 = 1024 times since we used parallelization on a 8−core computer.

The left panel of Figure 1 represents the mean of our estimator p̂n,α of pz,1 = 2% and the right panel

the mean squared error of the ratio p̂n,α/pz,1 as a function of m for the FGM copula with ζ = 1 and

different values of α: 0 (solid line), 0.1 (dashed line), 0.5 (dotted line), 1 (dash-dotted line). Three

levels of contamination have been considered: ε = 0 (first row), 2% (second row), 5% (third row).

The parameter ρ is mis-specified to the value -1. Analogously, Figures 2 and 3 are built for the FGM

copula with ζ = −1 and the Frank copula, respectively, both in case pz,1 = 2%. Note that in these

figures, ω̃ is set to the value 1, i.e. ω to 1/2. Based on our simulations, we can draw the following

conclusions:

• on uncontaminated simulations, the choice α = 0 is the best one, whatever the distribution is. This

is expected, since in this no contamination framework, a procedure of robustification is not necessary.

However, if we keep α small, we preserve the good behaviour of the estimator, in terms of bias and

MSE;

• when contamination occurs, we clearly observe the superiority of our estimator p̂n,α for α > 0. In

terms of bias as well as MSE, α = 0.5 seems to be nearly always the best choice;

• as expected, increasing the percentage of contamination deteriorates the estimation procedure;

• the superiority of our estimator p̂n,α on p̂n,0 is stronger in case FGM with ζ = −1 compared to FGM

with ζ = 1 in terms of bias and MSE (see the different scale on the y−axis in Figures 1 and 2). This

can be explained by the fact that one disturbs the sample by outliers that have a different dependence

structure in Figure 2 where η = 1/3, whereas for Figure 1 where η = 1/2, the data are only disturbed

by outliers with a similar dependence structure as for the uncontaminated data;

• when a proper choice of α is used (all considered values of α in case of no contamination and α = 0.5

or 1 when contamination is present), the estimators are clearly very stable as a function of m, and stay

close to the true value of pz,1 for a wide range of values for m, which illustrates the bias-correction of

our procedure.
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Figure 1: Farlie Gumbel Morgenstern copula with ζ = 1: mean (left) of p̂n,α, MSE (right) of p̂n,α/pz,1

for n = 100, pz,1 = 2
n and different values of α: 0 (solid line), 0.1 (dashed line), 0.5 (dotted line)

and 1 (dash-dotted line), based on 1024 simulations; from the top to the bottom: no contamination,

contamination with ε = 2%, and ε = 5%. The parameter ρ is mis-specified to the value −1. The

horizontal reference line in the left panels of the figure corresponds to the true value of pz,1.
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Figure 2: Farlie Gumbel Morgenstern copula with ζ = −1: mean (left) of p̂n,α, MSE (right) of p̂n,α/pz,1

for n = 100, pz,1 = 2
n and different values of α: 0 (solid line), 0.1 (dashed line), 0.5 (dotted line) and

1 (dash-dotted line), based on 1024 simulations; from the top to the bottom: no contamination,

contamination with ε = 2%, and ε = 5%. The parameter ρ is mis-specified to the value −1. The

horizontal reference line in the left panels of the figure corresponds to the true value of pz,1.
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Figure 3: Frank copula: mean (left) of p̂n,α, MSE (right) of p̂n,α/pz,1 for n = 100, pz,1 = 2
n and different

values of α: 0 (solid line), 0.1 (dashed line), 0.5 (dotted line) and 1 (dash-dotted line), based on 1024

simulations; from the top to the bottom: no contamination, contamination with ε = 2%, and ε = 5%.

The parameter ρ is mis-specified to the value −1. The horizontal reference line in the left panels of

the figure corresponds to the true value of pz,1.
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We also run our simulation study for smaller values of pz,1 (out of the sample, see the right panel

in Table 1) and larger sample size. The results are displayed in Figures 4 to 6. To keep the length

of the paper reasonable, we only show the results for the FGM distribution with ζ = 1, which is, as

explained above, the more challenging case. From the simulation we deduce:

• when contamination occurs, the superiority of our estimator p̂n,α for α > 0 is again observed. In

terms of bias as well as MSE, α = 0.5 seems to be nearly always the best choice;

• the estimators are again very stable as a function of m illustrating the bias-correction of our proce-

dure;

• the MSEs are larger than in Figures 1-3 due to the fact that such estimation is much more challeng-

ing, since they are out of the sample.

As usual in the robust framework, we compute also the breakdown point of our estimator for contam-

ination as follows:

• we simulate 1024 samples of size n (100 and 1000) and take a percentage of contamination ε =

0, 1%, ..., 10%;

• for each value of ε and each sample size n, we compute our estimator p̂n,α of pz,1 = 2% and the

mean squared error of the ratio p̂n,α/pz,1 as a function of m;

• for a fixed value of m, the breakdown point is defined as the smallest value of ε such that the MSE

exceeds 1.

This breakdown value is reported in Table 2 for n = 100 and in Table 3 for n = 1000. Each ta-

ble contains three subtables corresponding to the three distributions under consideration (FGM with

ζ = 1,−1, and Frank) and for each distribution we consider four values of α (0, 0.1, 0.5 and 1). For

both sample sizes and whatever the distribution, the higher the value of α, the larger is the break-

down point. In particular, for α = 0.5 or 1, the breakdown point is particularly high illustrating the

robustness of our estimator p̂n,α, whereas for α = 0, the breakdown point is low.

In order to examine the accuracy of the asymptotic results in finite samples we calculated the coverage

probabilities of 95% confidence intervals for pn = 0.01% based on the result of Theorem 4, for the

Farlie Gumbel Morgenstern copula with ζ = 1 in case of a sample of size n = 1000. The results are

displayed in Table 4. Note that the coverage probabilities are generally somehow below 95% but can

be considered fairly good, especially if one takes into account that the use of the result of Theorem

4 is not so obvious in practice since in fact pn → 0 when n → ∞, together with some additional

assumptions on the involved sequences.

Furthermore, we consider the estimation of our probability pz,ω̃, but this time outside the diagonal,

that is for ω̃ 6= 1. Figure 7 illustrates the behaviour of our estimator p̂n,α in the uncontaminated case
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Figure 4: Farlie Gumbel Morgenstern copula with ζ = 1: mean (left) of p̂n,α, MSE (right) of p̂n,α/pz,1

for n = 100, pz,1 = 1
10n and different values of α: 0 (solid line), 0.1 (dashed line), 0.5 (dotted line)

and 1 (dash-dotted line), based on 1024 simulations; from the top to the bottom: no contamination,

contamination with ε = 2%, and ε = 5%. The parameter ρ is mis-specified to the value −1. The

horizontal reference line in the left panels of the figure corresponds to the true value of pz,1.
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Figure 5: Farlie Gumbel Morgenstern copula with ζ = 1: mean (left) of p̂n,α, MSE (right) of p̂n,α/pz,1

for n = 100, pz,1 = 1
100n and different values of α: 0 (solid line), 0.1 (dashed line), 0.5 (dotted line)

and 1 (dash-dotted line), based on 1024 simulations; from the top to the bottom: no contamination,

contamination with ε = 2%, and ε = 5%. The parameter ρ is mis-specified to the value −1. The

horizontal reference line in the left panels of the figure corresponds to the true value of pz,1.
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Figure 6: Farlie Gumbel Morgenstern copula with ζ = 1: mean (left) of p̂n,α, MSE (right) of p̂n,α/pz,1

for n = 1000, pz,1 = 1
10n and different values of α: 0 (solid line), 0.1 (dashed line), 0.5 (dotted line)

and 1 (dash-dotted line), based on 1024 simulations; from the top to the bottom: no contamination,

contamination with ε = 2%, and ε = 5%. The parameter ρ is mis-specified to the value −1. The

horizontal reference line in the left panels of the figure corresponds to the true value of pz,1.
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m 10 20 30 40 50 60 70 80 90

α = 0 3 3 2 2 2 2 3 3 3

FGM α = 0.1 3 3 3 3 3 3 3 4 4

ζ = 1 α = 0.5 3 4 5 5 6 6 7 7 7

α = 1 4 4 5 6 6 6 7 7 6

α = 0 2 1 1 1 1 1 1 1 1

FGM α = 0.1 2 2 2 2 2 2 2 3 3

ζ = −1 α = 0.5 3 3 4 5 6 7 9 10 > 10

α = 1 3 4 4 5 7 8 10 > 10 > 10

Frank

α = 0 3 3 3 3 3 3 3 3 3

α = 0.1 3 3 3 3 3 4 4 4 4

α = 0.5 3 4 5 5 6 7 7 8 8

α = 1 4 5 5 5 6 7 8 8 8

Table 2: Values of the breakdown points, respectively for FGM ζ = 1,−1, and Frank (n = 100).

m 100 200 300 400 500 600 700 800 900

α = 0 3 3 2 2 2 2 2 2 2

FGM α = 0.1 3 3 3 3 3 3 3 3 3

ζ = 1 α = 0.5 3 4 5 6 7 7 8 8 8

α = 1 3 5 6 7 8 9 9 8 6

α = 0 2 1 1 1 1 1 1 1 1

FGM α = 0.1 2 2 2 2 2 2 2 2 3

ζ = −1 α = 0.5 3 4 5 6 7 8 10 > 10 > 10

α = 1 3 4 5 6 7 9 > 10 > 10 > 10

Frank

α = 0 3 3 2 2 2 2 2 2 2

α = 0.1 3 3 3 3 3 3 3 3 3

α = 0.5 3 4 5 6 6 7 8 8 8

α = 1 3 4 6 7 8 9 9 9 9

Table 3: Values of the breakdown points, respectively for FGM ζ = 1,−1, and Frank (n = 1000).

for the FGM copula with ζ = 1, the same values of α, and two values of ω: 0.45 (first row) and 0.55

(second row). In both cases, we can observe the almost best behaviour of p̂n,0 compared to p̂n,α, α > 0,

as expected in this framework. However, the most notable point compared to Figure 1 is that the

estimation is much more difficult, with a quite stable bias appearing. This can be partly explained by

our Theorems 3 and 4. Indeed, if we look at the bias term of our estimator p̂n,α, we have to compute
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m α = 0 α = 0.1 α = 0.5 α = 1

200 0.9365 0.9287 0.9160 0.9111

400 0.9053 0.8975 0.8789 0.8750

600 0.7363 0.7109 0.6777 0.6562

800 0.9814 0.9854 0.9814 0.9756

Table 4: FGM ζ = 1: coverage probabilities of 95% confidence intervals for pn = 0.01% based on

Theorem 4 with n = 1000.

the expectations of Γ and ∆ which can be deduced from our Theorem 2. Straightforward computations

lead to an expectation for both variables of the form λξωc
ρ0
ω f(η0, ρ0, α) where the function f(η0, ρ0, α)

does not depend on ω. As the sense of variation of the function ω 7→ ξωc
ρ0
ω depends if ω is smaller or

larger than 1/2 for our three bivariate distribution functions, the estimation on the diagonal is simpler

than outside.

Finally, to illustrate that mis-specifying the parameter ρ is not crucial, we show in Figure 8 the

behaviour of our estimator p̂n,α for the FGM copula with ζ = 1 in the uncontaminated framework in

case ρ is replaced by the true ρ0 = −1/2. The same values of α have been used and ω is set to 1/2.

This figure is indeed very similar to the first row of Figure 1 where ρ is mis-specified to -1.

5 Illustration on an actuarial dataset

We consider an actuarial dataset published by the Australian regulator of insurance services which

consists of company-wide performance indicators for insurers operating in Australia between 2005

and 2010, see http://www.apra.gov.au/. This dataset contains n = 422 observations of (gross) loss

ratios X and expense ratios Y of 173 private insurance companies. Possible time dependency among

the data points is ignored in this paper.

Figures 9 (a) and (b) show the scatterplot of the original data and the data transformed into unit

Pareto margins, respectively. The Pareto quantile plot of the Z̃ 1
2
,i, i = 1, ..., n, is depicted in Figure 9

(c). The three points labeled with crosses correspond to possible outliers in the dataset. Their values

are given in Table 5. Since X and Y are ratios (in terms of gross written premium), we may reasonably

qualify these points (Xi, Yi � 1) as outliers. In the sequel, we will denote by X and Y the original

random variables, and by X̃ and Ỹ the random variables on the unit Pareto scale, as obtained from

the inverse probability integral transform.

Now, in order to detect if these three points listed in Table 5 are outliers or not, we consider the
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Figure 7: Farlie Gumbel Morgenstern copula with ζ = 1: mean (left) of p̂n,α, MSE (right) of p̂n,α/pz,ω̃

for n = 100, pz,1 = 2
n and different values of α: 0 (solid line), 0.1 (dashed line), 0.5 (dotted line) and 1

(dash-dotted line), based on 1024 simulations in the uncontaminated case. The first row corresponds

to ω = 0.45 and the second row to ω = 0.55, where ω = (1 + ω̃)−1. The parameter ρ is mis-specified

to the value −1. The horizontal reference line in the left panels of the figure corresponds to the true

value of pz,ω̃.

i Xi Yi Z̃ 1
2
,i

184 4108 33 423

101 55.133 12.067 105.75

21 14.52 3.72 70.5

Table 5: Three points labeled with crosses in Figure 9.

estimation of the probability P(X̃ > 10, Ỹ > 10), with respect to the presence or the removal of these

three points. The choices z = 10 and ω̃ = 1 can be justified by the fact that P(X̃ > 10, Ỹ > 10) is

a possible indicator of bankruptcy since it is unlikely that an insurer can deal with both high losses
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Figure 8: Farlie Gumbel Morgenstern copula with ζ = 1: mean (left) of p̂n,α, MSE (right) of p̂n,α/pz,1

for n = 100, pz,1 = 2
n and different values of α: 0 (solid line), 0.1 (dashed line), 0.5 (dotted line) and

1 (dash-dotted line), based on 1024 simulations in the uncontaminated case. The parameter ρ is set

to its true value ρ0 = −1/2. The horizontal reference line in the left panel of the figure corresponds

to the true value of pz,1.

and high expenses. Figure 10 shows the estimators p̂n,α as a function of m for different values of α: 0

(solid line), 0.1 (dashed line), 0.5 (dotted line) and 1 (dash-dotted line). In Figure 10 (a), we use the

whole dataset i ∈ N := {1, . . . , n} to estimate p̂n,α, whereas in Figure 10 (b) we use N \{184, 101, 21}.

Deleting these three points clearly lead to estimators close to each other, for m not too small, whatever

the value of α is. This corroborates our feeling that the three points are outliers. Indeed, as observed

in Figure 10 (a) the estimator p̂n,α differs considerably depending on the value of α which is expected

in the presence of outliers. As in the simulation study, the estimator p̂n,0.5 remains stable both in the

situation with and without outliers.

Finally, Figure 11 shows the median over m = 50, . . . , 80 of our probability estimates p̂n,α of P(X̃ >

z, Ỹ > z) for increasing values of z and different values of α. Again, two cases have been considered:

the whole dataset in panel (a) and the dataset without the three points in panel (b). The same con-

clusions follow, i.e. the estimators are close to each others if the three points are removed from the

initial dataset and p̂n,0.5 exhibits a more stable pattern than p̂n,α for other values of α in case of the

whole dataset. Both numerical illustrations of this section advocate α = 0.5 as a good value, in line

with the results of Section 4.
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Figure 9: Loss/expense ratios dataset: (a) Scatterplot of the original data; (b) Scatterplot of the data

transformed into unit Pareto margins; (c) Pareto quantile plot of the Z̃ 1
2
,i, i = 1, ..., n.
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Figure 10: Loss/expense ratios dataset: Estimator p̂n,α of P(X̃ > 10, Ỹ > 10) for different values of

α: 0 (solid line), 0.1 (dashed line), 0.5 (dotted line) and 1 (dash-dotted line). (a) Whole dataset; (b)

Dataset without the three points.
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Figure 11: Median of the estimator p̂n,α of P(X̃ > z, Ỹ > z) over m = 50, . . . , 80 for different values

of α: 0 (solid line), 0.1 (dashed line), 0.5 (dotted line) and 1 (dash-dotted line). (a) Whole dataset;

(b) Dataset without the three points.

Appendix

The key element of our proofs is the following theorem established in Dutang et al. (2014).

Theorem A (Dutang et al., 2014). Under the assumptions of Theorem 1, we have that there

exist suitable versions of Qn, a suitable process W (./cω), equal in distribution to a standard Brownian

motion, such that for all t0, ε > 0

sup
0<t≤t0

tη+
1
2+ε

∣∣∣∣∣∣∣
√
m

(
k

n
Qn(t)−

(
t

cω

)−η
)
− ηt−(η+1)cηωW

(
t

cω

)
+ λη2

(
t

cω

)−η
(
t
cω

)−ρ
ξω − 1

ρ

∣∣∣∣∣∣∣ = oP(1).

Proof of Theorem 2 We follow the lines of proof of Theorem 2 in Dierckx et al. (2013). We give

here only the adjustements needed. Define

Am,n(ρ̃) :=
√
m



k
nQn(1)− cη0ω

A
(1)
m,n

(
−α(1+η0)

η0

)
− 1

1+α(1+η0)

A
(1)
m,n

(
−α(1+η0)−ρ̃

η0

)
− 1

1−ρ̃+α(1+η0)

A
(2)
m,n

(
−α(1+η0)

η0

)
− η0

(1+α(1+η0))2


.

We can easily infer from Theorem 1 that Am,n(ρ̃) A(ρ̃) ∼ N4(λµ̃,D(ρ̃)). From the proof of Theorem
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2 in Dierckx et al. (2013), we deduce that

√
m


k
nQn(1)− cη0ω

η̂n − η0

δ̂ω,n

 C−1(ρ̃)B(ρ̃)A(ρ̃) ∼ N3(λC−1(ρ̃)B(ρ̃)µ̃,C−1(ρ̃)B(ρ̃)D(ρ̃)B′(ρ̃)C−1(ρ̃)).

Taking into account that
√
mδω,n

P−→ −λη20ξωc
ρ0
ω /ρ0, Theorem 2 follows.

Proof of Theorem 3 We use the following decomposition

ln
p̂n
pn

= ln

m
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(
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Z̃ω,n−m,n
; η̂n, δ̂ω,n, ρ̃

)
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)
− lnH

(
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; η0, δω,n, ρ0

)]
=: T1 + T2 + T3.

We will study the three terms separately. Let Zω,1,n ≤ . . . ≤ Zω,n,n denote the order statistics of a

random sample of size n from FZω .

Concerning T1. This term can be rewritten as

T1 = − ln
FZω(Z̃ω,n−m,n)

FZω(Zω,n−m,n)
− ln
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m
FZω(Zω,n−m,n)

)
=

1

η0
ln
Z̃ω,n−m,n
Zω,n−m,n

− ln
1 + 1

η0
δω,n

1 + 1
η0
δω(Zω,n−m,n)

− ln
( n
m
FZω(Zω,n−m,n)

)
=: T11 + T12 + T13.

From Theorem A, we easily infer that
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.

Thus, if we denote by QZω the quantile function of the variable Zω and if Uk,n denotes the k-th order

statistic of a random sample of n uniform (0, 1) random variables, we deduce that
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Recall now that
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and by Lemma 1
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Thus using the convergence
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we deduce that
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Combining Lemma 1 with the fact that |q1| is regularly varying with index τ and (3), we can infer

that
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the last equality coming from (16).

By an application of Taylor’s theorem we finally get that
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.
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We have now to study the second term, T12:
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Thus

T12 = oP

(
1√
m

)
.

Now the last term T13 can be treated as follows

T13
d
= − ln

( n
m
FZω (QZω(Un−m,n))

)
d
= −

( n
m
Um+1,n − 1

)
(1 + oP(1))

= − Ω√
m

+ oP

(
1√
m

)
by (17). Consequently

T1 =
1√
m
W

(
1

cω

)
+ oP

(
1√
m

)
. (18)

Concerning T2. Using (5), (11) and (16), we have the two convergences
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Concerning T3. Remark that
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Combining (18)-(20) with the fact that
√
mδω,n

P−→ −λη20ξωc
ρ0
ω /ρ0, our theorem follows.

Proof of Theorem 4 By straightforward calculations one obtains the following decomposition

ln
p̂n
pn

= ln

[
m

npn

(
zn

Zω,n−m,n

)−1/η̂n]
− 1

η̂n
ln
Zω,n−m,n

Z̃ω,n−m,n

− 1

η̂n
ln

1 + δ̂ω,n − δ̂ω,n

(
zn

Z̃ω,n−m,n

)ρ̃/η̂n
=: T4 + T5 + T6.

For T4, note that

p̃n :=
m

n

(
zn

Zω,n−m,n

)−1/η̂n
is in fact the well-known Weissman estimator (Weissman, 1978), and hence

T4 =
η̂n − η0
η̂n

ln dn +OP

(
1√
m

)
.

From the proof of Theorem 3 we have that T5 = OP(1/
√
m) (see the analysis of the term T11), and

T6 = OP(1/
√
m) (since δ̂ω,n = OP(1/

√
m) and zn/Z̃ω,n−m,n →∞). Collecting all the terms establishes

the result.

30



References

[1] Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C., 1998. Robust and efficient estimation by mini-

mizing a density power divergence. Biometrika, 85, 549–559.

[2] Beirlant, J., Dierckx, G., Guillou, A., 2011. Bias-reduced estimators for bivariate tail modelling.

Insurance: Mathematics and Economics, 49, 18–26.

[3] Beirlant, J., Joossens, E., Segers, J., 2009. Second-order refined peaks-over-threshold modelling

for heavy-tailed distributions. Journal of Statistical Planning and Inference, 139, 2800–2815.

[4] Beirlant, J., Vandewalle, B., 2002. Some comments on the estimation of a dependence index in

bivariate extreme value in statistics. Statistics and Probability Letters, 60, 265–278.

[5] Charpentier, A., Juri, A., 2006. Limiting dependence structures for tail events, with applications

to credit derivatives. Journal of Applied Probability, 43, 563–586.

[6] Ciuperca, G., Mercadier, C., 2010. Semi-parametric estimation for heavy tailed distributions.

Extremes, 13, 55–87.

[7] de Haan, L., de Ronde, J., 1998. Sea and wind: multivariate extremes at work. Extremes, 1, 7–45.

[8] Dekkers, A.L.M., Einmahl, J.H.J., de Haan, L., 1989. A moment estimator for the index of an

extreme-value distribution. Annals of Statistics, 17, 1833–1855.

[9] Dierckx, G., Goegebeur, Y., Guillou, A., 2013. An asymptotically unbiased minimum density

power divergence estimator for the Pareto-tail index. Journal of Multivariate Analysis, 121, 70–

86.

[10] Dierckx, G., Goegebeur, Y., Guillou, A., 2014. Local robust and asymptotically unbiased estima-

tion of conditional Pareto-type tails. Test, 23, 330–355.

[11] Draisma, G., Drees, H., Ferreira, A., de Haan, L., 2004. Bivariate tail estimation: dependence in

asymptotic independence. Bernoulli, 10, 251–280.

[12] Drees, H., 1998a. On smooth statistical tail functionals. Scandinavian Journal of Statistics, 25,

187–210.

[13] Drees, H., 1998b. A general class of estimators of the extreme value index. Journal of Statistical

Planning and Inference, 66, 95–112.

[14] Dutang, C., Goegebeur, Y., Guillou, A., 2014. Robust and bias-corrected estimation of the coef-

ficient of tail dependence. Insurance: Mathematics and Economics, 57, 46–57.

31



[15] Feuerverger, A., Hall, P., 1999. Estimating a tail exponent by modelling departure from a Pareto

distribution. Annals of Statistics, 27, 760–781.

[16] Fraga Alves, M.I., Gomes, M.I., de Haan, L., 2003. A new class of semi-parametric estimators of

the second order parameter. Portugaliae Mathematica, 60, 193–213.

[17] Goegebeur, Y., Beirlant, J., de Wet, T., 2010. Kernel estimators for the second order parameter

in extreme value statistics. Journal of Statistical Planning and Inference, 140, 2632–2652.

[18] Goegebeur, Y., Guillou, A., 2013. Asymptotically unbiased estimation of the coefficient of tail

dependence. Scandinavian Journal of Statistics, 40, 174–189.

[19] Gomes, M.I., Martins, M.J., 2004. Bias reduction and explicit semi-parametric estimation of the

tail index. Journal of Statistical Planning and Inference, 124, 361–378.

[20] Hill, B.M., 1975. A simple general approach to inference about the tail of a distribution. Annals

of Statistics, 3, 1163–1174.

[21] Kim, M., Lee, S., 2008. Estimation of a tail index based on minimum density power divergence.

Journal of Multivariate Analysis, 99, 2453–2471.

[22] Ledford, A.W., Tawn, J.A., 1997. Modelling dependence within joint tail regions. Journal of the

Royal Statistical Society Series B, 59, 475–499.

[23] Peng, L., 1999. Estimation of the coefficient of tail dependence in bivariate extremes. Statistics

and Probability Letters, 43, 399–409.

[24] Pickands, J., 1975. Statistical inference using extreme order statistics. Annals of Statistics, 3,

119–131.

[25] Ramos, A., Ledford, A.W., 2009. A new class of models for bivariate joint tails. Journal of the

Royal Statistical Society Series B, 71, 219–241.

[26] Weissman, I., 1978. Estimation of parameters and larger quantiles based on the k largest obser-

vations. Journal of the American Statistical Association, 73, 812–815.

32


