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A SURVEY OF SOME RECENT RESULTS ON RISK THEORY

Florin Avram1, Romain Biard2, Christophe Dutang3, Stéphane Loisel4 and
Landy Rabehasaina5

Abstract. The goal of this paper is to give recent results in risk theory presented at the Conference
"Journée MAS 2012" which took place in Clermont Ferrand. After a brief state of the art on ruin theory,
we explore some particular aspects and recent results. One presents matrix exponential approximations
of the ruin probability. Then we present asymptotics of the ruin probability based on mixing properties
of the claims distribution. Finally, the multivariate case, motivated by reinsurance, is presented and
some contemporary results (closed forms and asymptotics) are given.

Introduction, model, and known results
We consider the following problem motivated by actuarial issues. We suppose that the capital {Rt, t ≥ 0}

of an insurance company is a process that satisfies

Rt = R0 + ct−
Nt∑
i=1

Xi (1)

where parameters are interpreted as follows:
• c is the premium income rate,
• {Nt, t ≥ 0} is a counting process, typically a Poisson process with intensity λ > 0, which counts the

number of incoming claims,
• (Xi)i∈N is a family of i.i.d. non negative r.v.’s that model claim amounts,
• R0 ≥ 0 is the initial reserve of the insurance company.

When {Nt, t ≥ 0} is a general renewal process then (1) is referred to the Sparre Andersen model. Historically,
(1) was first studied when Nt was a simple Poisson process by Cramer and Lundberg, see [Lundberg, 1903]
and [Cramér, 1903]. Traditionally, independence is assumed between {Nt, t ≥ 0}, (Xi)i∈N and R0. The aim of
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this paper is two fold. In the present section we will review basic results that aim at determining the distribution
of the ruin time defined as

τ := inf{t ≥ 0| Rt < 0}, (2)
which consists in determining the following quantities:

• the cdf of τ , i.e. the probability of ruin before the horizon t for an initial reserve R0 = u: ψ(u, t) :=
Pu[τ ≤ t],

• the probability of eventual ruin starting from R0 = u: ψ(u) := Pu[τ < +∞] = limt→+∞ ψ(u, t).
Usually, determining ψ(u, t) turns out to be difficult, and one rather tries to find either explicit expressions of
ψ(u) or some asymptotic equivalent of ψ(u) as u→ +∞.

In Subsection 0.1 we recall basic results concerning the computation of the ruin probability and we give some
known estimates of ψ(u). In Subsection 0.2 we see how one can obtain results on the ruin probability when
there is some dependence between claims or between inter-occurrence times.

In Section 1, a review as well as some new methods and ideas are given in order to get accurate approximations
of ψ(u).

In Section 2, we consider a particular model where claims admit some kind of correlation and we obtain
asymptotics of ψ(u).

Finally, in Section 3 we consider an extension of the model (1) motivated by insurance-reinsurance, and study
the exit time out of quadrants of multivariate ruin processes.

0.1. Expressions and asymptotics of ψ(u, t) and ψ(u)
Explicit expressions of ψ(u) are available in the compound Poisson case, for some particular claim size

distributions, when the net profit condition is satisfied (i.e. when the insurer receives more premium than what
he has to pay in average). It can be proved that it satisfies the following integro-differential equation

0 = cψ′(u)− λψ(u) + λ

∫ ∞
0

ψ(u− z)dF (z) (3)

where F (.) denotes distribution of the claims. The most classical case is when claim amounts are exponentially
distributed. Then (3) can be reduced to a simple first order differential equation, and ψ(u) is of the form
Ae−Ru, with A and R positive. Explicit expressions of ψ(u) are also available when the claim size distribution
is a mixture of two exponential distributions, or more generally phase-type.

In the general light-tailed case, one knows that the ruin probability decays exponentially fast in the initial
reserve. The exact formula for exponential claim amounts becomes both a bound and an asymptotic formula
for the ruin probability: one has ψ(u) ≤ e−Ru for all u ≥ 0 and there exists some C > 0 such that

ψ(u) ∼ Ce−Ru

as u→ +∞. Coefficient R is called the Cramér-Lundberg adjustment coefficient, and corresponds to the positive
solution of an equation involving the moment generating function of the claim size distribution (see Theorem
1 for more details). Following the approach of [Gerber, 1974], it is possible to link the Cramér-Lundberg
adjustment coefficient R with the risk aversion coefficient a. If one measures a random claim amount X thanks
to indifference pricing method (which means that the insurer does not show any preference between not insuring
the risk and bearing the risk after receiving premium π), with exponential utility function u(x) = (1− e−ax)/a,
the insurer would ask for premium

π = 1
a

ln
(
E
(
eaX

))
.

[Gerber, 1974] notes that if the insurer determines the premium following this principle, then the Cramér-
Lundberg adjustment coefficient R is identical to the risk aversion parameter a. Conversely, if the insurer wants
the ruin probability to decrease exponentially fast, he can use indifference pricing principle with exponential
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utility function.

In the heavy-tailed case, ruin probabilities decay in a much slower way to zero and are typically power-tailed
in the most classical cases. Finite-time ruin probabilities also feature power tails in numerous models, due to
regular variation theory results. Let us recall two theorems that correspond to those two important cases.

Theorem 1 ( [Rolski et al., 1999]). In the Sparre Andersen model, (Nt)t≥0 is a renewal process where inter-
occurence times Ti are i.i.d. as T . Let us assume the net profit condition E(X) < cE(T ). If claim amounts
and inter-occurrence times have a m.g.f. MX ,MT , then there exists a constant C such that, for all u ≥ 0

ψ(u) ∼
u→+∞

Ce−γu,

where γ is the positive root of MX(r)MT (−rc) = 1.

Theorem 2 ( [Embrechts & Veraverbeke, 1982]). In the Sparre Andersen model, (Nt)t≥0 is a renewal process
where inter-occurrence times Ti are i.i.d. as T . Let us assume the net profit condition E(X) < cE(T ). Let
FX,0(x) =

∫ x
0 FX(y)dy/E(X). If FX and FX,0 are sub-exponential, i.e. for x→ +∞, F ∗2(x)/F (x)→ 2, then

ψ(u) ∼
u→+∞

1
cE(T )− E(X)

∫ +∞

u

FX(y)dy.

In particular, ψ(u) ∼
u→+∞

(k/u)α−1
, for X ∼ Pareto(k, α).

One common point between finite-time and infinite-time ruin probabilities is that it is much easier to address
them if the case where the initial reserve is zero. When u = 0, the infinite time ruin probability only depends
on the claim size distribution through its mathematical expectation. The finite-time ruin probability is easy
to compute thanks to Takacs’s ballot lemma argument. The ballot lemma gives for example the answer to the
following question: given that F. Hollande gets 51.62% of votes, if one picks up ballots randomly, what is the
probability that F. Hollande is always ahead of N. Sarkozy during the count? It also provides the answer to
this other question: with u = 0, given that the surplus at time T is x > 0, what is the probability that ruin
has not occurred? The ballot lemma enables one to use only distributions of the aggregate claim amount at the
terminal time when the initial surplus is zero.

In the case where u > 0, one has to condition on the last instant before time horizon, if it exists, when the
risk process is equal to zero. This enables one to get a recursive formula for ψ(u, t), equivalent to the so-called
Picard-Lefèvre formula. The latter (see [Picard & Lefèvre, 1997]) is based on Appell polynomials and the link
between the two approaches may be done thanks to pseudo-compound Poisson distributions (see [Rullière &
Loisel, 2004]).

0.2. Relaxing the independence assumption
There are many different ways to relax the independence assumption between the different risks involved in

the classical risk model. One may consider exchangeable claim amounts instead of i.i.d. ones. Some results
are given in this case in Section 3. Another practical way to do this is to allow for some dependence between
Xi and Ti, where Ti is the i-th inter-occurrence time, while keeping couples (Xi, Ti)i≥1 i.i.d.. In that case, as
ruin is the same as ruin at claim instants, one may study the random walk whose increments cXi−Ti are i.i.d.,
which is of course very useful. Some other works consider similar types of dependence between claim sizes and
occurrence times (see [Albrecher & Boxma, 2004], [Albrecher & Teugels, 2006] and [Boudreault et al, 2006]
among others). Another possibility is to allow for correlation between claim sizes, and to allow it to vary over
time, in particular in cases of correlation crises. During those phenomena (like in the 2007-08) crisis, risks that
are considered to be independent suddenly become extremely correlated. It is possible to obtain asymptotic
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expressions of the finite ruin probability with correlation crises, see [Biard et al., 2008]). One must not forget
another kind of dependence, that comes from the fact that insurance companies may react to large past claims
by increasing the premium income rate. This generates correlation between claim history and the premium
income rate which becomes stochastic. It is possible to study asymptotic behavior of ruin probabilities when
premium is computed according to Buhlmann-type credibility adjustments. One problem is that customers may
leave the company and choose another insurer if the price of their contract becomes too high in comparison
to other offered ones. A current research direction is to study the stability of insurance markets with strong
competition between insurers, under different sets of assumptions (see [Dutang et al., 2012b]).

1. Matrix exponential approximations of the ruin probability

1.1. Motivation
It happens often in risk theory, queueing theory, mathematical finance, and other applied probability branches,

that results are more explicit under the assumption that the density of the input data X1, X2, ..., XI ∈ R+ is a
combination of exponentials whose exponents have negative real part.

This suggests to approximate the empirical measure of the data by a "sparse sum of exponentials"

I−1
I∑
i=1

δXi(dt) ≈ (
K∑
k=0

wke
−µkt)dt, (4)

where the coefficients wi may possibly depend on t and be polynomials. Equivalently, this amounts to approx-
imating the empirical Laplace transform by a rational function

I−1
I∑
i=0

e−sXi ≈
∑n−1
i=0 ais

i∑n
i=0 bis

i
(5)

where a0,..., an−1, b0,..., bn are real coefficients. Furthermore, (4) is equivalent to assuming that the approxi-
mating density satisfies a linear ODE system with constant coefficients, or that it is representable in matrix
exponential form.

Definition 3. a) A continuous density on [0,∞) is called of phase-type PH(α, A) if

f(t) = αeAta, ∀t ≥ 0⇔ f̂(s) = α(sI −A)−1a, with (6)

(1) α a probability row vector, a = −A1, 1 a column vector of 1’s, and
(2) A a subgenerator matrix, satisfying Aij ≥ 0 for i 6= j, A1 ≤ 0.
b) When a representation (6) exists, but the components α, A,a are not as in part a) (and thus nonnegativity

may not hold), f(t) is called a matrix exponential function. If moreover f(t) ≥ 0,∀t ≥ 0, it is called a
matrix exponential density.

The problem of approximation by matrix exponential densities is a notoriously difficult classic of applied
probability, with roots in works like [Erlang, 1909,Cox, 1955]. It is our purpose here to recall its status quo,
including some recent applications to ruin theory [Avram et al., 2012,Dumitrescu et al., 2013].

Some historical landmarks. A general approach via the theory of Chebyshev systems is sketched in
the monographs [Krein & Nudelman, 1977,Karlin & Studden, 1966], but for a long while only the particular
case of Laguerre-Erlang-Tricomi-Weeks expansions (involving a polynomial multiplied by an exponential) was
applied in practice. The first specific results relating to general matrix exponential functions appeared only
recently, in works like [O’Cinneide, 1990,O’Cinneide, 1991], and in the system engineering literature – see for
example [Anderson et al., 1996]. For an excellent reference of the status-quo on phase-type representations, see
for example [Commault & Mocanu, 2003] and references therein.
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Risk theory approximations. In the context of risk and queueing theory, some well-known matrix-
exponential approximations of the ruin probability density f(.) are the Renyi, De Vylder, Gamma, and Whitt-
Ramsay approximations, obtained respectively by fitting one, two or three moments of the ruin time distribution
τ (see [Grandell, 2000] for a review).

In view of the scarcity of approximations fitting more than three moments, it is natural to ask the following
question.

What are the difficulties blocking the development of high order moments based approxima-
tions of ruin probabilities?

1.2. Padé approximations
It turns out that all the approximations previously mentioned as well as their natural generalizations to

higher order may be viewed as Padé or two-point Padé approximations of the Laplace transform of the ruin
probability [Avram et al., 2012] (given by the Pollaczek-Khinchine formula). As a consequence, implementations
are available in most symbolic computing systems (which exploit the fact that the conversion from moments
to a Padé approximation of the Laplace transform requires only solving a linear system). In Mathematica for
example, the command is PadeApproximant.

1.2.1. The admissibility of Padé approximations in probability
While in principle a great tool due to their easiness of implementation, and their convergence for large n, Padé

approximations (and generalizations, like multi-point Hermite-Padé interpolation) applied to Laplace transforms
in probability have the drawback of the difficulty to guarantee "admissible inverses", i.e. nonnegative densities
or non-increasing survival functions, when fitting three moments or more is desired (note that for fitting two
moments m1,m2 of a nonnegative random variable, the Gamma approximation

f(x) ∼ f̃(x) = (µx)α−1

Γ(α) µe−µx, α = m2
1

m2 −m2
1
, µ = m1

m2 −m2
1

provides an easy admissible solution).
The question of admissible inverses is related to the positive realization problem in systems engineering;

it is typically phrased in terms of a given rational Laplace transform, but we may equivalently suppose a given
inverse, i.e. a given combination of exponentials.

Recently, several constructive algorithms have been proposed, like for example the one implemented in the
CheckMEPositiveDensity command of the public domain package BUTools.

It is still an open problem to obtain minimal order representations and we will illustrate the difficulties
involved in the next section by an example, restricting to the easier case of real exponents (which brings us to
the realm of Chebyshev systems, i.e. systems for which combinations of n terms may have at most n− 1 roots).

1.3. Problem 1: The nonnegativity of combinations of real exponentials
We have to find conditions on the real weights wk, k = 0, 1, ..., d in terms of the given "exponents/frequencies"

0 < µ0 < µ1 < ... < µd so that the sum of exponentials with distinct exponents

f(t) =
d∑
k=0

wke
−µkt

is nonnegative on [0,∞). Putting x = e(−µ1+µ0)t ∈ [0, 1], one may rewrite this as

f(t)eµ0t = w0 +
d∑
k=1

wkx
γk , 1 = γ1 < γ2 < ... < γd,
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(and suppose w.l.o.g. w0 = 1). This may therefore be also viewed as a problem of nonnegativity of Müntz
polynomials on [0, 1].

One case in which nonnegativity is automatic is when one has obtained somehow a phase-type representation,
but this is by no means an easy task.

To understand the difficulties involved, it is useful to consider an elementary example with three exponentials,
where elementary calculus suffices [Dehon & Latouche, 1982, Horv et al., 2009] (for two exponentials, the
nonnegativity of f̃(0) and nonnegativity of the coefficient of the asymptotically dominant exponent are clearly
necessary and sufficient).

Example 4. Consider the following example due to Harris [Harris et al., 1992] (see also [Fackrell, 2003, Ch.
5.4])

F̄ (t) = 2e−t − 3e−2t + 2e−3t ⇔

f(t) = 2e−t − 6e−2t + 6e−3t = 6e−t(1
3 − e

−t + e−2t)

This is admissible, since the minimum of g(t) = 1
3 − e

−t + e−2t, obtained when e−t∗ = 1
2 , is g(t∗) = 1

12 > 0.
Such explicit computations are impossible with more than three exponents; it becomes then interesting to look

for phase-type representations
f(t) = αetAa, a = (−A)1

with A a Markovian generating matrix (this is trivial here, with A diagonal) and with α a probability vector
(the existence of such a pair (α, A) immediately implies positivity).

(1) Because of the negative middle coefficient, our function is not "hyperexponential" (it is not phase-type
representable by a diagonal matrix).

(2) The next thing to look for is a Coxian (ordered, bidiagonal) representations of order three, which may
be obtained by a Newton/Cox partial fractions decomposition of the Laplace transform

f∗(s) =
2
(
s2 + 2s + 3

)
(s + 1)(s + 2)(s + 3) = 2

3
6

(s + 1)(s + 2)(s + 3) − 1
3

6
(s + 2)(s + 3) + 2

3
3

s + 3 .

This yields a representation with

A = bidiag(−1,−2,−3) =

 −1 1 0
0 −2 2
0 0 −3


with nonpositive "Coxian coordinates"

(α1, α2, α3) = (2/3,−1/3, 2/3),

implying that f(t) is not representable as a Coxian density of order 3.
(3) When A has real eigenvalues, if a phase-type representation exists, it is always possible to find a Coxian

one [O’Cinneide, 1990], possibly of high order. A systematic way to detect the order is to look for
"Erlang majorizing extensions"

λe : EmB =

A a 0
0 −y y
0 0 −y

 (7)

obtained by adding a single Erlang block En(y) of "appropriate size n" and frequency y (for convenience
we represented an Erlang block E2(y)).
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One such representation of order 4 is:

B4 = B =


−1 1 0 0
0 −2 2 0
0 0 −3 3
0 0 0 −4

 (8)

where the "extra eigenvalue" −4 may be obtained by the "extension formula" [Avram et al., 2012]:

y = 1
2

(
µ3 + µ2 +

√
(µ3 − µ2)2 + 4µ1µ2

α1

α3

)
,

Once a "Markovian majorizing" matrix B is specified, it is easy to compute new "extended Coxian
coordinates" by

β = αP = (1/2, 0, 0, 1/2).
Since these are nonnegative, B4 is a minimal order positive representation

The command CheckMEPositiveDensity of BUTools only obtains here a representation of order 5, obtained
by adding an Erlang(2) of frequency 6, illustrating the difficulty of the problem and the fact that further imple-
mentation improvements are possible.

Let us note that in risk theory it would furthermore be useful to have admissible symbolic approximations
depending on important parameters like ρ := ψ(0) = λm1

c , where m1 is the first moment of the claims.
At second order, such approximations are not hard to obtain, as illustrated by the following new approxima-

tion for the ruin probabilities of the perturbed model from [Avram et al., 2012].

1.4. Second order approximations for the ruin probabilities of the Cramér Lundberg pro-
cess with Brownian perturbation

Let us consider the ruin process (1), to which a Brownian Motion {σB(t), t ≥ 0} is added :

Rt = R0 + ct−
Nt∑
i=1

Xi + σB(t)

The Laplace exponent of ruin process is given by

κ(s) = ps+ κ2

2 s
2 +

∞∑
k=3

(−s)k λmk

k! , (9)

where mk are the moments of the claims, κ2 = λm2 + σ2, and p = c− λm1.
Now we have two further unknowns of interest, the probability of "creeping ruin" ψd (due to the diffusion)

and that of "ruin by jump" ψj (due to a claim). Their respective Laplace transforms satisfy

ψ∗d(s) = σ2/2
κ′(0)ϕ(s) = σ2/2

p
ϕ(s), ψ∗j (s) = 1

s
− ϕ(s)

s
− σ2/2

p
ϕ(s) (10)

where ϕ(s) := 1− sψ∗(s).
We would like to produce Padé (n − 1, n) approximations, where the order n is defined in (5). The Padé

(0, 1) approximations are unreasonable, since they cannot satisfy the boundary conditions ψd(0) = 1, ψj(0) = 0.
To satisfy those as well as the equation

ψ∗d(s) = σ2/2
p

ϕ(s)⇔ 1− sψ∗j (s) = (s+ 2p
σ2 )ψ∗d(s) (11)
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which follows from (10), we must use at least a Padé (1, 2) approximation.

Theorem 5. Consider the exponential approximation

ψd(x) = ad − µ1

µ2 − µ1
e−µ1x + µ2 − ad

µ2 − µ1
e−µ2x (12)

ψj(x) = aj
µ2 − µ1

[e−µ1x − e−µ2x], (13)

for the "creeping ruin" and "ruin by jump", which satisfy ψd(0) = 1, ψj(0) = 0. Then, by fitting the first two
moments of the aggregate loss L, one is led to the following admissible approximation:

ad = 3m2

m3
, aj = ad

λm2

σ2 = 3λm2
2

σ2m3
. (14)

and −µ1 and −µ2 the negative roots of s2 + (ad + aj + 2p
σ2 )s+ ad

2p
σ2 = 0 (whose discriminant is non-negative).

Proof: ψ∗(s), ψ∗d(s) = s+ad
s2+b1s+b0 are quotients of monic polynomials (to satisfy lims→∞ sψ∗d(s) = ψd(0) = 1),

with three free coefficients, but the second condition in (11) imposes one more condition b0 = 2p
σ2 ad (so that

ψ∗j (s) = aj
s2+b1s+ad 2p

σ2
), leaving only two free coefficients. Finally, fitting the first two coefficients around 0 of

ϕ(s) = 1− sψ∗(s) = 2p
σ2ψ

∗
d(s) ≈ 2p

σ2
s+ ad

s2 + (ad + aj + 2p
σ2 )s+ ad

2p
σ2

(15)

yields: {
σ2

2p (1 + aj
ad

) = λm2+σ2

2p ⇔ aj
ad

= λm2
σ2

σ2

2p
aj
a2
d

= λm3
6p

with solution (14). Then, assuming µ1 < µ2, Laplace inversion yields (12).
Moreover, both ψj and ψd are admissible. Indeed, this is obvious for ψj , since its initial value and its

dominant coefficient aj
µ2−µ1

are non-negative.
The same is true for ψd; indeed, we may check that its dominant coefficient is non-negative, i.e. that µ1 ≤ ad,

by noting that s2 + (ad+aj + 2p/σ2)s+ad2p/σ2 is negative at s = −ad (since (ad)2 + (ad+aj + 2p/σ2)(−ad) +
ad2p/σ2 = −adaj < 0, with ad and aj being positive). Therefore, µ1 < ad < µ2.

Remark 6. It is easy to check that this approximation is exact for exponential claims. Indeed, in that case the
density transform in the parametrization (15) is:

ϕ(s) = p

κ(s) = 1
1 + σ2

2p s+ λ
p s

m1
s+m−1

1

= s+m−1
1

(s+m−1
1 )(1 + σ2

2p s) + λ
p sm1

= s+m−1
1

σ2

2p s
2 + s(λpm1 + σ2

2pm
−1
1 + 1) +m−1

1
= 2p
σ2

s+m−1
1

s2 + s( 2λm1
σ2 +m−1

1 + 2p
σ2 ) +m−1

1
2p
σ2

with ad = 1/m1, aj = 2λm1/σ
2, and it is easy to check that this coincides with our approximation (14), in the

case of exponential claims.

1.5. Problem 2 : Moments fitting and Hermite-Padé interpolation
The matrix exponential/rational Laplace family may be viewed as an attempt to deal with the incomplete

information inherent in large data sets via a finite "ergonomic" parametrization. For summarizing the data, one
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may use the empirical moments m1,m2, ...,mK (which are the coefficients of the power series expansion of the
Laplace transform around 0), or, more generally, a finite number of values of the empirical Laplace transform
f∗(0), f∗(s1), ..., f∗(sK), sampled at "well-chosen" points like the Chebyshev points.

One fundamental open problem in the field, related to and generalizing the venerable Chebyshev-Markov-
Stieltjes moments problem, is to produce minimal or quasi–minimal matrix exponential approximations fitting
exactly or approximatively a finite set of moments/values of the Laplace transform of a density. This is quite
challenging already in the case of moments fitting, and currently only three moments exact fitting formulas
are available [Bobbio et al., 2005] (for more moments there is also an elegant approach of Johnson and Taaffe
[Johnson & Taaffe, 1989], which unfortunately produces approximations of about twice the minimal order in
the case of three moments fitting).

We end by mentioning a new numeric approach for obtaining non-negativity certificates, based on upper and
lower bounding of the exponentials by polynomials [Dumitrescu et al., 2013]. This approach allows optimizing
matrix exponential approximations with respect to arbitrary convex objectives, and may turn out useful in
investigating the open problems above.

2. On an asymptotic rule A+B/u for ultimate ruin probabilities under
dependence by mixing

In this section, we focus on asymptotics of the ultimate ruin probability. For the Sparre Andersen model
with light-tailed claim amounts, ψ(u) ∼ Ce−γu as u → ∞, see Theorem 2. With heavy-tailed claim amounts,
the ruin probability is in the class of Hall of order 1 since ψ(u) ∼ C/uα as u→∞, see Theorem 1. In a recent
paper, [Albrecher et al., 2011] discussed the ruin probability when there is dependence by mixing in the claim
amounts (Xi)i≥1. They derived an asymptotic formula ψ(u) ∼ A + B/u as u → +∞ for Pareto correlated
claims or inter-arrival times. We consider the same insurance context where the claim amounts (Xi)i≥1 or the
claim waiting times (Ti)i≥1 are dependent through a mixing model. Such a form of dependence can translate
some uncertainty on the model parameters due to incomplete available information. Another possible situation
is when the model parameters are not univocally fixed but depend on heterogeneous socio-economic factors.

The free surplus of an insurance company at time t is modeled by (1), where claim amounts (Xi)i≥1 are
still independent from the claim arrival process (Nt)t≥0. This time, however, we assume that the Xi’s are
i.i.d. random variables conditionally on a latent random variable Θ (given Θ = θ, they are distributed as
(X|Θ = θ)). The variable Θ can be used to translate, for example, the uncertainty in the claim amounts
or their heterogeneity. In practice, we consider a continuous distribution for Θ, otherwise in case of discrete
distribution, the ruin probability (16) decreases exponentially. Ruin occurs as soon as the surplus process
becomes negative. Given Θ = θ, the ruin probability is thus defined as ψ(u, θ) = P (∃t > 0 : Ut < 0|U0 =
u,Θ = θ). For exponentially distributed claims, i.e. when (X|Θ = θ) ∼ E(θ), one gets the well-known formula
ψ(u, θ) = min

(
λ
θce
−u(θ−λ/c), 1

)
, where min (. . .) < 1 under the net profit condition θ > λ/c ≡ θ0. Integrating

over the parameter θ yields for the (global) ruin probability

ψ(u) = FΘ(θ0) +
∫ ∞
θ0

θ0

θ
e−u(θ−θ0)dFΘ(θ), (16)

where FΘ is the distribution function of Θ. Note that (16) can also be interpreted from a regulator point-of-view.
In a given territory and for a given policy, a regulator supervises a set of insurers facing exponentially distributed
claim severities, but each insurer has its own parameters. In such a situation, the constant term FΘ(θ0) is the
proportion of insurers that will bankrupt irrespective of their initial capital u, while the u-dependent term
I(u, θ0) is the proportion of insurers that will bankrupt with a capital u. The distribution Θ is thus the
heterogeneity among insurers.

In this context, the dependence between claim amounts is given by Property 2.1 of [Albrecher et al., 2011].



ESAIM: PROCEEDINGS 331

Proposition 7. When claim sizes fulfill for each n ≥ 1, P (X1 > x1, . . . , Xn > xn|Θ = θ) =
∏n
i=1 exp(−θxi),

then they have a dependence structure due to an Archimedean survival copula with generator φ = L−1
Θ , the

inverse Laplace transform of Θ.

We now examine two particular distributions for the latent variable Θ that were reported in [Albrecher et al.,
2011]. Firstly, we consider for Θ a gamma distribution Ga(α, λ) with density fΘ(θ) = λαθα−1e−λθ/Γ(α), where
Γ(.) denotes the gamma function; e.g. [Olver et al, 2010.]. The resulting claim amount X has a Pareto type II
distribution with parameters α and λ, whose survival function is P (X > x) = 1/ (1 + x/λ)α for x ≥ 0. >From
(16), we then obtain the following known result.

Proposition 8. In the continuous time model with (X|Θ = θ) ∼ E(θ) and Θ ∼ Ga(α, λ),

ψ(u) = γ(α, θ0λ)
Γ(α) + λαθ0

Γ(α)
Γ(α− 1, θ0(λ+ u))

(λ+ u)α−1 eθ0u, (17)

provided α > 1.

Secondly, consider for Θ a stable 1/2 distribution (also called a Lévy distribution Le(α)) with density (as
defined in [Albrecher et al., 2011]) fΘ(θ) = αe−α

2/4θ/(2
√
πθ3). The resulting claim distribution is a Weibull

distribution with parameters 1/2 and 1/α2 whose tail distribution is P (X > x) = e−α
√
x for x ≥ 0. Using

the generalized incomplete upper gamma function (see e.g. [Chaudry & Zubair, 2012]) leads us to the following
known expression for the ruin probability:

Proposition 9. In the continuous time model with (X|Θ = θ) ∼ E(θ) and Θ ∼ Le(α),

ψ(u) = erfc
(

α

2
√
θ0

)
+ θ0

√
u

α
euθ0

[(
1− 1

α
√
u

)
eα
√
uerfc (d+)

+
(

1 + 1
α
√
u

)
e−α

√
uerfc (d−)− 2√

πuθ0
e−uθ0−α

2/(4θ0)
]
,

(18)

where d+ =
√
uθ0 + α/(2

√
θ0), d− =

√
uθ0 − α/(2

√
θ0) and erfc(.) denotes the complementary error function;

e.g. [Olver et al, 2010.].

These two propositions raise the question of how decrease the ruin probability (16) as a function of u. In
Proposition 8, one can hope to derive an asymptotic using an asymptotic expansion of the incomplete beta
function. But in Proposition 9, we cannot obtain a valid expansion by using an asymptotic of the incomplete
upper gamma function. Interestingly, a general result can be derived with (16) for a large class of distribution
for Θ.

Theorem 10. Consider the risk model with (X|Θ = θ) ∼ E(θ). Let θ0 = λ/c. If Θ has a continuous distribution
such that fΘ is Ck−1 almost everywhere on [θ0,+∞[ and f (k)

Θ is Lebesgue integrable on [θ0,+∞[ for k ∈ N?,
then

ψ(u) = FΘ(θ0) +
k−1∑
i=0

h(i)(0)
ui+1 + o

(
1
uk

)
where h(x) = θ0fΘ(x+ θ0)/(x+ θ0), so that

h(i)(0) =
i∑

j=0
(−1)j i!

(i− j)!θj0
f

(i−j)
Θ (θ0).

Remark 11. In the previous theorem with k = 1 in item (ii), we get the A+B/u rule ψ(u) = FΘ(θ0)+ fΘ(θ0)
u +

o
( 1
u

)
, when fΘ is almost everywhere differentiable on [θ0,+∞[ and f ′Θ being a Lebesgue-integrable.
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Remark 12. A similar approach can be done when mixing the waiting times (T1, T2, . . . ). Using [Albrecher
et al., 2011]’s Section 3, we have

ψ(u) = F̄Λ(λ0) +
∫ λ0

0
ψu(λ)dFΛ(λ), with ψu(λ) = λ

λ0
e−u/θ(1−λ/λ0), λ0 = θc.

Under the same assumptions as Theorem 10, we also obtain the A+B/u rule. We give here only the first terms
of the series expansion assuming that Λ has a continuous distribution

ψ(u) = F̄Λ(λ0) + 1
cu
fΛ(λ0) + o

(
1
u

)
.

Remark 13. In the discrete time framework, similar results can be derived when claim amounts have a zero-
modified geometric distribution. See [Dutang et al., 2012a] for details.

For the present model by mixing, the survival function is the following Stieltjes integral P (X > x) =∫ +∞
0 e−θxdFΘ(θ), which is the Laplace transform of the random variable Θ. Here too, one can hope that similar
arguments as in Theorems 10 work.

Proposition 14. Let us consider the continuous time framework and assume Θ has a continuous distribution
with density fΘ. If fΘ is almost everywhere differentiable on R+ with f ′Θ being a Lebesgue-integrable, then
for x > 0, P (X > x) = fΘ(0)

x + o
( 1
x

)
. If fΘ is C∞ in the neighborhood of the origin, then for x > 0,

P (X > x) ∼
x→+∞

∑+∞
k=0

f
(k)
Θ (0)
xk+1 .

Remark 15. The reason why the behavior of the integrand function fΘ at the origin matters is explained by
Laplace’s method, which studies the asymptotics of the following integral I(x) =

∫ b
a
exp(t)q(t)dt, where p and q

are continuous functions around a, the point assumed to be the minimum of p in [a, b[. In our case, p(t) = t,
hence the minimum of the exponent on R+ is attained at the origin. See e.g. 2.3(iii) of [Olver et al, 2010.].

In this section, we present a class of dependent risk models, where the dependence is based on a mixing
approach. We validate the A + B/u rule suggested in [Albrecher et al., 2011] for the ruin probability, which
applies both when the claim amounts or the waiting times are correlated. Generally, even when some dependence
is added in the claim arrival process, e.g., a Markovian setting, the decreasing shape of the ruin probability
remains unchanged compared to the corresponding independent case: either exponential e−γu or polynomial
u−α. Hence, our particular mixing approach, leading to A+B/u asymptotics, significantly worsens the situation
for the insurer.

3. Multivariate ruin theory
Ruin theory in dimension N ≥ 2 is mainly motivated by the following problem: insurers often need the use

of reinsurers as a means of safety to prevent them from extreme scenarions such as natural disasters, major
earthquakes or unusually large (centenial) floods. A natural extension of (1) is to add one or more risk processes,
i.e. to consider {

R1
t = R1

0 + c1t− S1
t

R2
t = R2

0 + c2t− S2
t

(19)

with deterministic initial reserves R1
0 = x1 and R2

0 = x2. {R1
t , t ≥ 0} and {R2

t , t ≥ 0} may be seen as the
insurer and reinsurer’s capital at time t. Processes {Sit , t ≥ 0}, i = 1, 2 are correlated jump processes. Similarly
to ruin time τ defined in (2), we let

τor := inf{t ≥ 0| R1
t < 0 or R2

t < 0},
τsim := inf{t ≥ 0| R1

t < 0 and R2
t < 0},
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respectively the ruin time of one of the processes, and of both processes. Likewise we let the probabilities of
eventual ruin starting from (R1

0, R
2
0) = (x1, x2)

ψor(x1, x2, T ) := P
(
τor ≤ T | (R1

0, R
2
0) = (x1, x2)

)
,

ψsim(x1, x2, T ) := P
(
τsim ≤ T | (R1

0, R
2
0) = (x1, x2)

)
. (20)

The main difficulty comes from the fact that, because of correlation between the jump processes, processes
{R1

t , t ≥ 0} and {R2
t , t ≥ 0} are correlated. For the general model, obtaining precise results concerning ruin

probabilities (20) is difficult without imposing a particular structure on S1
t and S2

t . In the following, two kinds
of correlation will be studied:

• The case where S1
t = αs(t), S2

t = (1 − α)s(t) for some α ∈ (0, 1) and some compound Poisson process
{s(t), t ≥ 0}. This corresponds to the situation where a fixed fraction of incoming claims are shared
between the insurer and the reinsurer, also known as quota share.
• The case where S1

t and S2
t are issued from independent processes (again for example compound Poisson

processes) and independent claims occurring according to a common Poisson process. This situation
corresponds to "common shocks" in the bivariate process.

3.1. Closed expressions
3.1.1. Integro differential equation

As in the one dimensional case, a first approach for determining expressions of ψor or ψsim is to derive
an integro differential equation akin to (3). Letting ψ̂or(x1, x2, δ) = E(x1,x2)(e−δτor1{τor<+∞}) the Laplace
transform of the ruin probability, this here takes the following form when claims arrive according to a Poisson
process with intensity λ:

0 = c1∂x1 ψ̂or(x1, x2, δ) + c2∂x2 ψ̂or(x1, x2, δ)

− (λ+ δ)ψ̂or(x1, x2, δ) + λ

∫ +∞

0

∫ +∞

0
ψ̂or(x1 − z1, x2 − z2, δ)dF (z1, z2), (21)

accompanied by certain boundary conditions, and where F (., .) is the bivariate claims distribution. One has
the same equation for ψsim, with different boundary conditions. We note that the equation corresponding to
the probability of eventual ruin is obtained by taking δ = 0 in (21).

Deriving (21) is often tedious and must be done with care, see e.g. Theorem 1 of [Avram et al, 2008b],
Theorem 2.1 of [Dang et al, 2009] or Theorem 2.1 of [Hu & Jiang, 2013], the latter for a model with interest
rate. However the technical but major issues that arise are usually the following:

• One implicitly has to prove some differentiability properties for ψ̂or(., ., δ) on (0,+∞)2.
• Proper boundary conditions must be exhibited that completely charactarizes ψ̂or(., ., δ), i.e. such that
uniqueness of the solution to (21) holds. Natural boundary conditions are the values for ψ̂or(x1, x2, δ)
as x1 or x2 (possibly both) tend to infinity, however this is not the only option (see again Theorem 2.1
of [Hu & Jiang, 2013]).

Having addressed these issues, one then needs to solve Equation (21). Again, this depends a lot on the form of
the claim processes {S1

t , t ≥ 0} and {S2
t , t ≥ 0}. Dang et al [Dang et al, 2009] opt for a recursive approach

which is numerically interesting. Gong et al [Gong et al, 2012] also use a recursive approach, however without
having to resort to use Equation (21).

3.1.2. Geometrical considerations and reduction to simpler problems
Another approach consists in reducing the two dimensional problem into several one dimensional first passage

problems. This consists in exhibiting subsets of domain (0,+∞)2 that are transient or absorbing for process
{(R1

t , R
2
t ), t ≥ 0}. The problem is then about finding



334 ESAIM: PROCEEDINGS

• the ruin time distribution starting from the absorbing set,
• the ruin time distribution starting from the transient set, conditioned not to enter the absorbing set in
the meantime,

• the distribution of the entrance time into the absorbing set, given that no ruin occurs in the meantime.
Obtaining the three previous distributions may not look straightforward at first sight. However, things are
less nasty than they seem, as the point is to find the absorbing and transient sets such that obtaining these
distributions amount to solving easier one dimensional first passage problems. The quota share policy seems to
be the most favorable situation when using this approach. In [Avram et al, 2008a,Avram et al, 2008b,Badescu
et al, 2011], these sets are two cones. In [Rabehasaina, 2009], these sets are two cones and one strip.

3.2. Asymptotics
As previously said, obtaining closed forms for ψor or ψsim is not always possible. Not only that, but

expressions are sometimes hardly tractable and cannot be exploited numerically. An alternative is then to find
the qualitative behavior of these quantities as the initial reserves x1 and x2 tend to infinity along a certain
direction. The nature of the asymptotics depends a lot on the nature of the distribution of the claims. Two
classes seem to stand out.

3.2.1. Heavy tailed distributions
In the case where claims admit a heavy tailed distribution then ruin probability of one of the branches ψor

verifies some asymptotics of the form

ψor(x1, x2, T ) ∝ T F̄ (x1), x1, x2 → +∞,

for some heavy tailed survival function F̄T (.). We may cite two recent papers on this aspect that deal with
the ruin probabilities in finite time. Biard considers the case of "common shocks" claims with regularly varying
tailed claims distributions having a certain dependence structure:

Theorem 16 ( [Biard, 2011]). Let us suppose that (S1
t , S

2
t ) =

∑Nt
i=1(X1

i , X
2
i ) where (X1

i , X
2
i )i∈N is i.i.d. of

distribution Xi = IiW 0 + (1 − Ii)W i for some independent r.v. I1, I2, W j, j = 0, 1, 2. I1 and I2 are B(p)
distributed. The W i, i = 0, 1, 2, have regularly varying distribution with index α. {Nt, t ≥ 0} is a Poisson
process with intensity λ. We have

ψor(x1, βx1, T ) ∼ Cp2αλT F̄ (x1), x1 →∞,

where Cp is an explicit constant depending only on p.

Recently, Hu and Jiang consider the case of quota share reinsurance with regularly varying distribution tailed
claims and interest force:

Theorem 17 ( [Hu & Jiang, 2013]). Let us suppose that (S1
t , S

2
t ) =

(∑Nt
i=1 σi

)
.(δ1, δ2) with δ1 + δ2 = 1 and

(σk)k∈N i.i.d. claims having regularly varying tail with index α. {Nt, t ≥ 0} is a Poisson process with intensity
λ. Moreover, we suppose that risk processes are subject to a same interest rate r > 0. Then

ψor(x1, x2, T ) ∼ λT F̄T (x2), x2 ≥ δ2x1/δ1 → +∞,

where F̄T (x) := 1
T

∫ T
0 P (e−ruσ1 > x)du.

Note that the previous theorem deals with asymptotics with x2 ≥ δ2x1/δ1. When x2 < δ2x1/δ1, the situation
is much easier as, by a geometrical argument recalled in [Hu & Jiang, 2013] (stemming from [Avram et al, 2008a])
a reduction to a one dimension process can be made.
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3.2.2. Light tailed distributions
In that case, decay of the ruin probability is morally exponential or Weibull-type. Avram et al consider in

(19) general spectrally negative Lévy processes for the risk processes R1
t and R2

t , and establish the following
asymptotics:

Theorem 18 ( [Avram et al, 2008a]).

ψor(x1, βx1) ∼ C1e
−γ1x1 + C2e

−γ2βx1 , x1 →∞,

where Ci, i = 1, 2, are explicit constants and γi, i = 1, 2, verify the Lundberg equation 1 = E
(
e−γi(R

i
1−R

i
0)
)
.

[Rabehasaina, 2012] also gives asymptotics of the form

1
x2−2H

1
lnψor(x1, x2), 1

x2−2H
1

lnψsim(x1, x2) ∼ −C∗, x1 → +∞, x2/x1 = β,

for a model featuring a mix of claims occuring according to a compound Poisson process with light tailed claims
and fractional brownian motion with Hurst parameter H ∈ (1/2, 1).
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