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Abstract: 

Price elasticity studies analyze how customers react to price changes. In this paper, 

we focus on their effect on the renewal of non-life insurance contracts. Every year insurers 

face the recurring question of adjusting premiums. Where is the trade off between 

increasing premium to favour higher projected profit margins and decreasing premiums to 

obtain a greater market share? Regression models are used to explore the triangular 

relationship of the customer, the insurer and the market. We conclude that the latter cannot 

be ignored if we want to get reliable lapse predictions. Furthermore, we also investigate 

empirical evidence of adverse selection and study its potential impact on lapse decisions.  

Keywords : price elasticity; non-life insurance; regression modelling; generalized 

linear models. 

 

Résumé : 

L'élasticité prix consiste à étudier l'effet d'un changement de prix sur le 

comportement d'un client. Dans cet article, nous nous intéressons à l'élasticité prix dans le 

cadre d'un renouvellement de contrat d'assurance non-vie. Chaque année, les assureurs font 

face au dilemme pour établir leur prix: soit augmenter les prix pour améliorer les marges 

soit diminuer les prix pour attaquer de nouvelles parts de marché? Des modèles de 

régression sont employés pour explorer la relation triangulaire assuré - assureur - marché. 

On en conclut que le marché ne peut être ignoré si on veut obtenir des résultats fiables de 

prédiction. De plus, nous nous testons la présence éventuelle d'anti-sélection et étudions son 

lien possible avec les résiliations.  

Mots-clés: élasticité prix, assurance non-vie, modèles de régression, modèles 

linéaires généralisés. 
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1. INTRODUCTION 

In price elasticity studies, one analyzes how customers react to price changes. In this 

paper, we focus on its effect on the renewal of non-life insurance contracts. The 

methodologies developed can also be applied to new business. Every year insurers face the 

recurring question of adjusting premiums. Where is the trade-off between increasing 

premium to favour higher projected profit margins and decreasing premiums to obtain a 

greater market share? We must strike a compromise between these contradictory objectives. 

The price elasticity is therefore a factor to contend with in actuarial and marketing 

departments of every insurance company. 

In order to target new market shares or to retain customers in the portfolio, it is 

essential to assess the impact of pricing on the whole portfolio. To avoid a portfolio-based 

approach, we must take into account the individual policy features. Moreover, the 

methodology to estimate the price elasticity of an insurance portofolio must be sufficiently 

refined to identify customer segments. Consequently the aim of this paper is to determine 

the price sensitivity of non life insurance portfolios with respect to individual policy 

characteristics constituting the portfolio. 

We define the price elasticity as the customer's sensitivity to price changes relative 

to their current price. In mathematical terms, the price elasticity is defined as the normed 

derivative 
( )

( ) =
( )r

dr p p
e p

dp r p
 , where ( )r p  denotes lapse rate as a function of the price 

p . However, in this paper, we focus on the additional lapse rate ( ) = ( ) ( )p dp r p dp r p    

rather ( )re p  since the results are more robust and easier to interpret. In the following, we 

abusively refer to ( )p dp  as the price elasticity of demand. 

Price elasticity is not a new topic in actuarial literature. Two ASTIN1 workshops 

(see Bland et al. (1997), Kelsey et al. (1998)) were held in the 90's to analyze customer 

retention and price/demand elasticity topics. Shapiro & Jain (2003) also devote two 

chapters of their book to price elasticity: Guillen et al. (2003) use logisitic regressions, 

whereas Yeo & Smith (2003) consider neural networks. 

In the context of life insurance, the topic is more complex as the lapse can occur at 

any time, whereas for non-life policies, most lapses occur at renewal dates. There are some 

trigger effects due to contractual constraints: penalties are enforced when lapses occur at 

the beginning of the policy duration, while after that period, penalties no longer applies. 

                                                           
1 ASTIN stands for Actuarial STudies In Non-Life insurance. 
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Another influencial feature is the profit benefit option of some life insurance policies 

allowing insurers to distribute part of benefits to customers in a given year. This benefit 

option stimulates customers to shop around for policies with higher profit benefits. 

In terms of models, Kagraoka (2005), Atkins & Gallop (2007) use counting process 

to model surrenders of life insurance, while Kim (2005) uses a logistic regression to predict 

the lapse. Milhaud et al. (2011) point out relevant customer segments when using 

Classification And Regression Trees models (CART) and logistic regression. Finally, 

Loisel & Milhaud (2011) study the copycat behavior of insureds during correlation crises. 

In non-life insurance, generalized linear models have been the main tool to analyze 

price-sensitivity, see Hamel (2007) and the references therein. However, generalized linear 

model outputs might underestimate the true price sensitivity. This could lead to irrelevant 

conclusions, and therefore gross premium optimization based on such results may lead to 

biased and sometimes irrelevant pricing decisions, see, e.g., (Hamel 2007, Part 5), (Bella & 

Barone 2004, Sect. 3). 

What makes the present paper different from previous research on the topic is the 

fact that we tackle the issue of price elasticity from various points of view. Our contribution 

is to focus on price elasticity of different markets, to check the impact of distribution 

channels, to investigate the use of market proxies and to test for evidence of adverse 

selection. We have furthermore given ourselves the dual objective of comparing regression 

models as well as identifying the key variables needed. 

In this paper, we only exploit private motor datasets, but the methodologies can be 

applied to other personal non-life insurance lines of business. After a brief introduction of 

generalized linear models in Section 2, Section 3 presents a naive application. Based on the 

dubious empirical results of Section 3, the Section 4 tries to correct the price-sensitivity 

predictions by including new variables. Section 5 looks for empirical evidence of 

asymmetry of information on our datasets. Section 6 discusses the use of other regression 

models, and Section 7 concludes. Unless otherwise specified, all numerical applications are 

carried out with the R statistical software, R Core Team (2012). 

2. GLMS, A BRIEF INTRODUCTION 

In this paper, we are interested in modelling the lapse of (individual) customers. 

Thus, our interest variable iY  represents the lapse indicator of customer i , i.e. iY  follows a 

Bernoulli variable with 1 indicating a lapse and 0 a renewal of the i th policy. Generalized 
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Linear Models are a natural choice for modellling Bernoulli events with explanatory 

variables. Therefore, the purpose of this section is to briefly present such models. 

The Generalized Linear Models (GLM1) were introduced by Nelder & Wedderburn 

(1972) to deal with discrete and/or bounded response variables. A response variable on the 

whole space of real numbers   is too retrictive, while with GLMs the response variable 

space can be restricted to a discrete and/or bounded sets. They became widely popular with 

the book of McCullagh and Nelder, cf. McCullagh and Nelder (1989). 

GLMs are well known and well understood tools in statistics and especially in 

actuarial science. The pricing and the customer segmentation could not have been as 

efficient in non-life insurance as it is today, without an intensive use of GLMs by actuaries. 

There are even books dedicated to this topic, see, e.g., Ohlsson & Johansson (2010). Hence, 

GLMs seem to be the very first choice of models we can use to model price elasticity. This 

section is divided into three parts: (i) theoretical description of GLMs, (ii) a clear focus on 

binary models and (iii) explanations on estimation and variable selection within the GLM 

framework. 

2.1 Theoretical presentation 

In this section, we only consider fixed-effect models, i.e. statistical models where 

explanatory variables have deterministic values, unlike random-effect or mixed models. 

GLMs are an extension of classic linear models, so that linear models form a suitable 

starting point for discussion. Therefore, the first subsection shortly describes linear models. 

Then, we introduce GLMs in the second subsection. 

2.1.1 Starting from the linear model 

Let ( )npX M   be the matrix where each row contains the value of the 

explanatory variables for a given individual and nY   the vector of responses. The linear 

model assumes the following relationship between X  and Y :  

 = ,Y X   

where   denotes the (unknown) parameter vector and   the (random) noise vector. The 

Gaussian linear model assumptions are: (i) white noise: ( ) = 0iE  , (ii) homoskedasticity: 
2( ) =iVar  , (iii) normality: 2(0, )i   , (iv) independence: i  is independent of j  

for i j , (v) parameter identification: ( ) = <rank X p n . Then, the Gauss-Markov theorem 

                                                           
1 Note that in this document, the term GLM will never be used for general linear model. 
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gives us the following results: (i) the least square estimator ̂  of   is 1ˆ = ( )T TX X X Y  

and an estimator 2 2
2ˆ =|| || /( )Y X n p     for 2 , (ii) ̂  is a Gaussian vector independent 

of the random variable 2 2ˆ n p   , (iii) ̂  is the unbiased estimator with minimum 

variance of  , such that 2 1ˆ( ) = ( )TVar X X   and 2̂  is an unbiased estimator of 2 . 

Let us note that first four assumptions can be expressed into one single assumption 
2(0, )nI  . But splitting the normality assumption will help us to identify the strong 

differences between linear models and GLMs. The term X  is generally referred to the 

linear predictor of Y . 

Linear models include a wide range of statistical models, e.g. the simple linear 

regression =i i iy a bx    is obtained with a 2-column matrix X  having 1 in first column 

and ( )i ix  in second column. Many properties can be derived for linear models, notably 

hypothesis tests, confidence intervals for parameter estimates as well as estimator 

convergence, see, e.g., Chapter 6 of Venables & Ripley (2002). 

We now focus on the limitations of linear models resulting from the above 

assumptions. The following problems have been identified. When X  contains near-

colinear variables, the computation of the estimator   will be numerically unstable. This 

would lead to an increase in the variance estimator1. Working with a constrained linear 

model is not an appropriate answer. In pratice, a solution is to test models with omitting one 

explanatory variable after another to check for near colinearity. Another stronger limitation 

lies in the fact that the response variance is assumed to be the same ( 2 ) for all 

individuals. One way to deal with this issue is to transform the response variable by the 

nonlinear Box-Cox transformation. However, this response transformation can still be 

unsatifactory in certain cases. Finally, the strongest limitation is the assumed support of the 

response variable. By the normal assumption, Y  must lies in the whole set  , which 

excludes count variable (e.g. Poisson distribution) or positive variable (e.g. exponential 

distribution). To address this problem, we have to use a more general model than linear 

models. 

As already mentioned, Y  represents the lapse indicator of customers, i.e. Y  

follows a Bernoulli variable with 1 indicating a lapse. For Bernoulli variables, there are two 

main pitfalls when using (Gaussian) linear models. Since the value of ( )E Y  is contained 

within the interval [0,1] , it seems natural the expected values Ŷ  should also lie in [0,1] . 

However, predicted values X  may fall out of this range for sufficiently large or small 
                                                           

1 This would be one way to detect such isssue. 
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values of X . Furthermore, the normality hypothesis of the residuals is clearly not met: 

( )Y E Y  will only take two different values, ( )E Y  and 1 ( )E Y . Therefore, the 

modelling of ( )E Y  as a function of X  needs to be changed as well as the error 

distribution. This motivates to use an extended model that can deal with discrete-valued 

variables. 

2.1.2 Toward generalized linear models 

A Generalized Linear Model is characterized by three components:   
1. a random component: iY  follows a specific distribution of the exponential 

family ( , , , , )exp i i a b c   1,  

2. a systematic component: the covariate vector iX  provides a linear predictor2 

= T
i iX  ,  

3. a link function: :g S  which is monotone, differentiable and invertible, 

such that 1( ) = ( )i iE Y g  ,  

4. for all individuals {1, , }i n  , where i  is the shape parameter, i  the 

dispersion parameter, , ,a b c  three functions and S  a set of possible values of 

the expectation ( )iE Y . Let us note that we get back to linear models with a 

Gaussian distribution and an identity link function ( ( ) =g x x ). However, there 

are many other distributions and link functions. We say a link function to be 

canonical if =i i  . 

There are many applications of GLM in actuarial science, e.g., claim severity 

modelling with gamma or inverse normal distributions and claim frequency modelling with 

the Poisson distribution. Apart from the identity link function, the logarithm link function is 

the most commonly used link function in actuarial applications. In fact, with this link 

function, the explanatory variables have multiplicative effects on the observed variable and 

the observed variable stays positive, since ( ) =
xi i

i
E Y e

 . For example, the effect of 

being a young driver and owning an expensive car on average loss could be the product of 

the two separate effects: the effect of being a young driver and the effect of owning an 

expensive car. The logarithm link function is a key element in most actuarial pricing 

models and is used for modelling the frequency and the severity of claims. This makes 

                                                           
1 See, e.g., Subsection 2.2.2 of McCullagh & Nelder (1989) or more recently Clark & Thayer (2004). 
2 For GLMs, the name `linear predictor' is kept, despite i  is not a linear predictor of iY . 
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possible to have a standard premium and multiplicative individual factors to adjust the 

premium. 

2.2 Binary regression 

Since the insurer choice by customers is modelled by a Bernoulli variable, we give 

further details on binary regression in this subsection. 

2.2.1 Base model assumption 

In binary regression, the response variable is either 1 or 0 for success and failure, 

respectively. We cannot parametrize two outcomes with more than one parameter. So, a 

Bernoulli distribution ( )i  is assumed, i.e. ( = 1) = = 1 ( = 0),i i iP Y P Y   with i  the 

parameter. The mass probability function can be expressed as  

 
log( / (1 )) log(1 )1( ) = (1 ) = ,

yy y i i i
Y i ii

f y e
        

which emphasizes the exponential family characteristic = log( / (1 ))i i i   . Let us 

recall that the first two moments are ( ) =i iE Y   and ( ) = (1 ) = ( )i i i iVar Y V   . Hence, 

assuming iY  is a Bernoulli distribution ( )i  implies that i  is both the parameter and the 

mean value of iY . So, the link function for a Bernoulli model is expressed as follows  

 1= ( ).T
i ig x   

Let us note that if some individuals have identical covariates, then we can group the 

data and consider iY  follows a binomial distribution ( , )i in  . However, this is only 

possible if all covariates are categorical. As indicated in McCullagh & Nelder (1989), the 

link function and the response variable can be reformulated in term of a latent variable 

approach. = ( = 1) = ( > 0).T
i i i iP Y P x    If i  follows a normal distribution (resp. a 

logistic distribution), we have = ( )T
i ix   ( = ( )T

i logistic iF x  ). 

Now, the log-likelihood is derived as  

  1 1
=1

ln( ( , , , , , )) = ln( ) (1 ) ln(1 ) ,
n

n n i i i i
i

y y y y        

plus an omitted term not involving i , see, e.g., (McCullagh & Nelder, 1989, Chap. 4) for 

further details. 

2.2.2 Link functions 

Generally, the following three functions are considered as link functions for the 

binary variable   



42 C. DUTANG  

 

1. logit link: ( ) = ln
1

g



 
  

 with 1g   being the standard logistic distribution 

function,  

2. probit link: 1( ) = ( )g    with 1g   being the standard normal distribution 

function,  

3. complementary log-log link: ( ) = ln( ln(1 ))g     with 1g   being the standard 

Gumbel II distribution function. 

All these three functions are the inverses of a distribution function, so other link 

functions can be obtained using inverses of other distribution function. Let us note that the 

first two links are symmetrical, while the last one is not. 

In addition to being the canonical link function for which the fitting procedure is 

simplified, the logit link is generally preferred because of its simple interpretation as the 

logarithm of the odds ratio. Indeed, assume there is one explanatory variable X , the logit 

link model is / (1 ) = Xp p e  . If ˆ = 2 , increasing X  by 1 will lead to increase the 

odds by 2 7.389e  . 

2.3 Variable selection and model adequacy 

As fitting a GLM is quick in most standard software, then a relevant question is to 

check for its validity on the dataset used. 

2.3.1 Model adequacy 

The deviance, which is one way to measure the model adequacy with the data and 

which generalizes the 2R  measure of linear models, is defined by  
 1 1 1 1ˆ ˆ ˆ( , ) = 2(ln( ( , , , , , )) ln( ( , , , , , ))),n n n nD y y y y y y y        

where ̂  is the estimate of the beta vector. The ``best'' model is the one having the 

lowest deviance. However, if all responses are binary data, the first term can be infinite. So 

in practice, we consider the deviance simply as  
 1 1ˆ ˆ ˆ( , ) = 2ln( ( , , , , , )).n nD y y y      

Furthermore, the deviance is used as a relative measure to compare two models. In 

most software, in particular in R, the GLM fitting function provides two deviances: the null 

deviance and the deviance. The null deviance is the deviance for the model with only an 

intercept or if not offset only, i.e. when = 1p  and X  is only an intercept full of 11. The 

                                                           
1
 It means all the heterogeneity of data comes from the random component. 
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(second) deviance is the deviance for the model ˆ( , )D y   with the p  explanatory variables. 

Note that if there are as many parameters as there are observations, then the deviance will 

be the best possible, but the model does not explain anything. 

Another criterion introduced by Akaike in the 70's is the Akaike Information 

Criterion (AIC), which is also an adequacy measure of statistical models. Unlike the 

deviance, AIC aims to penalized overfitted models, i.e. models with too many parameters 

(compared to the length of the dataset). AIC is defined by  
 1 1ˆ ˆ ˆAIC( , ) = 2 ln( ( , , , , , )),n ny k y y      

where k  the number of parameters, i.e. the length of  . This criterion is a trade-off 

between further improvement in terms of log-likelihood with additional variables and the 

additional model cost of including new variables. To compare two models with different 

parameter numbers, we look for the one having the lowest AIC. 

In a linear model, the analysis of residuals (which are assumed to be identical and 

independent Gaussian variables) may reveal that the model is unappropriate. Typically we 

can plot the fitted values against the fitted residuals. For GLMs, the analysis of residuals is 

much more complex, because we loose the normality assumption. Furthermore, for binary 

data, i.e. not binomial data, the plot of residuals exhibits straight lines, which are hard to 

interpret, see Appendix 8.1. We believe that the residual analysis is not appropriate for 

binary regressions. 

2.3.2 Variable selection 

From the normal asymptotic distribution of the maximum likelihood estimator, we 

can derive confidence intervals as well as hypothesis tests for coefficents. Therefore, a p-

value is available for each coefficient of the regression, which helps us to keep only the 

most significant variable. However, as removing one variable impacts the significance of 

other variables, it can be hard to find the optimal set of explanatory variables. 

There are mainly two approaches: either a forward selection, i.e. starting from the 

null model, we add the most significant variable at each step, or a backward elimination, 

i.e. starting from the full model, we remove the least significant variable at each step. 

Another way to select significant explanatory variables is to use the analysis of deviance. It 

consists in looking at the difference of deviance ln  between two models, i.e. ratios of 

likelihood. Using an asymptotic distribution, either chi-square or Fisher-Snedecor 

distributions, a p-value can be used to remove or to keep an explanatory variable. Based on 



44 C. DUTANG  

 

this fact, statistical softwares generally provide a function for the backward and the forward 

selection using an automatic deviance analysis. 

In conclusion, GLM is a well-known statistical method in actuarial science. This fact 

motivates its use to model lapse rate. Since it is a classic among statistical models, fitting 

method and variable selection use state-of-art algorithms providing robust estimators. So 

there is absolutely no problem in applying GLMs for a daily use. In the following section, 

we apply GLMs to explain the customer price-sensitivity. 

3. SIMPLISTIC APPLICATIONS AND BIASED BUSINESS CONCLUSIONS 

This section is intended to present quite naive GLM applications and to show how 

they can lead to inconclusive or even biased findings. First, we use a dataset with poor and 

limited data, and then a larger dataset with more comprehensive data. Finally, we 

summarize the issues encountered. It may seem obvious, but to study customer price-

sensitivity, insurers need to collect the premium proposed to customers when renewing 

policy, especially for those who lapse. 

For confidential reasons, the country names are not revealed, but we study two 

continental European insurance markets. In this part of the world, the insurance penetration 

rate is considered high, e.g., 8.6% in France, 7% in Germany, 7.6% in Italy, according to 

Cummins & Venard (2007). Thus, the insurance markets studied are mature as well as 

competition level is intense. Furthermore, data outputs presented in this paper have been 

perturbed, but original conclusions have been preserved. 

3.1 An example of poor data 

In this subsection, we work with a (representative) subset of a 1-year lapse history 

database in 2003. Each line of the dataset represents a policy for a given vehicle. With only 

few variables, we expect the data analysis to be difficult and the model outputs to be 

unreliable. 

3.1.1 Descriptive analysis 

To better understand interactions between lapses, the premium and other 

explanatory variables, we start with a short descriptive analysis. As a general comment, all 

variables in the dataset are dependent to the lapse variable according to a Chi-square test. 

At our disposal, we have the last year premium and the proposed premium. Computing the 

premium ratio, we observe that most of the portfolio experienced a price decrease, probably 
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due to the ageing and the market conditions. We expect to slightly underestimate the true 

price sensitivity of clients, since customers attention will be released. 

Turning to customer variables, we focus on gender and driver age variables, reported 

in Table 1. As the age of the customer increases, the lapse rate decreases. So, the most 

sensitive clients seem to be the youngest clients. The gender1 does not have any particular 

impact on the lapse (alone). However, the GLM analysis may reveal some links between 

the gender and lapses if the gender variable is crossed with other explanatory variables. 

 
  (30,47.5] (47.5,62.5] (62.5,77.5] (77.5,92.5] FEMALE MALE 

Lapse rate (%) 20 17 14 14.6 18 19 
Prop. of total (%) 38 42 17 3 20 80 

Table  1: Driver age and Gender  

We also have a categoric variable containing a lapse type with three possible values: 

lapse by insured, lapse by company and payment default. We observe a total lapse rate of 

18%, of which 11% is a payment default, 6% a lapse by the customer, only 1% a lapse by 

the company. The lapse by company has to be removed, because those lapses generally 

result from the pruning strategy of insurers. However, default of payment must be taken 

with care since it might represent a hidden insured decision. It may result from a too high 

premium that the customer can't afford. Thus, we choose to keep those policies in our 

study. Note that the lapse motive cannot be used in the regression because its value is not 

known in advance, i.e. the lapse motive is endogeneous. 

The last variables to explore are policy age and vehicle age. According to Table 2, 

some first conclusions can be derived. As the policy age increases, the remaining customers 

are more and more loyal, i.e. lapse rates decrease. Unlike the policy age, when the vehicle 

age increases, the lapse rate increases. One explanation may be that the customer may shop 

around for a new insurer when changing the vehicle. 

 
 (1, 5] (5,9] (9,13] (13,17] (1,8] (8,14] (14,20] (20,26] 

Lapse rate (%)  21 17 18 16.9 17.6 19.4 21 39 
Prop. of total (%)  38 33 22 7 36 37 22 4 

Table  2: Policy age and vehicle age 

  

                                                           
1 In a near future, insurers will no longer have the right to discreminate premium against the gender of the 
policyholder according to the directive 2004/113/CE from the European comission.  
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3.1.2 GLM analysis 

For the GLM analysis of this dataset, we use a backward selection. The explanatory 

variables are driver age, gender, policy age, vehicle age, the last year premium and the price 

ratio, i.e. ratio of the premium proposed and the premium paid last year. In order to have 

better fit and predictive power, all explanatory variables are crossed with the price ratio: 

crossing variable jx  with price ratio p  consists in creating a dummy variable ji ix p  for 

all observations 1 i n  . 

Note that variable jx  might be categorical, i.e. valued in {0, , }d , which allows to 

zoom in on some particular features of individuals. The linear predictor for observation i  is 

thus given by  

 0 1 1= 1 ( , , ) ( , , ) ,T T
i i ki p i ki p ix x z z p          

where 0  is the intercept, p  (resp. p ) the coefficient for price-noncross variables 

(resp. price-cross), ix  price-noncross variables, iz  price-cross variables and ip  the price 

ratio. 

Yet not reported here, we test two models: (i) a GLM with original (continuous) 

variable and (ii) a GLM with categorized variables. We expect the second model with 

categorized data to be better. Using continuous variables limits the number of parameters: 1 

parameter for a continuous variable and 1d   parameters for a categorical variable with d  

categories. Cutting the driver age, for example, into three values ]18,35] , ]35,60]  and 

]60,99]  enables to test for the significance of the different age classes. 

The numerical application reveals that a GLM with categorical data is better in terms 

of deviance and AIC. Hence, we only report this model in Appendix 8.2, first column is the 

coefficient estimates 0̂ , ˆ
p  and ˆ

p .  

The GLM with continuous variables also has business inconsistent fitted 

coefficients, e.g. the coefficient for the price ratio was negative. This also argues in favor of 

the GLM with categorized variables. We also analyze (but do not report) different link 

functions to compare with the (default) logit link function. But the fit gives similar estimate 

for the coefficients 0̂ , ˆ
p  and ˆ

p , as well as similar predictions. 

To test our model, we want to make lapse rate predictions and to compare against 

observed lapse rates. From a GLM fit, we get the fitted probabilities ˆi  for 1 i n  . 

Plotting those probabilities against the observed price ratios does not help to understand the 

link between a premium increase/decrease and the predicted lapse rate. Recall that we are 
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interested in deriving a portfolio elasticity based on individual policy features, we choose to 

use an average lapse probability function defined as  

  1
0

=1

1 ˆ ˆ ˆˆ ( ) = ( ) ( ) ,
n

T T
n i p i p

i

p g x p z p p
n

   
     (1) 

where 0
ˆ ˆ ˆ( , , )p p     are the fitted parameters, ix  price-noncross explanatory variables, iz  

price-cross explanatory variables1 and g  the logit link function, i.e. 1 ( ) = 1/ (1 )xg x e  . 

Note that this function applies a price ratio constant to all policies. For example, ˆ (1)n  the 

average lapse rate, called central lapse rate, if the premium remains constant compared to 

last year for all our customers. 

Computing this sum for different values of price ratio is quite heavy. We could have 
use a prediction for a new obsveration ( , , )x y p   ,  

  1
0

ˆ ˆ ˆ ,T T
p pg x y p  

       

where the covariate ( , , )x y p    corresponds to the average individual. But in our datasets, the 

ideal average individual is not the best representative of the average behavior. Equation (1) 

has the advantage to really take into account portfolio specificities, as well as the 

summation can be done over a subset of the overall data. In Table 3, we put the predicted 

lapse rates, i.e. ˆ (1)n . We also present a measure of price sensitivity, the delta lapse rate 

defined as  

 1 1ˆ ˆ ˆ ˆ( ) = (1 ) (1)    ( ) = (1 ) (1),n n n nand               (2) 

where   represents a premium change, for example 5%. As mentioned in the introduction, 

this measure has many advantages compared to the price elasticity2  

(
( )

( ) =
( )r

dr p p
e p

dp r p
 ) : it is easier to compute, more robust3, easier to interpret. 

  
1 (5%)  ˆ (1)n  1 (5%)  

All -0.745 14.714 0.772 
Old drivers -0.324 9.44 0.333 
Young pol., working male -0.585 15.208 0.601 
Young drivers -1.166 19.784 1.211 

Table  3: Central lapse rates (%) and deltas (pts) 

                                                           
1 Both ix  and iy  may depend on the price ratio, e.g. if ix  represents the difference between the proposed 

premium and a technical premium. 
2 It is the customer's sensitivity to price changes relative to their current price. A price elasticity of e  means that 
an increase by 1% of p  increase the lapse rate by e%. 
3 Price elasticity interpretation is based on a serie expansion around the point of computation. So, price elasticity is 
not adapted for large  . 
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In Table 3, we report the predicted lapse rates and deltas for the whole dataset (first 

line) as well as for three subsets: old drivers, young policies and working male, young 

drivers. This first result exhibits the wide range of behaviors among a portfolio: young vs. 

old drivers. However, delta values seem unrealistic: a 5% premium increase will increase 

the lapse rate only by 0.772  pts. Based only on such predictions, one will certainly not 

hesitate to increase premium. 

As this small dataset only provides the driver age, GLM outputs lead to inconclusive 

or dubious results. The old versus young segmentation alone cannot in itself substantiate 

the lapse reasons. We conclude that the number of explanatory variables are too few to get 

reliable findings with GLMs, and probably with any statistical models. 

3.2 A larger database 

In this subsection, we study another dataset from a different country in continental 

Europe in 2004. As for the other dataset, a record is a policy purchased by an individual, so 

an individual may have different records for the different covers he bought. 

3.2.1 Descriptive analysis 

This dataset is very rich and contains much more variables than the previous set. 

The full list is available in Appendix 8.3. In Table 4, we present some explanatory 

variables. The dataset contains policies sold through different distribution channels, namely 

tied-agents, brokers and direct platforms, cf. first line of Table 4. Obviously, the way we 

sell insurance products plays a major role in the customer decision to renew or to lapse. The 

coverage types (Full Comprehensive, Partial Comprehensive and Third-Part Liability) have 

a lesser influence on the lapse according to the first table. 
 

Coverage FC PC TPL   Channel Agent Broker Direct 
prop. size 36.16 37.61 26.23   prop. size 65.1 20.1 6.1 
lapse rate 14.26 12.64 12.79   lapse rate 7.4 10.3 12.1 
Claim nb. 0 1 2 3 (3 - 13]Bonus evol. down stable up 
prop. size 70.59 25.29 3.60 0.44 0.09 prop. size 33.32 62.92 3.76 
lapse rate 13.75 13.37 16.03 12.82 35.16 lapse rate 16.69 11.53 12.02 
Policy age (0,1] (1,2] (2,7] (7,34]  Vehicle age (0,6] (6,10] (10,13] (13,18] 
prop. size 24.97 16.79 34.38 23.86  prop. size 26.06 31.01 21.85 21.08 
lapse rate 17.43 15.27 11.26 8.78  lapse rate 15.50 13.56 12.72 10.67 

Table  4: Impact on lapse rates (%) 

The dataset also contains some information on claim history, e.g. the bonus/malus or 

the claim number. In Table 4, we present a dummy variable for the bonus evolution 
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(compared to last year). From this table, we observe that a non-stable bonus seems to 

increase the customer propency to lapse. This could be explained by the fact that decreasing 

or increasing bonus implies the biggest premium difference compared to last year premium, 

raising the customer attention. At this stage, the claim number does not seem to influence 

the lapse. The policy age has the same impact as in the previous dataset (cf. Table 2). The 

older is the policy the lower the customer lapses. However, the opposite effect is observed 

for the vehicle age compared to previous dataset. 

3.2.2 GLM analysis 

Now, we go to the GLM analysis. We apply a backward selection to select 

statistically significant variables. The regression summary is put in Appendix 8.4. The signs 

of coefficient p  are positive for the two categories of last year premium level1, thus this 

is business consistent. The most significant variables2 are the region code, the distribution 

channel and the dummy variable indicating the relative difference between the technical 

premium and the proposed premium and the dummy variable checking whether the 

policyholder is also the car driver. 

In terms of prediction, the results presented in Table 5 are similar to the results of 

the previous subsection. As for the “poor” dataset, we use the average lapse function 

ˆ ( )n p  and delta lapse rate 1 ( )  defined in Equations (1) and (2), respectively. The 

overall central lapse rate is low compared to the previous set but the customers on that 

market seems more price sensitive, with bigger deltas for a 5% decrease or increase. Taken 

into account the distribution channel, the differences are huge: around 8.7% vs. 11.6% for 

agent and direct, respectively. Despite observing higher deltas, we think these estimates 

still underestimate the true price sensitivity. 
  

                                                           
1 See lastpremgroup2(0,500] and lastpremgroup2(500, 5e+3]. 
2 See diff2tech, region2, channel, diffdriverPH7. 
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 1 (5%)  ˆ (1)n  1 (5%)  

All -0.833 8.966 1.187 
Channel agent -0.759 7.732 0.75 
Channel broker -1.255 9.422 1.299 
Channel direct -1.18 11.597 1.268 
Coverage Full Comp. -0.622 7.723 0.97 
Coverage Part. Comp. -0.714 9.244 1.063 
Coverage TPL -0.899 10.179 1.178 

Table  5: Central lapse rates (%) and deltas (pts) 

Looking at the bottom part, the impact of cover type on central lapse rates is 

considerably lower. Central rates are between 8% and 10%, regardless of the product 

purchased. Delta lapse rates 1  are again surprisingly low around 1 pt. In Appendix 8.4, 

we also compare the observed lapse rate by channel and coverage type against the fitted 

lapse rate, see Table 16. The results are unsatisfactory. 

3.3 Issues 

The price-sensitivity assessment appears to be difficult. Getting outputs is easy but 

having reliable estimates is harder. We are not confident on the lapse prediction as well as 

the additional lapse rates 1 . A first answer is shown in Table 17 of Appendix 8.4, where 

we present the predicted results when the dataset is split according to the distribution 

channel or the coverage type. This split provides more realistic lapse rates, each fit better 

catches the specificity of the distribution channel. Thus, we choose to fit nine regressions in 

the following in order to catch the full characteristics of the distribution channel and the 

coverage type. 

However, this section reveals major issues of a quick application of GLMs with few 

or weakly relevant explanatory variables. We miss something as it does not really make 

sense that a 5% premium increase on the whole portfolio leads to a lapse rate increase less 

than 1pt. In such situation, the insurer has all reasons to increase premium by 5% and to get 

a higher gross written premium. The market competition level drives the level of customer 

price-sensitivity that we can estimate. Therefore, caution is needed when using GLMs 

predictions with few variables. 

4. INCORPORATING NEW VARIABLES IN THE REGRESSION 

This section focuses on identifying new key variables needed in the GLM regression 

in order to get more reliable results. Attentive readers have probably noticed that some 
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variables have been forgotten in this first analysis. As we will see, they have a major impact 

on the GLM outputs. Furthermore, taking into account previous conclusions on the large 

dataset of Subsection 3.2, all results presented in this section are obtained by nine different 

regressions, one for each channel and each coverage type. 

4.1 Rebate levels 

Firstly, we add to all regressions the rebate level variable, specifying the amount of 

rebate granted by the agent, the broker or the client manager to the customer. As reported in 

Table 6, the number of customers having rebates is considerably high. The broker channel 

grants a rebate to a majority of customers. Then comes the tied-agent channel and finally 

the direct channel. 

 
  Full Comp. Part. Comp. TPL 
 Agent  56.62 36.84 22.26 
Broker  62.25 52.5 36.24 
Direct  23.05 22.89 10.37 

Table  6: Proportion of granted rebates (%) 

It seems logical that the direct channel does not grant rebates since the premium is 

generally lower through the direct channel than with other distribution channels. The 

influence of the coverage type is also substantial: it is harder to get a rebate for a third-part 

liability (TPL) product than a full comprehensive coverage product. 

In order to catch the most meaningful features of the rebate on the lapse decision, 

the rebate variable has been categorized. Despite the dataset is subdivided into 9 parts, this 

variable is always statistically significant. For example in the TPL broker subgroup, the 

estimated coefficients ̂  for the rebate variable are 10 20
ˆ = 0.368879   ,  

25
ˆ = 0.789049   . In that case, the variable has three categories (0, 10-20 and 25+), thus 

two coefficients for two categories plus the baseline integrated in the intercept. The 

negative sign means that the rebate level has a negative impact on the lapse, i.e. a rebate of 

15 decreases the linear predictor (hence the predicted lapse rate). This is perfectly natural. 

Furthermore, when predicting lapse rate with the average lapse function ˆn , we 

force the rebate level to zero. That is to say, in the equation  

  1
0

=1

1 ˆ ˆ ˆˆ ( ) = ( ) ( ) ,
n

T T
n i p i p

i

p g x p z p p
n

   
     

the explanatory variables ( ), ( )i ix p z p  are updated depending on the price ratio p . The 
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rebate variable appearing in the vector ( ( ), ( ))i ix p z p  is set to zero when predictions are 

carried out. So that a 5% increase really means such premium increase, and not 5% minus 

the rebate that the customer got last year. 

   

  ˆ (1)n  1 (5%)  ˆ (1)n  1 (5%)  ˆ (1)n  1 (5%)  

 Agent  7.278 0.482 8.486 0.896 8.549 0.918 

Broker  10.987 2.888 9.754 2.776 10.972 3.437 

Direct  12.922 1.154 11.303 1.263 11.893 1.490 

  Full Comp. Part. Comp. TPL 

Table  7: Central lapse rates (%) and deltas (pts) 

Table 7 presents GLM predictions for the nine subgroups. We can observe the major 

differences compared to the situation where the rebate level was not taken into account, cf. 

Table 5. Notably for the broker channel, the delta lapse rates are high and represent the 

broker's work for the customer to find the cheapest premium. The central lapse rates also 

slightly increase in most cases compared to the previous fit. This subsection shows how 

important the rebate variable is when studying customer price-sensitivity. 

4.2 Market proxy 

In this subsection, we add another variable to regressions, a market premium proxy 

by policy. The proxy is computed as the tenth lowest premium among competitor premiums 

of a standard third-part liabibility coverage product for which there is no deductible. Such 

computation is carried out on a market premium database which is filled by all insurers of 

the market. However, we don't have the choice of the market proxy. It would have been a 

good study to see the influence of the market proxy choice, e.g., the fifth, the first lowest or 

the mean premium, in the GLM fit. 

Unfortunately, the market proxy information is only available on two subsets of the 

database, namely TPL agent and TPL direct subsets. As for the technical premium, we 

choose to insert that variable in the regression via the relative difference compared to the 

proposed premium. We consider  

 
market premium

= ,
premium

i i
i

i

m


 

where market i  and premiumi  denote the market premium and the proposed premium for 

the i th policy, respectively. In Table 8, we give a basic cross-table of lapse and relative 
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market premium variables. Among the lapsed policies, 65% of them have a higher premium 

than the market proxy, whereas for renewed policies it drops to 57%. 

 
m  (-0.75,-0.5] (-0.5,-0.25] (-0.25,0] (0,0.25] (0.25,0.5] (0.5,0.75] (0.75,1] 
Renew 0.69 18.484 33.248 28.254 9.735 0.571 0.066 
Lapse 0.079 1.326 4.158 2.637 0.327 0.032 0.006 

Table  8: Percentage of policies (%) 

However, we cannot conclude that lapses result from a higher premium compared to 

the market, just based on this table. In fact, the market proxy is just a proxy for the third-

part liability coverage, computed as the tenth lowest premium. Moreover, the market proxy 

is a theoretical premium based on the risk characteristics. If a client goes to another 

company, it may have a lower or a higher premium depending if he get a rebate or choose 

an add-on cover. 

Now, that we have described the new explanatory variable, we turn our attention to 

the GLM regression. The residual deviance and Akaike Information Criterion (AIC) have 

slightly decreased with the addition of the market proxy (8866 to 8728 and 8873 to 8735, 

respectively). Regression summary for the GLM with market variable is available on 

request to the author. 

The most instructive results are the average lapse prediction. Comparing the Table 9 

with Table 7 reveals that the addition of the market proxy has a major impact on the delta 

lapse rate 1 (5%) , cf. bolded figures. For the TPL agent subset, it goes from 0.918 to 

1.652 pts, while for the TPL direct subset, from 1.490 to 2.738. Central lapse rates before 

and after the market proxy inclusion are consistent. The predicted results are plotted on 

Figure 1, where the x-axis represents central lapse rates ( ˆ (1)n ), the y-axis delta lapse rates 

for a 5% premium increase ( 1 (5%) ). The bubble radius are determined by the proportion 

of the subset in the whole dataset. The text order in the legends is the decreasing order of 

bubble radius. 

 
   ˆ (1)n    1 (5%)    ˆ (1)n    1 (5%)    ˆ (1)n    1 (5%)   

 Agent  7.278 0.482 8.486 0.896 8.548 1.652 
Broker  10.987 2.888 9.754 2.776 10.972 3.437 
Direct  12.922 1.154 11.303 1.263 11.958 2.738 
  Full Comp. Part. Comp. TPL 

Table  9: Central lapse rates (%) and deltas (pts) 
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Figure  1: Comparison of distribution channels and cover types 

On Figure 1, we clearly observe the difference between those two channels both in 

terms of central lapse rates and delta lapse rates. These two differences can be explained 

again by the fact the brokers are paid to find the cheapest premium. The direct channel 

shows higher central lapse rates ˆ (1)n , but the estimated delta lapse rates are lower than 

those for Broker channel. Direct channel are designed for customers shopping around on 

internet, so it seems logical that their propency to lapse should be higher. We would have 

expected the same to hold for delta lapse rates 1 (5%) . The estimated delta rate of the 

direct channel might still be underestimated. In addition to the absence of market proxies in 

the TPL direct database, the direct channel is also small in size. Hence, higher uncertainty 

on those estimates might explain low delta lapse rates for FC/PC direct subsets. 

4.3 Backtesting 

In this subsection, we present backtesting results for the fitted GLMs. We start by 

looking only at an aggregate level: channel and coverage. The results are given in Table 10, 
reporting observed and fitted lapse rates. The observed lapse rate jr  for the j th group is 

computed as the average lapse rate variable over the j th group, whereas fitted lapse rate is 

the average of the fitted probabilities ˆi  over the j th group given the observed 

explanatory variables for each individual 
=1

1
ˆ .

n j
ii

jn
  

The fitted results are good, since for each subgroup, the deviation is below one 

percentage point. Compared to the previous backfit table, the improvements with rebate 
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level, market proxy and datasplit are amazing. The two subgroups for which we use market 

proxy, the results are even better (deviation < 0.1 pt), see TPL agent and direct. However, 

we must recognize that observed price ratio are relatively small: for 85% of the portfolio, 

the difference is below 5%. Hence, the model appropriately catches the lapse phenomenon 

when the variation in premium remains reasonable. 
 

  Observed Fitted Observed Fitted Observed Fitted 
Full Comp. 7.361 7.124 10.167 10.468 12.958 12.881 
Part. Comp. 8.123 8.084 9.971 10.09 11.258 11.193 
TPL 8.579 8.569 10.867 11.042 11.153 11.171 
  Agent Broker Direct 

Table  10: Central lapse rates (%) and deltas (pts) 

To further assess the predictive power of our GLM fits, we focus on the TPL 

coverage product. We consider three subpopulations representing three different behaviors: 

(i) old drivers with at least two contracts in the household, (ii) working class with a 

decreasing bonus-malus and an old vehicle, (iii) young drivers. We expect the population 3 

to be the most price-sensitive. 

  
 Prop. Obs. Fit. Std.Err. Prop. Obs. Fit. Std.Err. Prop. Obs. Fit. Std.Err. 

Pop. 1 13 4.98 5.16 0.22 5 7.99 8.24 0.49 3 6.98 8.187 0.65 
Pop. 2 13 8.45 8.65 0.32 16 11.59 12.36 0.50 17 12.44 13.02 0.61 
Pop. 3 10 10.01 9.91 0.42 14 13.25 12.45 0.62 13 14.91 14.184 0.74 

 Agent Broker Direct 

Table  11: Lapse rates and proportions (%)  

In Table 11, we report the backfit results for the three selected populations 

separating each distribution channel. Each block presents the proportion of population i  in 

the total subset, the observed lapse rate for population i , the mean of fitted lapse rates and 

standard deviations. As expected the difference between the three populations is high 

whatever the channel. Population 1 can be tagged as a sluggish behavior, Population 2 a 

kind of medium behavior, while Population 3 represents highly sensitive customers. 

4.4 Market scenarios 

 Having a market variable in the database allows us to perform market scenarios. In 

this subsection, we briefly present this topic particularly interesting for business line 

managers. We perform two basic scenarios: a 5% increase of market premium and a 5% 

decrease of market premium. 
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  Insurer Insurer 
 -5% 0% +5% -5% 0% +5% 

Market -5% 8.007 8.763 10.481 12.538 14.143 17.589 
Market 0% 7.801 8.548 10.152 9.604 11.958 14.696 
Market +5% 7.645 8.359 9.916 8.638 10.943 13.589 

 Agent Direct 

Table  12: Market scenarios (%)  

The results are summarized in Table 12. It is surprising to see how the tied-agent 

customers react very slowly when premium fluctuates. In particular when market decrease 

of 5% and the proposed premium increases by 5%, then the lapse rate goes only from 

8.548% to 10.481%. While for the direct channel, the lapse rate rockets from 11.958% to 

17.589%. Actually for any difference in premium, the lapse rate fluctuates largely for the 

direct channel. 

4.5 Conclusion 

The two previous sections demonstrate that GLMs are easy to implement, but care 

on the variable selection and appropriate data are needed to ensure reliable outputs. In this 

section, we show how incorporating new key variables in the GLM regression substantially 

improves the lapse rate predictions in the different premium scenarios. The rebate level 

partially reveals the agent or the broker actions on the customer decisions, while the use of 

market proxies illustrates how decisive the competition level is when studying customer 

price-sensitivity. 

In conclusion, the GLM methodology, when used on appropriate data, fulfills the 

initial objective to derive average lapse rate prediction taking into account individual 

features. Furthermore, using the predicted lapse rate values of GLMs, it has been easy to 

identify customer segments, which react differently to premium changes. The back-fit of 

the GLMs on the identified populations is correct. At a customer segment level, GLMs 

provide a fair estimate of lapse rate and price sensitivity for reasonable premium changes. 

But at a policy level, we think lapse predictions should be treated carefully. 

5. TESTING FOR ASYMMETRY OF INFORMATION 

Asymmetry of information occurs when two agents (say a buyer and a seller of 

insurance policies) do not have access to the same amount of information. In such 

situations, one of the two agents might take advantage of his additional information in the 
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deal. Typically, two problems can result from this asymmetry of information : adverse 

selection and moral hazard. In insurance context, moral hazard can be observed when 

individuals behave in risker ways, when they are insured. Insurers cannot control the 

policyholder's actions to prevent risk. 

Adverse selection depicts a different situation where the buyer of insurance coverage 

has a better understanding and knowledge of the risk he will transfer to the insurer than the 

insurer himself. Generally, the buyer will choose a deductible in his favor based on its own 

risk assessment. Hence, high-risk individuals will have the tendency to choose lower 

deductibles. Adverse selection is caused by hidden information, whereas moral hazard is 

caused by hidden actions. 

Joseph Stiglitz was awarded the Nobel price in economics in 2001 for his pioneer 

work in asymmetric information modelling. In insurance context, Rothschild & Stiglitz 

(1976) models the insurance market where individuals choose a “menu” (a couple of 

premium and deductible) from the insurer offer set. Within this model, they show that high-

risk individuals choose contracts with more comprehensive coverage, whereas low-risk 

individuals will choose higher deductibles. 

5.1 Testing for evidence of adverse selection  

The topic is of interest when modelling customer behaviors, since a premium 

increase in hard market cycle phase, i.e. an increasing premium trend, may lead to a higher 

loss ratio. Indeed if we brutally increase the price for all the policies by 10%, most of high-

risk individuals will renew their contracts (in this extreme case), while the low-risk will just 

run away. Therefore the claim cost will increase per unit of sold insurance cover. 

In this paper, we follow the framework of Dionne et al. (2001), which uses GLMs to 

test for the evidence of adverse selection1. Let X  be an exogenenous variable vector, N  an 

endogeneous variable and Z  a decision variable. The absence of adverse selection is 

equivalent to the prediction of Z  based on the joint distribution of X  and N  coincides 

with prediction with X  alone. This indirect characterization leads to  
 ( | , ) = ( | ),l Z X N l Z X  (3) 

where (. | .,.)l  denotes the conditional probability density function. A simple approach is to 

perform conditional dependence in the GLM parametric framework, such that the model is 

                                                           
1 Similar works on this topic also consider the GLMs, see Chiappori & Salanié (2000) and Dardanoni & Donni 
(2008). 
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contrained as ( | , ) = ( ; )l Z X N l Z aX bN . Testing for the conditionnal independence of Z  

with respect to N  given X  is carried out by regressing the variable Z  on X  and N  in 

order to check whether the coefficient for N  is significant. 

However, this approach may lead to spurious conclusions due to nonlinear effects 

between X  and N . Dionne et al. (2001) recommend to use the following econometric 

model  

  ( | , ) = | ( | ) ,l Z X N l Z aX bN cE N X   (4) 

where ( | )E N X , denoting the conditionnal expectation of N  given the variable X , will 

be estimated by a regression model initially. The introduction of the estimated expectation 
( | )E N X  allows to take into account nonlinear effects between X  and N , yet not 

nonlinear effects with Z . We refer interested readers to Su & White (2003) and Huang 

(2009) for recent procedures of conditional independence testing in a nonparametric 

framework. 

Summarizing the testing procedure, we have first a regression N  on X  to get 
( | )E N X . Secondly, we regress the decision variable Z  on X , N , and ( | )E N X . If the 

coefficient for N  is significant in the second regression, then risk adverse selection is 

detected. The relevant choice for Z  is the insured deductible choice, with X  rating factors 

and N  the observed number of claims. ( | )E N X  will be estimated with a Poisson or more 

sophisticated models, see below. 

5.2 A deductible model 

The deductible choice takes values in the discrete set 0 1{ , , , }Kd d d . The more 

general model is a multinomial model 0(1, , , )Kp p , where each probability parameter 

jp  depends on covariates through a link function. If we assume that variables iZ  are 

independent and identically distributed random variables from a multinomial distribution 

0(1, , , )Kp p  and we use a logit link function, then the multinomial regression is 

defined by  

 

=1

( = ) = ,
1

Txi j

i j K Txi l

l

e
P Z d

e




 

for = 1, ,j K  where 0 is the baseline category and ix  covariate for i th individual, see, 

e.g., McFadden (1981), Faraway (2006) for a comprehensive study of discrete choice 

modelling. 
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When reponses ( 0 1< < < Kd d d ) are ordered (as it is for deductibles), one can 

also use ordered logistic models for which  

 
1

1
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1 1

T Tx xj i j i
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e e

   

   

 

 


 
 

Note that the number of parameters substantially decreases since the linear predictor 

for multinomial logit regression, we have = T
ij i jx  , whereas for the ordered logit, 

= T
ij j ix   . 

The parameters  , called thresholds, have a special interpretation since they link the 

response variable Z  with a latent variable U  by the equation 1= < .k k kZ d U    

Hence, the trick to go from a Bernoulli model to a polytomous model is to have different 

ordered intercept coefficients k 's for the different categorical values. 

As in Dionne et al. (2001), our choice goes to the ordered logit model for its 

simplicity. So Z  is modelled by the following equation  

  1( | , ) = ( | ) ,T
i i i j i i iP Z j X N g X N E N X        

for individual i  and deductible j , with 1g   the logistic distribution function1 and iX  

exogeneous explanatory variables as opposed to endogeneous variables iN . The parameters 

of this model equation are the regression coefficients   and   and the threshold parameter 

k 's. 

5.3 Application on the large dataset of Subsection 3.2 

We want to test for evidence of adverse selection on the full comprehensive (FC) 

coverage product. So, we study in this subsection only the three datasets relative to that 

coverage. First, we model the claim number, and then we test for the asymmetry of 

information. 

5.3.1 Modelling the claim number 

Modelling count data in the generalized linear model framework can be done by 

choosing an appropriate distribution: the Poisson and overdispersed Poisson distribution, 

where the canonical link function is the logarithm. Since for a Poisson distribution ( ) , 

( = 0) =P N e  , the GLM Poisson consists in assuming  

                                                           
1 Note that in this form, it is easy to see that 1g   can be any distribution functions (e.g. normal or extreme value 

distributions). 
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 ( | ) = log ( = 0 | ) = .
Tx Ti

i i iE N x e P N x x
    

where ix  denotes the covariates. In practice, this models suffers a subparametrization of 

the Poisson distribution, one single parameter. 

One could think that the Negative binomial in an extended GLM1 framework will 

tackle this issue, but in practice the mass in zero is so high, that both Poisson and negative 

binomial distributions are inappropriate. As presented in Table 13, the high number of zero-

claim will compromise the good fit of regular discrete distributions. 

 
Claim number 0 1 2 3 4 5 5 <  
Frequency 43687 5308 667 94 17 2 38 

Table  13: Claim number for Full Comp. agent subset 

As presented in Zeileis et al. (2008) and the references therein, the issue is solved by 

using a zero-inflated distribution, e.g., a zero-inflated Poisson distribution. The mass 

probability function is given by  
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Note that N  is a mixture of a Bernoulli distribution ( )  with a Poisson 

distribution ( ) . The mean of the zero-inflated Poisson distribution is (1 )  . Using 

the GLM framework and the canonical link functions, a zero-inflated GLM Poisson model 

is defined as  
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where the covariate vectors 1 2,i ix x  are parts of the vector ix . Now there are two (vector) 

coefficients to estimate   and  . The GLM is implemented in R base by the glm function. 

For the zero-inflated model, we need to use the pscl package, cf. Jackman (2011). 

Still studying the FC agent dataset, we fit three distributions on the claim number: 

Poisson, zero-inflated Poisson and Negative binomial distributions. As shown in Table 18 

in Appendix 8.6, the three models are similar in terms of log-likelihood or AIC. But, 

differences appear at the predictions. 

                                                           
1 The negative binomial distribution does not belong to the exponential family, except if the shape parameter is 
known. So, the trick is to use a maximum likelihood procedure for that shape parameter at outer iteration whereas 
each inner iteration use a GLM fit given the current value of the shape parameter.  
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Despite being equivalent for first probabilities ( = 0,1, 2)P X , cf. Table 14, classic 

and zero-inflated Poisson distributions decrease too sharply compared to the observed 

number of claims. The negative Binomial distribution (fourth line) is far better. In 

Appendix 8.6, we give the regression summary for zero-inflated negative binomial 

distribution on the FC agent subset. We obtain the same conclusion for other FC subsets. 

   
Claim number 0 1 2 3 4 5 6 
Observed 43687 5308 667 94 17 2 2 
Poisson 43337.9 5896.0 500.9 39.8 3.7 0.417 0.054 
zeroinfl. Poisson 43677.6 5267.7 745.0 80.2 7.5 0.665 0.058 
zeroinfl. NB 43704.6 5252.6 704.7 98.8 14.9 2.457 0.442 

Table  14: Claim number prediction for Full Comp. agent subset 

5.3.2 Testing for adverse selection 

Now that we have modelled the claim frequency, we turn to the modelling of the 

deductible choice as described in the previous section: an ordered logistic model. We test 

for evidence of adverse selection on three datasets: agent, broker and direct with Full. 

Comp. products. Let us note that we cannot test adverse selection on TPL covers, since 

there is no deductible for this cover. As reported in Subsection 5.1, adverse selection testing 

is done by a fit of a GLM to explain the deductible choice iZ . In addition to the 

exogeneous variables iX  for i th individual, the regression will use the observed claim 

number iN  (endogeneous) and its expected value coming from the zero-inflated negative 

binomial regression ( | )iE N X  (exogeneous). 

The numerical illustrations reveal that it is more relevant to cluster some deductible 

values which are too few in the dataset. Actually, the deductible is valued in {0 , 150, 300, 

500, 600, 1000, 2000, 2500} . As 300 euros is the standard deductible, very high 

deductibles are rarely chosen. So, we choose to regroup deductible values greater than 500 

together. In Table 15, we report the proportion of customers by deductible value for the first 

two datasets. Small deductible values might reveal high-risk individuals, so we decide to 

keep those values. 

 
Deductible (€) 0 150 300 500+ 0 150 300 500+ 
Proportion (%) 5.17 10.29 70.85 13.68 4.78 7.85 68.21 17.46 
 Agent channel Broker channel 

Table  15: Frequency table for Full Comp. deductibles values 
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As shown in Appendix 8.7 for FC agent subset, the endogeneous variable iN  is not 

statistically significant despite being negative, i.e. the higher the loss number, the lower the 

deductible. But the expected value ( | )iE N X  is significant. For the two other FC datasets, 

both coefficients for iN  and ( | )iE N X  are not significant, but these datasets are also 

smaller in size. We conclude that there is no adverse selection for FC datasets. 

After removing insignificant variables in the deductible regression, we integrate the 

deductible choice predicted probabilities to the lapse regression ( Y ). Let iZ  denote the 

deductible for the i th individual, we incorporate fitted probabilities ˆ( = 0)iP Z , 
ˆ( = 150)iP Z  and ˆ( = 500 )iP Z  . We choose to consider 300 euros as the baseline category, 

as 300-euro deductible is the standard ``unchosen'' deductible. For the FC agent dataset, the 

three probabilities, ˆ( = 0)iP Z , ˆ( = 150)iP Z  and ˆ( = 500 )iP Z  , are significant, see 

Appendix 8.7, whereas for the two other FC datasets some probabilities are not significant. 

We perform the usual predictions for the lapse rate (-5%, 0% and +5% for the proposed 

premium). But we do not present here the lapse rate predictions since predictions are almost 

unchanged1. 

5.4 Conclusion 

This section shows how to use GLM modelling to test for evidence of adverse 

selection. In our dataset, no adverse selection is detected. The inclusion of deductible 

choice probability neither improves the lapse predictions nor helps in understanding the 

lapse decision at aggregate level. But we believe that the deductible choice (especially non 

standard ones) by a customer plays a major role in the propensy of lapse when renewing its 

policy. Low-risk invididuals, i.e. with high deductibles, are likely to be the most sensitive 

customers, unlike to high-risk individuals. 

6. OTHER REGRESSION MODELS 

This section presents other regression models. There are mainly two (static) 

extensions to GLMs in two directions: (i) additive models where the linear predictor is 

composed of smooth terms and (ii) mixed models where we add a random term (as opposed 

to fixed term, i.e. deterministic). These two extensions are available for the exponential 

family distribution, leading to generalized additive models and generalized linear mixed 

models, respectively. In this paper, we discard mixed models as they are inefficient in our 

                                                           
1 difference less than 0.1% pt. 
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context. The first subsection introduces generalized additive models, and then the second 

subsection is devoted to an application. The last subsection details other regression models 

than generalized additive models. 

6.1 Model presentation 

The Generalized Additive Models (GAM) were introduced by Hastie & Tibshirani 

(1990) by unifying generalized linear models and additive models. So, GAMs combine two 

flexible and powerful methods: (i) the exponential family which can deal with many 

distribution for the response variable and (ii) additive models which relax the linearity 

assumption of the predictor. 

6.1.1 Theoretical presentation 

In this subsection, we present Generalized Additive Models (GAM) in two steps: 

from linear to additive models and then from additive to generalized additive models. 

Fitting algorithms are then briefly presented, whereas smoothing techniques are detailed in 

Hastie & Tibshirani (1990) and Venables & Ripley (2002). Finally, we apply GAMs on the 

large dataset of Subsection 3.2. 

Assuming observations iX  and response variables iY  are identically and 

independently distributed random variables having the same distribution of generic random 

variables X  and Y , respectively. Linear models assume by definition a linear relationship 

between X  and Y  motivated by mathematical tractability rather than empirical evidence. 

One candidate to extend linear models is the additive model for which the relation between 

X  and Y  is modelled by a smooth function. 

Thus, a GAM is characterized by three components:   
1. a random component: iY  follows a distribution of the exponential family 

( , , , , )exp i i a b c  ,  

2. a systematic component: the covariate vector iX  provides a smooth predictor 

=1
= ( )

p

i j ijj
f X   ,  

3. a link function :g S  which is monotone, differentiable and invertible, 

such that 1( ) = ( )i iE Y g  ,  

for {1, , }i n  , where i  is the shape parameter, i  the dispersion parameter, , ,a b c  

three functions (characterizing the distribution), jf 's smooth functions and S  a set of 

possible values of the expectation ( )iE Y . Note that linear models (and GLMs) are special 
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cases of additive models (and GAMs) with ( ) =j jf x x . 

We present here only the main idea of fitting algorithms and do not go into details, 

see Hastie & Tibshirani (1990) or Venables & Ripley (2002) for details. All smoothers 

have a smoothing parameter   (the polynom degree, the bandwidth or the span). A first 

concern is how to choose a criterion on which to optimize   (hence to have an automatic 

selection). Then, a second concern is to find a reliable estimate of the parameters   and 

smooths coefficients given a smoothing value  . 

We present the procedure in the reverse way. Assuming a value of  , we present an 

algorithm to fit the model. Hastie & Tibshirani (1990) propose a local averaging 

generalized Fisher scoring method. However, Wood (2008) proposes a recent and reliable 

method: the Penalized Iteratively Reweighted Least Square method (PIRLS). The PIRLS is 

(unsurprisingly) an iterative method aiming to minimize the penalized deviance  

  2
1

=1

= ( , , ) ( ) ,
p

p j j j j
j

D D f f f x dx    

where the second term penalizes the wiggly behavior of smooth functions. 

Given a set of basis functions ( )jk jkb , we can express the smooth function jf  as 

=1
( ) = ( )

K j
j jk jkk

f x b x . So, in the end, the GAM can be represented as a GLM with 

= ii X   with  iX  containing the basis functions evaluated at the covariate values and   

containing linear parameter   and coefficients jk 's. Thus, the first term is fully 

determined. Hence, the penalized deviance is given by  

 ( ) = ( ) ,T
j j

j

D D S      

where = ( ( ))j jk i ikS b x  contains known coefficients and ( )D   the GLM version of the 

deviance for the fixed-basis GAM model. See Wood (2008) for details on how the PIRLS 

algorithm solves the problem min ( )D  . 

The PIRLS algorithm gives for any   the corresponding fitted coefficient ˆ ( )  , 

i.e. smooth functions ˆ
jf . Now, we must find a criterion to select the appropriate vector  . 

We cannot choose the smoothing parameter   as the parameter minimizing the deviance, 

because the model will overfit the data. In the literature, there are many criteria to select the 

smoothing parameter: likelihood measures such as Restricted Maximum Likelihood 

(REML), Maximum Likelihood (ML) and cross validation measures such as Generalized 

Cross Validation (GCV), Generalized Approximate Cross Validation (GACV). These 
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methods differ whether the smoothing parameter is treated as a random effect or not. So we 

either maximize a quantity linked to the likelihood (ML/REML) or minimize a prediction 

error (GCV/GACV). 

Expressions of log-likelihood criterion (ML and REML) use the deviance of the 

model, the satured deviance and a third-term penalizing the wiggliness of the smooth 

function jf . The optimization procedure consists in using a Newton method for the 

optimization of the parameter   where in each iteration a PIRLS is used (to find ( )  ). 

So, this is a nested optimization where outer iteration optimizes over   and the inner 

iterations optimized over  , see Wood (2010) for details. 

An alternative approach seeks in minimizing the prediction error. The predictive 

error may seem difficult to assess, but the trick is to use a leave-one-out procedure. It 

consists in computing n  deviances iD  where iD  is the deviance without the i th 

observation. The deviance cross validation is just a sum of the iD 's. In practice we do not 

fit n  times the model (clearly too expensive!) but an approximation is used to compute the 

GCV or GACV. Then again, a nested optimization procedure using the PIRLS scheme is 

used. 

We test GCV and REML criteria with different polynomial bases on simple 

examples and conclude that the criterion and the choice of polynomial basis have few 

impact on the final model. Thus, in the following, we use the REML criterion to determine 

the appropriate   and thin plate basis regression. The thin plate regression uses a basis of 

thin plate (also known as polyharmonic functions) functions 2( ) = log( )m d
md mdr r r    if d  

is even and 2m d
md r   if d  is odd. The smooth function is defined as 

2=1
( ) = (|| || )

n

i md ii
s x x x   . A low-rank approximation of this smooth function is then 

used to decrease the computational burden. This method avoids the knot placement 

problems of traditional regression spline models. 

6.1.2 Binary regression and model selection 

As for GLMs, the binary regression means we assume that iY  follows a Bernoulli 

distribution ( )i , i  being linked to explanatory variables. So, the model equation is  

 1= ( ),i ig   

where g  is the link function and i  the predictor. Unlike the GLM where the predictor 

was linear, for GAMs the predictor is a sum of smooth functions:  
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the latter being a semi-parametric approach. As suggested in Hastie & Tibshirani (1995), 

the purpose to use linear terms can be motivated to avoid too much smooth terms which can 

noise one another and are longer to compute (than linear terms). For instance, if a covariate 

represents the date or the time of events, it is “often” better to consider the effect as an 

increasing or decreasing trend with a single parameter i . 

As for GLMs, we are able to compute confidence intervals using the Gaussian 

asymptotic distribution of the estimators. The variable selection for GAMs is similar to 

those of GLMs. The true improvement is a higher degree of flexibility to model the effect 

of one explanatory variables on the response. The procedure for variable selection is similar 

to the backward approach of GLMs, but a term is dropped only if no smooth function and 

no linear function with this term is relevant. That is to say, a poor significance of a variable 

modelled by a smooth function might be significant when modelled by a single linear term. 

We use the following acceptance rules of Wood (2001) to drop an explanatory 

variable: 

- Is the estimated degrees of freedom for the term close to 1?  

- Does the plotted confidence interval band for the term include zero 

everywhere?  

- Does the GCV score drop (or the REML score jump) when the term is 

dropped?  

If the answer is “yes” to all questions (a, b, c), then we should drop the term. If only 

question (a) answer is “yes”, then we should try a linear term. Otherwise there is no general 

rule to apply. For all the computation of GAMs, we use the recommended R package  mgcv 

written by S. Wood. 

6.2 Application to the large dataset 

In Section 3.2, the GLM analysis of this large dataset reveals that the channel 

distribution strongly impacts the GLM outputs. Especially, the lapse gap between tied-

agent and other channels is far stronger than what we could expect. Moreover, the price 

sensitivity gap measured by the lapse deltas is also high. Let us see this it still holds with 

GAM results. 
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On each channel and cover, we first estimate a GAM by modelling all the terms by a 

smooth function. And then we apply the Wood's rules to remove, to linearize or to 

categorize the explanatory variables. In Appendix 8.8, we provide the regression summary 

for one of the nine subsets. 

6.2.1 Comments on regression summary 

In this subsection, we briefly comment on the nine regression summaries. Let us 

start with the Third-Part Liability cover. For the agent subset, for which we have a market 

proxy, we keep four non linear terms (premium difference variables and car class) all 

modelled jointly with the price ratio. We try to model these terms independently of price 

ratio, but this was worse in terms of REML scores. On the broker subset, we keep two non 

linear terms (difference to technical premium and vehicle age). Only the first term is 

modelled jointly with the price ratio, because the second term has a linear effect with the 

price ratio. Due to a small size, the direct subset was hard to handle with a GAM. We 

restrict the price ratio to be a smooth term of small order. This dataset also shows some 

strange results with a negative elasticity for small premium increase. 

Studying Partial Comprehensive coverage is also challenging. For the agent subset, 

despite many attempts, only the price ratio (alone) has a real benefit to be modelled non 

linearly. This dataset is sufficiently big to make a lot of explanatory variables significant. 

And so we believe a big part of price sensitivity is explained by linear terms. As for the 

TPL covers, the same variables are modelled non linearly for the broker subset, jointly with 

the price ratio. The high estimated degrees of freedoms emphasize this non linearity. 

Turning to the direct channel, only the difference to technical premium variable is modelled 

through a smooth function, jointly with the price ratio. 

Finally, we study the Full Comprehensive coverage product. As always, the agent 

subset has many nonlinear terms. Three terms (driver age, difference to technical premium 

and car class) are smoothed together with the price ratio. Again, the estimated degrees of 

freedom are high, especially for the difference to technical premium variable. Regarding 

the broker subset, four terms (driver age, vehicle age, difference to technical premium and 

car class) are modelled non linearly. We retrieve the difference with technical premium and 

the vehicle age as non linear terms. There might be a process made by brokers to target old 

vehicles and/or to detect a strong difference with technical premium. So, the brokers have a 

major impact on the lapse decision. Ending with the direct subset, only two terms are 
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modelled non linearly (the driver age, difference to technical premium): the estimated 

degree of freedom for the policyholder age variable is high. This may be linked to the close 

relationship between the motor (technical) premium and the policyholder age. 

6.2.2 Examples of fitted smooth functions 

In the preceding analysis, we observe some trends between channel distributions. 

Notably, the broker channel results are more sensitive to the difference with technical 

premium and the vehicle age variables than the other two channels. There is also a data size 

effect, since the data sets gradually increase in size from TPL and PC to FC covers. Of 

course, the more we have data, the more the regression is reliable. 

On Figure 2, we plot two fitted smooth functions from two different GAM 

regressions1. Figure 1 represents the smooth function for the price ratio variable of the PC-

agent regression. We observe that the smooth function is highly non linear, i.e. a high 

degree of freedom of 6.35. The smooth function features a very sharp increase of the price 

ratio around 1: such steep increase is not possible with a linear predictor. 

 

  
a) PC agent - price ratio smooth function b) FC broker - bivariate smooth function 

Figure  2: GAM smooth functions 

Figure 1 is the plot of the bivariate smooth function of the price ratio and the 

difference to technical premium variable for FC broker dataset. There is a small hollow in 

the curve around the point (1, 0), a price ratio of 1 and a zero difference with technical 

                                                           
1 The grey area represents the standard error bandwidth around the smooth function. It is standard to use an area 
rather than two simples curves for the confidence interval: this suggests smooth functions lies in such area. 
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premium. Locally, the price elasticity of the lapse decision is negative. Fortunately, this 

business inconsistency is small and located. If we had market variables for this dataset, it 

could be of interest to check whether this anomaly vanishes. 

6.2.3 Discussion on predictions 

As for the GLM analysis, we turn to the analysis of the distribution channel and the 

coverage type by looking at the lapse rate predictions. We also consider an average lapse 

rate function defined as  

 1

=1 =1

1 ˆˆ ˆˆ ˆ( ) = ( ) ( ) ( ( ), ) ,
pn

T T
n i p i p j i

i j

p g x p z p p f z p p
n

   
 

 
    

 
    (5) 

 where ˆ ˆˆ( , , )p p     are the fitted parameters, ˆ
jf  are the fitted smooth functions, 

( , , )i i ix z z  are parts of explanatory variables of the i th individual and g  is the logit link 

function. What differentiates Equation (5) with Equation (1) is the inclusion of additive 

terms in the predictor. 

 

 
a) GAM b) GLM 

Figure  3: GAM vs. GLM - comparison of distribution channels and cover types 

On Figure 3, we plot the usual bubble plot to compare GAMs and GLMs. We 

observe that GAM delta lapse rate predictions are higher than GLM ones in most cases. 

This is especially true for PC agent or FC broker: there is a high jump upward. Only two 

channel-covers have a lower delta lapse rate 1 (5%)  with GAMs: the FC direct case, a 

case where the dataset is small (so the GAM model selection was hard) and the FC agent 

case where the difference is limited. 
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In terms of central lapse rates, most of predictions ˆ (1)n  are higher, i.e. shift to the 

right on Figure 3. It means that the customers in the portfolio are more price-sensitive even 

if we propose exactly the same premium as last year. On a private motor insurance, most 

people expect a better bonus-malus from year to another, hence a premium decrease. 

Now, we stop the GAM analysis and conclude on the pros and cons of GAMs. 

GAMs are less known tools than GLMs in actuarial science. But since their introduction in 

the 90's, GAMs are well studied and use state-of-the-art fitting procedures. There are two 

ways to perform model selections: prediction errors vs. likelihoods. In this paper, we follow 

the Wood's rule to select variables based on the restricted maximum likelihood. We tested 

other statistical quantities, but the impact remains limited. 

As for GLMs, GAMs allow us to assess an overall estimated price elasticity (via 

ˆ (1)n  and 1 (5%) ) taking into account the individual features of each policy. The 

additional complexity coming with additive modelling compared to GLMs permit to really 

fit the data. Especially for broker lines, we get a more cautious view of customer price 

sensitivity. For small datasets, GAM predictions may lead to irrelevant results. 

Furthermore, as already noticed for GLMs, GAMs predictions are reliable for with a small 

range of price change: extrapolating outside observed price ratio range leads to doubtful 

results. 

Finally, GAMs need a longer time to fit than GLMs and require a better computing 

power. This is a limitation for GAMs to be used easily by everyone. In addition, some user 

judgement is needed to select, to linearize or to reject explanatory variables in order to get 

the final model for GAMs. Even with Wood's rules, newcomers may find it hard to choose 

between two GAM models with the same ``score'', i.e. with the same likelihood or 

prediction errors. 

6.3 Other regression models 

GLMs and GAMs are static models. One option to take into account dynamics could 

have been to use time serie models on regression coefficients of GLMs. But this was 

impossible with our datasets due to a limited number of years and it is rather a trick than an 

appropriate solution. Generalized Linear Mixed Models (GLMM), where the linear 

predictor becomes the sum of a (unknown deterministic) fixed term and a random term, are 

a natural extension of GLMs to deal with heterogeneity across time. 
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Among many others, Frees (2004) presents GLMMs in the context of longitudinal 

and panel data. Since a panel data model cannot deal with right-censoring (that occurs when 

a policy is terminated), they are not appropriate to our policy termination problem, i.e. 

lapse. Despite discarding GLMMs for dynamic lapse modelling, we try to use the GLMMs 

on one period in order to model endogeneous effects such as dropping coverage with a 

random term. Unfortunately, the application of GLMMs to our lapse problem reveals 

inefficient on our datasets. 

The Survival Regression Model of Cox (1972) allow to remove the inherent limits 

of the static regression models previously presented. By nature, they take into account the 

dynamic aspects of the response variable considering it as a lifetime variable. In our 

context, the lapse decision model can be expressed as the lifetime of an insurance policy, 

i.e. lapse means the termination of the policy for a given policy age. Thus, the dataset must 

contain the policy age if one wants to use the basic Cox model. Furthermore, if one allows 

explanatory variables to vary over time (i.e. extended Cox model), we need to observe 

multiple times the customer choices and the explanatory variables. Typically the dataset 

will look like below  

 

1 1, , 2, , 3, ,

1 3 4 0 4 34 28

2 1 2 0 9 17 71

2 2 3 0 10 17 72

2 3 4 0 11 17 73

2 4 5 0 12 17 74

3 3 4 0 5 25 61

i i i i t i t i ti i i
i t t y x x x



 

where information for individual #2  is surrounded. As GLMs and GAMs demonstrate, 

renewing a policy for the first time is not motivated by the same factors as renewing one for 

the tenth time. This will remain true for survival regression models, see Brockett et al. 

(2008) and (Dutang, 2011, Chap. 4) for an application of such models. 

The full power of survival models is not only to model one lapse reason. Other 

policy termination factors can be integrated so as to model the complete life cycle of a 

policy. With a full picture integrating other cash flows such as claims, and premiums, 

insurance risk could also be better assessed. Further advanced models than the Cox model 

regression exists, such as state-space models, e.g., Fahrmeir (1994) or stochastic counting 
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processes, see, e.g., Andersen et al. (1995), Aalen et al. (2008). Some attempts have been 

done to use Fahrmeir (1994)'s state space model, but the fitting process was too heavy to be 

quickly used. 

7. CONCLUSION 

Fitting price-sensitivity is a complex topic. Being dependent on the market's 

environment, price elasticity forecasts require rigorous attention to details to prevent the 

risk of erroneous conclusions. Not surprisingly, a data cleaning process is essential prior to 

any regression fitting. In short, some supplied explanatory variables substantially affect the 

results. Omitting these variables in the data can, in itself, lead to unreliable findings. 

These must-have variables include distribution channels, market premium proxies, 

rebate levels, coverage types, driver age, and cross-selling indicators. In Section 3, the 

small dataset only provides the driver age: this example leads to inconclusive results. On 

the large dataset, the coverage type, and the cross-selling indicators were added to the 

regression fit. This enabled us to refine our analysis. Having or not having a household 

policy with the same insurer was thus proven to be a driving factor in renewing or allowing 

a contract to lapse. 

However, fully reliable predictions are only achieved when the rebate level and 

market premium proxies are used. In Section 4, the price sensitivity fit was considerably 

enhanced, along with our ability to fine tune the results, thanks to the inclusion of 

distribution channels, a market proxy, and a rebate level. With the gradual addition of 

explanatory variables, we have seen an increased accuracy of the lapse rate predictions. 

Disposing of market variables proved to make testing market scenarios possible (e.g. -5%, 

+5%). Being able to provide such forecasts is highly valuable in taking pricing actions. If 

those market proxies are no longer available, we are likely to get back to less meaningful 

results. 

Adverse selection resulting from an asymmetry of information is a widely known 

risk in insurance. Section 5 investigates for empirical evidence of adverse selection and 

studies its relationship to the lapse decision of customers. On our large dataset, no adverse 

selection is detected. At aggregate level, adverse selection does not have a big influence. 

Nevertheless, at individual level, choosing a non-standard deductible when underwriting a 

new policy will certainly have consequences on the termination of this policy. 

Generalized Linear Models are widely known and respected methods in non-life 
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insurance. However, they have some inherent constraints with GLMs. Thus, in Section 6, 

we test Generalized Additive Models, which allow for non linear terms in the predictor. 

Like GLMs, the quality of the findings attained is directly related to the data provided. 

Using limited variables will produce approximate results, whereas, dealing with an 

extensive set of variables lead to proven results. 

Applying GAMs, despite their additional complexity, can be justified in cases where 

GLMs fail to provide realistic lapse predictions and we have substantial datasets. Note that 

GAMs can model interactions between explanatory variables. Not restricted to linear terms, 

they consequently provide us with a more adaptive tool. Caution should however be 

exercised, as they may overfit the data when applied to limited datasets. This could then 

imply business inconsistency. 

In this paper, we have explored the price elasticity topic from various viewpoints. 

Once again, our research has further demonstrated that the quality of data used in actuarial 

studies unequivocally affects the findings reached. In addition, the key role of the market 

proxies in estimating price sensitivity has been established. Market competition modelling, 

see, e.g., Demgne (2010), Dutang et al. (2012), is therefore relevant. 

The conclusions drawn from customer price sensitivity studies should in any respect 

be weighed carefully. Charging higher premiums to loyal customers could seem unfair in 

light of the fact that those same customers usually have a better claims history. By the same 

token, relying on the market context with its inherent uncertainty to predict price sensitivity 

could be misleading. In summary, insurers must have a well informed overview of the 

market, the customer base, and a keen awareness of the pros and cons of potential pricing 

adjustments. The models presented herein serve as decision-making support tools and 

reinforce business acumen. 
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8. APPENDIX 

8.1 R outputs 

8.1.1 Bronchitis dataset 

Let us study the example of Bronchitis data of Turner (2008). The data consists of 

212 patients, on which we measure the presence/absence of bronchitis B  for bron, the air 

pollution level in the locality of residence P  for poll and the number of cigarettes smoked 

per day C  for cigs, see Appendix 8.1. Let us first regress the bronchitis indicator on all 

variables  

 
1 1 11

=     = ,

1n n n

B P C

Y and X

B P C

   
   
   
   
   

     

with a logit link function. The regression summary is given below   

Call: glm(formula = bron ~ 1 + cigs + poll, family = binomial)  

Deviance Residuals:  
 Min  1Q  Median  3Q  Max  
 -2.4023  -0.5606 -0.4260 -0.3155 2.3594  
 
Coefficients:  Estimate  Std. Error  z value  Pr(>|z|)  
(Intercept)  -10.08491  2.95100  -3.417  0.000632 ***  
cigs  0.21169  0.03813  5.552  2.83e-08 *** 
poll  0.13176  0.04895  2.692  0.007113 ** 

 ---  
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
Null deviance: 221.78 on 211 degrees of freedom  
Residual deviance: 174.21 on 209 degrees of freedom - AIC: 180.21  

So the GLM fit seems good because all variables (including intercept) are significant 

with a very low p-value. However the plot of residuals1 (see Figure 3) against fitted values1 

                                                           
1 Working residuals are ˆ ˆ=i i iY  . Note that using other residual types, Pearson, Studentized, do not change this 

behavior. 
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is quite puzzling. Two distinct curves are shown: one for ill patients and the other for 

healthy ones. 

 

 

a) Binary data b) Binomial data 

Figure  4: Analysis of residuals for binary regression 

When categorizing the P  variable, we lose information but we transform binary 

data into binomial data. This makes the fit better on this aspect, see Figure 3. So for the 

same data, with the same (significant) variables, the two analyses of residuals lead to 

different conclusions. Hence, conclusions of residual analysis must be taken with great 

care. 

8.1.2 GLM outputs of Section 3.1 

See below the summary table with coefficients values, standard errors, z-statistics 

and p-value. For confidentiality reason, all the deviance and AIC statistics shown in this 

paper have been scaled by the same positive coefficient. Here follows the regression 

summary when variables are categorical.   

 
Call: glm(formula = did_lapse ~ agepolgroup2 + priceratio:agegroup4 + priceratio * (gender + 
agevehgroup2 + prembeforegroup2), family = binomial(), data = workdata)  

Deviance Residuals:  
 Min  1Q  Median  3Q  Max 
 -3.1587  -0.6633  -0.6060 -0.5193  2.8747  

 

                                                                                                                                                    
1 Fitted values are ˆi . 
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Coefficients:  

 Estimate  Std. Error  z value  Pr(>|z|)  
(Intercept)  -2.522477  0.120852  -20.873  < 2e-16 *** 
agepolgroup2(4,49] -0.153793  0.007270  -21.154  < 2e-16 ***  
genderMALE  0.681454  0.117045  5.822 5.81e-09 ***  
agevehgroup2(5,10]  -0.684290  0.106741  -6.411  1.45e-10 *** 
agevehgroup2(10,99]  -0.262674  0.101038  -2.600  0.00933  **  
prembeforegroup2(500,1e+03] -0.295837 0.137011 -2.159 0.03083 * 
prembeforegroup2(1e+03,1e+04]  -0.923435 0.283603 -3.256 0.00113 ** 
priceratio 1.018771 0.120903 8.426 < 2e-16 *** 
priceratio:agegroup4(35,60] -0.352247 0.008083 -43.579 < 2e-16 *** 
priceratio:agegroup4(60,99] -0.674209 0.011248 -59.938 < 2e-16 *** 
priceratio:genderMALE -0.607070 0.116885 -5.194 2.06e-07 *** 
priceratio:agevehgroup2(5,10] 0.956935 0.106426 8.992 < 2e-16 *** 
priceratio:agevehgroup2(10,99] 0.766736 0.100552 7.625 2.44e-14 *** 
priceratio:prembeforegroup2(500,1e+03] 0.569856 0.138151 4.125 3.71e-05 *** 
priceratio:prembeforegroup2(1e+03,1e+04] 1.340304 0.285123 4.701 2.59e-06 *** 

 ---  
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
Null deviance: 53978 on 56026 degrees of freedom  
Residual deviance: 53258 on 56012 degrees of freedom - AIC: 53261  

8.1.3 Variable list for Subsection 3.2 

The dataset is quite rich, therefore we have the detailed features of each policy. We 

write below a subset of the available explanatory variables:   

- Policy: a dummy variable indicating the lapse, the policy age, the cover 

type (TPL, PC or FC) and the product, the bonus class for PC and FC 

covers and the bonus evolution,  

- Policyholder: the policyholder age and the gender, the marital status and the 

job group,  

- Premium: the last year premium, the technical premium and the proposed 

premium, the payment frequency, the market premium, i.e. the tenth lowest 

NB premium for a particular category,  

- Car: the mileage, the vehicle age, the car usage, the car class,  

- Cross-selling: the number of insurer contracts in household, a dummy 

variable on household policy,  

- Claims: the claim amount, the claim number per year,  

- Agent: the cumulative rebate, the technical rebate, the age difference 

between the agent and the policyholder.  
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8.1.4 GLM outputs for Subsection 3.2 

The regression summary is given below   
Call: glm(formula = lapse ~ lastprem_group2 + diff2tech + directdebit + product + 
nbclaim0708percust + vehiclage + householdNbPol + polholderage + maritalstatus2 + jobgroup2 + 
gender + polage + bonusevol2 + cover + priceratio:(lastprem_group2 + diff2tech + paymentfreq + 
glasscover + region2 + nbclaim08percust + householdNbPol + diffdriverPH7 + channel + 
typeclassTPL + bonusevol2), family = binomial("logit"), data = idata)  

Deviance Residuals:  
 Min  1Q  Median  3Q  Max  
 -3.1241  -0.4366  -0.3427  -0.2402  3.3497  

Coefficients:  

 Estimate  Std. Error  z value  Pr(>|z|)  
(Intercept)  -2.6456876 0.1822517 -14.517 < 2e-16 *** 
lastprem_group2(500,5e+03]  0.2008839 0.0952157 2.110 0.034878 *  
diff2tech  6.9600797 0.7949370 8.756 < 2e-16 *** 
directdebit  -0.0422104 0.0097823 -4.315 1.60e-05 *** 
productT1 -0.1060909 0.0185019 -5.734 9.80e-09 *** 
productT2 -1.0107703 0.0336376 -30.049 < 2e-16 *** 
productT3 -0.3869057 0.0193135 -20.033 < 2e-16 *** 
nbclaim0708percust 0.0802148 0.0061759 12.988 < 2e-16 *** 
vehiclage -0.0172387 0.0010180 -16.934 < 2e-16 *** 
householdNbPol -0.1638354 0.0156899 -10.442 < 2e-16 *** 
polholderage -0.0106258 0.0003000 -35.417 < 2e-16 *** 
maritalstatus2b -0.1455813 0.0266586 -5.461 4.74e-08 *** 
maritalstatus2d -0.1088016 0.0119736 -9.087 < 2e-16 *** 
jobgroup2public -0.1529926 0.0079183 -19.321 < 2e-16 *** 
gender -0.0739520 0.0077666 -9.522 < 2e-16 *** 
polage -0.0245842 0.0006806 -36.123 < 2e-16 *** 
bonusevol2up-down 1.9010618 0.1746998 10.882 < 2e-16 *** 
coverpartial compr. 0.0244814 0.0099107 2.470 0.013504 * 
coverTPL -0.0349025 0.0131839 -2.647 0.008112 ** 
priceratio:lastprem_group2(0,500] 1.0418939 0.1840274 5.662 1.50e-08 *** 
priceratio:lastprem_group2(500,5e+03] 1.0246974 0.2000580 5.122 3.02e-07 *** 
priceratio:diff2tech -8.7933934 0.7867136 -11.177 < 2e-16 *** 
priceratio:paymentfreq -0.0136538 0.0010577 -12.909 < 2e-16 *** 
priceratio:glasscover -0.0865708 0.0139001 -6.228 4.72e-10 *** 
priceratio:region2_02-04-05-11 0.3608514 0.0207136 17.421 < 2e-16 *** 
priceratio:region2_03-09-10 0.1368317 0.0109978 12.442 < 2e-16 *** 
priceratio:region2_04-05-06-07 0.0935641 0.0103280 9.059 < 2e-16 *** 
priceratio:region2_12-13 0.3938396 0.0166819 23.609 < 2e-16 *** 
priceratio:region2_14-15-16 0.4424354 0.0160587 27.551 < 2e-16 *** 
priceratio:region2_17_ 0.4812002 0.0243385 19.771 < 2e-16 *** 
priceratio:nbclaim08percust -0.0374916 0.0102707 -3.650 0.000262 *** 
priceratio:householdNbPol 0.0794544 0.0157004 5.061 4.18e-07 *** 
priceratio:diffdriverPH7learner 17 0.2768748 0.0578518 4.786 1.70e-06 *** 
priceratio:diffdriverPH7only partner 0.0976821 0.0077879 12.543 < 2e-16 *** 
priceratio:diffdriverPH7young drivers 0.1684370 0.0148135 11.371 < 2e-16 *** 
priceratio:channelbroker 0.3954067 0.0089064 44.396 < 2e-16 *** 
priceratio:channeldirect 0.3715832 0.0132034 28.143 < 2e-16 *** 
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priceratio:typeclassTPL 0.0108773 0.0016963 6.412 1.43e-10 *** 
bonusevol2up-down:priceratio -1.8295464 0.1740807 -10.510 < 2e-16 ***  
 
--- Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
Null deviance: 62279 on 121813 degrees of freedom  
Residual deviance: 58739 on 121809 degrees of freedom - AIC: 58747  
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Agent 8.840 7.714 FC 8.962 7.492 
Broker 9.245 8.896 PC 9.464 8.846 
Direct 11.837 9.005 TPL 10.222 12.522 

Table  16: Lapse rates (%) 

 

   1 (5%)    ˆ (1)n   1 (5%)   1 (5%)    ˆ (1)n   1 (5%)   

Channel agent -0.983 8.652 1.23 -0.759 8.732 0.75 
Channel broker -1.344 9.123 1.841 -1.255 9.422 1.299 
Channel direct -1.246 12.341 1.143 -1.18 11.597 1.268 
Channel One fit by channel One fit for all channels 
 1 (5%)  ˆ (1)n  1 (5%)  1 (5%)  ˆ (1)n  1 (5%)  

Coverage FC -0.926 8.297 1.01 -0.622 8.723 0.97 
Coverage PC -0.635 9.347 1.195 -0.714 9.244 1.063 
Coverage TPL -0.973 12.011 1.876 -0.899 10.179 1.178 
Coverage One fit by coverage One fit for all coverages 

Table  17: Predicted lapse rates by channel and coverage 

8.1.5 GLM outputs for Subsection 4.2 

The regression summary without using the market proxy is given below.   
Call: glm(formula = lapse ~ diff2tech + product2 + region2 + cumulrebate3 + nbclaim0608percust + 
isinsuredinhealth + isinsuredinlife + vehiclage + householdNbPol + polholderage + maritalstatus2 + 
jobgroup2 + gender + typeclassTPL + bonusevol2 + priceratio:(diff2tech + paymentfreq + 
nbclaim08percust + nbclaim0608percust + nbclaim0708percust + isinsuredinaccident + 
householdNbPol + gender + typeclassTPL + bonusevol2), family = binomial("logit"), data = idata)  

Deviance Residuals:  
 Min  1Q  Median  3Q  Max  
 -1.2613  -0.4104  -0.3482  -0.2792 3.1127  

Coefficients:  
 Estimate Std. Error z value Pr(>|z|) 
(Intercept) -1.3513224 0.1034727 -13.060 < 2e-16 *** 
diff2tech 7.8972018 1.4461272 5.461 4.74e-08 *** 
product2T1 -0.1275087 0.0321359 -3.968 7.25e-05 *** 
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product2T2 -0.2762145 0.0348857 -7.918 2.42e-15 *** 
region2_02-04-11 0.2886433 0.0427885 6.746 1.52e-11 *** 
region2_05 0.1878357 0.0277600 6.766 1.32e-11 *** 
region2_08-09 0.0661201 0.0259573 2.547 0.010857 * 
region2_10 0.4506006 0.0906820 4.969 6.73e-07 *** 
region2_12-13 0.3729663 0.0404406 9.223 < 2e-16 *** 
region2_14-15-16 0.4591227 0.0406760 11.287 < 2e-16 *** 
region2_17 0.4469127 0.0609890 7.328 2.34e-13 *** 
cumulrebate3 0.0131512 0.0220328 0.597 0.550581 
nbclaim0608percust 0.2538161 0.0861386 2.947 0.003213 ** 
isinsuredinhealth -0.2117021 0.0737189 -2.872 0.004082 ** 
isinsuredinlife -0.0904838 0.0403864 -2.240 0.025061 * 
vehiclage -0.0418472 0.0024594 -17.015 < 2e-16 *** 
householdNbPol -0.1608386 0.0347312 -4.631 3.64e-06 *** 
polholderage -0.0142367 0.0007987 -17.824 < 2e-16 *** 
maritalstatus2b -0.2473493 0.0756033 -3.272 0.001069 ** 
maritalstatus2d -0.1026557 0.0339761 -3.021 0.002516 ** 
jobgroup2public -0.1564253 0.0212887 -7.348 2.01e-13 *** 
gender -0.8573031 0.1748974 -4.902 9.50e-07 *** 
typeclassTPL -0.1127455 0.0320514 -3.518 0.000435 *** 
bonusevol2up-down 3.5129944 0.6064173 5.793 6.91e-09 *** 
priceratio:diff2tech -8.7833478 1.4474939 -6.068 1.30e-09 *** 
priceratio:paymentfreq -0.0314041 0.0025894 -12.128 < 2e-16 *** 
priceratio:nbclaim08percust -0.1047064 0.0383473 -2.730 0.006324 ** 
priceratio:nbclaim0608percust -0.2269052 0.0913726 -2.483 0.013017 * 
priceratio:nbclaim0708percust 0.1429228 0.0365854 3.907 9.36e-05 *** 
priceratio:isinsuredinaccident -0.1395317 0.0505194 -2.762 0.005746 ** 
priceratio:householdNbPol 0.0817417 0.0347087 2.355 0.018519 * 
priceratio:gender 0.7813407 0.1758044 4.444 8.81e-06 *** 
priceratio:typeclassTPL 0.1300911 0.0320887 4.054 5.03e-05 *** 
priceratio:bonusevol2up-down -3.3300573 0.6048578 -5.506 3.68e-08 *** 

---  
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
Null deviance: 9151 on 18893 degrees of freedom  
Residual deviance: 8866 on 18860 degrees of freedom - AIC: 8873  

8.1.6 GLM outputs for Subsection 5.3.1 

  
Poisson 

zeroinfl. 
Poisson 

zeroinfl. NB 

log  -27571 -28372 -28105 
AIC 45197 46797 46258 
Deg. of free. 27 26 26 

Table  18: Model adequacy for claim frequency of FC agent 

Here follows the regression summary for zero-inflated NB distribution fit.   
Call: zeroinfl(formula = nbclaim08FC ~ bonuspercentnew + bonusevol2 + lastprem_group2 + 
isinsuredinhealth + isinsuredinlife + isinsuredinaccident + polage + vehiclage + polholderage + 
typeclassFC + diffdriverPH2 + gender | lastprem_group2 + diff2tech + isinsuredinaccident + polage + 
polholderage, data = subdata, dist = "negbin")  
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Pearson residuals:  
 Min  1Q  Median  3Q  Max 
  -0.6907  -0.3701  -0.3263  -0.2836  27.6615  

Count model coefficients (negbin with log link):  
 Estimate Std. Error zvalue Pr(>|z|) 
(Intercept) -2.5053555 0.0463173 -54.091 < 2e-16 *** 
bonuspercentnew -0.0045481 0.0004473 -10.168 < 2e-16 *** 
bonusevol2up-down 0.2814031 0.0108215 26.004 < 2e-16 *** 
lastprem_group2(500,5e+03] 0.2867385 0.0125864 22.782 < 2e-16 *** 
isinsuredinhealth 0.2536512 0.0129962 19.517 < 2e-16 *** 
isinsuredinlife 0.1500995 0.0101994 14.716 < 2e-16 *** 
isinsuredinaccident 0.1545091 0.0132603 11.652 < 2e-16 *** 
polage -0.0045662 0.0008071 -5.657 1.54e-08 *** 
vehiclage -0.0116381 0.0012641 -9.207 < 2e-16 *** 
polholderage 0.0052154 0.0006398 8.152 3.59e-16 *** 
typeclassFC 0.0259947 0.0012908 20.139 < 2e-16 *** 
diffdriverPH2all drivers > 24 0.1603390 0.0110572 14.501 < 2e-16 *** 
diffdriverPH2commercial 0.5143316 0.0338102 15.212 < 2e-16 *** 
diffdriverPH2learner 17 0.2501158 0.0642750 3.891 9.97e-05 *** 
diffdriverPH2same -0.1661160 0.0111876 -14.848 < 2e-16 *** 
diffdriverPH2young drivers 0.2524112 0.0158128 15.962 < 2e-16 *** 
gender -0.0593577 0.0088454 -6.711 1.94e-11 *** 
Log(theta) 0.2848294 0.0330418 8.620 < 2e-16 *** 
  

Zero-inflation model coefficients (binomial with logit link):  
 Estimate Std. Error z value Pr(>|z|) 
(Intercept) -7.299505 0.367536 -19.861 < 2e-16 *** 
lastprem_group2(500,5e+03] -0.484487 0.081025 -5.979 2.24e-09 *** 
diff2tech -7.214606 0.562964 -12.815 < 2e-16 *** 
isinsuredinaccident -0.256634 0.098848 -2.596 0.00942 ** 
polage -0.011704 0.004260 -2.747 0.00601 ** 
polholderage 0.094674 0.004658 20.326 < 2e-16 *** 

---  
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
Theta = 1.3295  
Number of iterations in BFGS optimization: 77  
Log-likelihood: -2.81e+04 on 24 Df  

8.1.7 GLM outputs for Subsection 5.3.2 

We give the regression summary for ordered logistic regression for FC agent subset. 

The GLM regression summary for lapse on the FC agent subset including deductible choice 

probabilities is available on request to the author.   
Call: polr(formula = deductibleFC3 ~ nbclaim08FC + ClaimNBhat + bonuspercentnew + 
lastprem_group2 + diff2tech + isinsuredinaccident + polage + vehiclage + polholderage + 
typeclassFC, data = subdata, Hess = TRUE, method = "logistic")  
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Coefficients:  
 Value Std. Error t value pvalue 
nbclaim08FC -2.900e-02 8.425e-03 -3.442e+00 0.180 
ClaimNBhat 1.656e+00 9.401e-02 1.762e+01 0.036 
bonuspercentnew 1.391e-02 3.357e-04 4.143e+01 0.015 
lastprem_group2(500,5e+03] -3.026e-01 1.129e-02 -2.679e+01 0.024 
diff2tech -1.720e+00 6.900e-02 -2.493e+01 0.026 
isinsuredinaccident -2.964e-01 9.988e-03 -2.968e+01 0.021 
polage -2.789e-02 3.594e-04 -7.759e+01 0.008 
vehiclage 4.625e-02 1.056e-03 4.381e+01 0.015 
polholderage -9.538e-03 2.921e-04 -3.266e+01 0.019 
typeclassFC 1.169e-01 1.154e-03 1.013e+02 0.006 
Intercepts: 
 Value Std. Error t value 
0|150 -2.3565 0.0354 -66.5322  
150|300 -0.4060 0.0334 -12.1655  
300|500 4.1764 0.0341 122.4217  
Residual Deviance: 664289.21 
AIC: 664315.21 

8.1.8 GAM outputs for Subsection 6.2 

Below we give the regression summary for the TPL agent dataset. Other summaries 

are available on request to the author. 

 
Formula: lapse ~ product2 + region2 + cumulrebate3 + nbclaim0608percust + 

isinsuredinhealth + isinsuredinlife + vehiclage + householdNbPol + polholderage + maritalstatus2 + 
jobgroup2 + gender + bonusevol2 + priceratio:(paymentfreq + nbclaim08percust + 
nbclaim0608percust + nbclaim0708percust + isinsuredinaccident + bonusevol2) + s(priceratio, 
diff2tech) + s(priceratio, diff2top10agent) + s(priceratio, diff2top10direct) + s(priceratio, 
typeclassTPL) 

 



 

 

 

Parametric coefficients:  
 Estimate Std. Error z value Pr(>|z|)   Estimate Std. Error z value Pr(>|z|) 
(Intercept) -0.9881832 0.0744176 -13.279 < 2e-16 *** 
product2T1 -0.2957239 0.0365839 -8.083 6.30e-16 *** product2T2 -0.5888125 0.0439784 -13.389 < 2e-16 *** 
region2_02-04-11 0.2474500 0.0432128 5.726 1.03e-08 *** region2_05 0.1820856 0.0279436 6.516 7.21e-11 *** 
region2_08-09 0.0627676 0.0260959 2.405 0.016161 * region2_10 0.4597820 0.0908178 5.063 4.13e-07 *** 
region2_12-13 0.3600178 0.0408722 8.808 < 2e-16 *** region2_14-15-16 0.4440049 0.0377465 11.763 < 2e-16 *** 
cumulrebate3 0.1287561 0.0241245 5.337 9.44e-08 *** nbclaim0608percust 0.2144964 0.0968126 2.216 0.026720 * 
isinsuredinhealth -0.2018414 0.0739308 -2.730 0.006331 ** isinsuredinlife -0.0978298 0.0405763 -2.411 0.015908 * 
vehiclage -0.0367641 0.0025963 -14.160 < 2e-16 *** householdNbPol -0.0783881 0.0048668 -16.107 < 2e-16 *** 
polholderage -0.0150938 0.0008334 -18.111 < 2e-16 *** maritalstatus2b -0.2629597 0.0760885 -3.456 0.000548 *** 
maritalstatus2d -0.1017553 0.0341228 -2.982 0.002863 ** jobgroup2public -0.1161175 0.0217312 -5.343 9.12e-08 *** 
gender -0.0790535 0.0209269 -3.778 0.000158 *** bonusevol2up-down 7.4827223 1.0625789 7.042 1.89e-12 *** 
priceratio:paymentfreq -0.0343715 0.0026481 -12.980 < 2e-16 *** priceratio:nbclaim08percust -0.0893319 0.0393116 -2.272 0.023062 * 
priceratio:nbclaim0608percust -0.2010502 0.1016136 -1.979 0.047864 * priceratio:nbclaim0708percust 0.1538349 0.0369590 4.162 3.15e-05 *** 
priceratio:isinsuredinaccident -0.1409923 0.0508941 -2.770 0.005600 ** priceratio:bonusevol2up-down -7.2677291 1.0573222 -6.874 6.26e-12 *** 

 

Approximate significance of smooth terms:  
 edf  Ref.df  Chi.sq p-value 
s(priceratio,diff2tech)  12.440  16.687  113.56  < 2e-16  ***  
s(priceratio,diff2top10agent) 8.901 12.069  29.36  0.00361  **  
s(priceratio,diff2top10direct)  8.177  11.277  18.63  0.07569  
 s(priceratio,typeclassTPL)  4.160  5.687  43.91  5.43e-08  *** 

R-sq.(adj) = 0.0176 Deviance explained = 3.46 – REML score = 44028 Scale est. = 1 n = 187733 

 

 



 

 


